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ABSTRACT This study aims to predict the direction of US stock prices by integrating time-varying effective
transfer entropy (ETE) and various machine learning algorithms. At first, we explore that the ETE based
on 3 and 6 months moving windows can be regarded as the market explanatory variable by analyzing
the association between the financial crises and Granger-causal relationships among the stocks. Then,
we discover that the prediction performance on the stock price direction can be improved when the ETE
driven variable is integrated as a new feature in the logistic regression, multilayer perceptron, random forest,
XGBoost, and long short-term memory network. Meanwhile, we suggest utilizing the adjusted accuracy
derived from the risk-adjusted return in finance as a prediction performance measure. Lastly, we confirm that
the multilayer perceptron and long short-term memory network are more suitable for stock price prediction.
This study is the first attempt to predict the stock price direction using ETE, which can be conveniently
applied to the practical field.

INDEX TERMS Econophysics, effective transfer entropy, feature engineering, information entropy, machine
learning, prediction algorithms, stock markets, time series analysis.

I. INTRODUCTION
Stock markets have been studied extensively as one of the
crucial fields of economy [1]. In particular, research has
been actively conducted to analyze and predict the stock
market based on relationships among the dynamics of stock
prices and returns. Since the stocks exhibit diverse inter-
actions, many theoretical or empirical studies of such rela-
tionships have provided meaningful implications to investors
and policy-makers developing appropriate actions regarding
the market condition. Specifically, the prediction on stock
price and the overall market is one of the essential tasks for
investors to establish an optimal investment strategy.

Many previous studies have utilized concepts in statisti-
cal physics such as complex systems and information the-
ory to quantify the correlations among the entities in an
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economic or financial system [2]–[6]. Notably, the correlation
analysis is a simple and good indicator for measuring the
degree of similarity between two variables. Many studies
of correlation-based time series analysis have revealed the
characteristics of the system using random matrix theory
and network analysis [7]–[9]. Since then, the studies have
discovered that a linear model such as the Pearson correlation
is not sufficient enough to quantify the relationships among
the stocks. More importantly, the causal relationship is not
directly linked to the presence of correlation. In this context,
the Granger-causality [10] has been introduced to define the
causal relationship between time series. However, its function
is limited to express the existence of information flow based
on a linear relationship rather than measuring the amount of
information flow.

To overcome such limitations of a simple linear model
of a Granger-causal relationship, the concept of transfer
entropy (TE), proposed by Schreiber [11], has been suggested
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instead to measure the amount of information flow. TE is
a non-parametric measure of the amount of information
transfer from a variable to a variable based on the Shannon
entropy [12]. TE has been widely used in researches such as
social networks, neuroscience, and financial market analysis
due to its ability to capture the asymmetrical interactions
within the system and to distinguish the driving and respond-
ing elements efficiently [13]–[15]. Despite its advantages,
TE could involve a noise due to its requirement on a large
amount of data. Thereupon, the effective transfer entropy
(ETE) [16] has been proposed to obtain a more robust quan-
tification of information flow. Since then, many studies have
utilized TE and ETE to identify information flows in different
financial markets [17]–[25].

Based on findings in Granger-causal relationships within
the financial system, the prediction on the price or volatil-
ity of the stock market has been widely studied [26].
Especially, the prediction on stock price is a critical issue
since an improved prediction performance can guarantee a
higher expected return to investors. In this regard, many
previous studies have attempted the prediction based on var-
ious models [27], [28] including an artificial neural network
[29]–[32], support vector machine [33], [34], and random
forest [35], [36]. Commonly, two different approaches are
considered in machine learning-based stock price prediction.
The first is to improve the existing machine learning models
theoretically [37], [38], and the second is to integrate created
variables such as network indicators, Google trends, and
public announcements in addition to a simple set of stock
price and return series [39]–[46].

In this study, we focus on the integration of entropy-driven
indicators in machine learning algorithms to improve the
performance of prediction in the direction of a stock price.
Although many studies have devoted to integrating the
network-driven indicators, an attempt to utilize the concept
of entropy in stock price prediction has not been widely
studied. Instead, the previous studies on TE have focused
on revealing the Granger-causal relationship between various
financial variables. Furthermore, the previous studies related
to TE and ETE analysis have focused on the inter-market
and static-interval analysis, which occurs a limited finding in
intra-sector and dynamic-interval.

Therefore, we focus on the US financial market, the largest
single market in the global financial system, and study
55 companies from 11 different industry sectors based
on moving window methods. Indeed, the moving window
method allows dynamic and time-varying observations for
different crisis and non-crisis periods based on interval analy-
sis. Oncewe explore that the evolution of ETE can express the
dynamics of stock prices, we utilize it as an extra variable for
various machine learning algorithms to predict its direction.
By comparing the performances of sets with and without the
ETE variable, we confirm the usability of ETE in stock price
prediction.

Note that we utilize the logistic regression (LR) [47] as
a linear predictive model, multilayer perceptron (MLP) as

a back-propagated neural network, random forest (RF) [48]
as a bagging-type ensemble method, XGBoost (XGB) [49]
as a boosting-type ensemble method, and long short-term
memory (LSTM) network [50] as a deep learning algorithm.

Our paper is organized as follows. Section II reviews previ-
ous studies of Granger-causality detection using TE and ETE
in financial markets, as well as studies of stock price predic-
tion using machine learning algorithms. Section III describes
the ETE and machine learning algorithms used in this study.
Section IV demonstrates the data and the analysis framework,
including different set-ups for prediction. Section V analyzes
the ETE of the US financial market, the prediction perfor-
mance of stock price direction. Section VI concludes.

II. LITERATURE REVIEW
A. TRANSFER ENTROPY
Since the concept of Granger-causality [10] was discovered,
many studies have utilized it to detect the Granger-causal
relationship in various financial time-series. For instance,
Mok [51] analyzed the relationship among the daily stock
prices, exchange rates, and interest rates of Hong Kong
using the autoregressive integrated moving average and
Granger-causality test, and confirmed the sporadic unidirec-
tional Granger-causality from stock price to interest rate as
well as a weak bidirectional Granger-causality between stock
price and exchange rate.

Swanson et al. [52] conducted a multivariate time series
analysis on the data revision process for industrial produc-
tion (IP) and the composite leading indicator (CLI) in the
United States. They confirmed a kind of causal feedback of
revision processes for IP and CLI by showing that previously
available IP revisions are useful for describing CLI revisions
and that IP revisions are predictable from past CLI revisions.

Soytas and Sari [53] conducted a Granger-causality test
between energy consumption and GDP in nine emerging
market groups and seven advanced countries. However,
the Granger-causality is a model-specific approach that
assumes a specific underlying dynamics such as the Vector
Autoregressive (VAR) and the Vector Error CorrectionModel
(VECM), which focuses on the existence of a Granger-causal
relationship rather than the degree of a Granger-causal
relationship.

In contrast, the TE [11] is a model-free measure cop-
ing with the limitation of Granger-causality in quantifying
the degree of information transfer without any constraints
such as linear dynamics. The previous studies on Granger-
causality detection through information flow analysis
using TE and ETE in financial markets are as follows.
Marschinski and Kantz [16] analyzed the relationship
between the Dow Jones Industrial Average (DJIA) and the
German DAX Xetra Stock Index (DAX) using ETE, and
discovered asymmetry information flow where more infor-
mation is transferred from the DJIA to the DAX than the
vice versa. Kwon and Yang [18] performed a TE analysis
using daily data of 25 global financial market indices and
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discovered that the US stock market has the most significant
impact on the global stock market as well as confirmed that
the Asia and Pacific market received information the most.
Sensoy et al. [17] considered the direction and intensity of
information flow for the exchange rate and stock price of nine
emerging countries through ETE. Specifically, a low level
of interaction before the 2008 financial crisis was revealed
with the dominance of exchange rate over the stock prices in
the crisis, whereas a robust bidirectional interaction in and
after the crisis with a dominance of stock prices over the
exchange rate. However, the studies of Kwon and Yang [18]
and Sensoy et al. [17] are limited in showing an overall
level of relationships without considering the relationships
at industry or individual stock level.

In this context, Kwon and Yang [19] conducted a TE anal-
ysis of the Dow Jones index, S&P 500 index, and 125 stocks
in the US market, and confirmed that individual stock prices
are affected by the market index considering the direction
of information transfer. Also, Kwon and Oh [20] performed
TE analysis between the market index and stock price for
nine emerging or mature stock markets, and confirmed the
market index as the primary driving force for determining
individual stock prices and higher asymmetric information
flow of developed countries than that of emerging countries.
Dimpfl and Peter [21] analyzed the information flow between
the credit default swap market and the corporate bond mar-
ket using the TE of 27 iTraxx companies before and after
the financial crisis, and discovered the dominance of CDS
market over the corporate bond market, the increment of
information transmission between markets over time, and the
highest importance of the CDS market in the crisis period.
Sandoval [22] applied ETE analysis to 197 global financial
companies selected based on the amount of market capitaliza-
tion. Through assessing influence among companies as well
as their network structure, he revealed the most significant
impact and importance of banks and insurance companies
of European and the US to the global financial markets.
Chunxia et al. [23] analyzed the correlation between the
information flow and trading volume through TE among ten

sectors of the US market. As the effect of the financial crisis
intensified, the information flow between sectors increased,
and the financial sector always showed a massive outflow
of the TE at all intervals. In particular, it is confirmed that
the main information flow from the financial sector changed
before and after the financial crisis. Lim et al. [24] analyzed
the information flow of the CDS and stock market in the US
through the TE into the inter and intra structure aspects, and
confirmed a substantial change in the information transfer
during the financial crisis as well as the precedence of the
sudden change of transfer entropy in the CDS market than
that of the stock market. Yue et al. [25] analyzed the infor-
mation flows among the sectors in the Chinese stock market
using the transfer entropy. They used the maximum spanning
arborescence to extract information flow and the hierarchical
structure of the networks. They identified the information
source and sink sectors and observed that the root node sector
acts as an information sink of the incoming information flow
networks.

Table 1 summarizes the methodology of previous studies.
In general, the previous studies tend to compress information
by choosing three to five bins in the binning process to
discretize the stock returns. Furthermore, the static analysis
of certain time intervals has studied in the financial network
analysis to identify non-linear Granger-causal relationships.
Then, the studies have devoted to demonstrating the empirical
findings rather than its practical application. Therefore, in this
study, we set 22 bins [22] to reflect as much information in
stock returns as possible. Then, we utilize themovingwindow
method to analyze the time-varying dynamics of ETE and
apply its values in predicting the direction of stock prices.

B. STOCK PRICE PREDICTION BASED ON MACHINE
LEARNING
In recent years, as the use of machine learning algorithms has
attracted attention in academia, many studies have attempted
and discovered the utilization of various machine learning
algorithms and their adequacies in price prediction in finan-
cial markets. Note that the problem of predicting the direction

TABLE 1. Outline of previous literature on TE and ETE.
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of cumulative returns of stock in the future can be considered
as a classification problem. For instance, Ballings et al. [36]
compared the predictive performance of European stock
prices by AUC among the RF, AdaBoost, and Kernel
Factory, Neural Networks, Logistic Regression, Support Vec-
tor Machines, and K-Nearest Neighbor where the RF showed
the highest performance. Patel et al. [35] predicted the stock
price direction of the Indian stock market using the neu-
ral network, support vector machine, RF, and naive-Bayes
classifier. At first, 10 technical parameters from the stock
transaction data is applied as input parameters. Then, these
parameters are converted into trend deterministic data. As a
result, the RF showed the best prediction performance.
Fischer and Krauss [54] applied the LSTM networks to pre-
dict the direction of the stock price for the constituent stocks
of the S&P 500 from 1992 until 2015, where the LSTM
networks outperformed the memory-free classification meth-
ods such as an RF, deep neural net, and logistic regression
classifier. Bao et al. [55] proposed an ensemble approach
consisting of the wavelet transforms, stacked autoencoders
(SAEs), and LSTM to predict six stock price indices, namely
CSI 300, Nifty 50, Hang Seng index, Nikkei 225, S&P 500,
and DJIA. Specifically, the wavelet transforms is utilized
to decompose the time series of stock prices to remove the
noise; SAEs are used to generate deep high-level features
for forecasting; LSTM is applied to predict the next day’s
stock price based on generated features. Briefly, the primary
purposes of previous researches on stock price prediction
using machine learning algorithms are twofold: advance in
the algorithm and utilization of various variables to improve
the prediction performance.

In the perspective of advancing the machine learning
algorithms in price prediction, Guo et al. [37] proposed
the advanced neural network model by incorporating the
principal component analysis and radial basis function.
In contrast, Qiu and Song [38] proposed a genetic algorithm-
based neural network in price prediction. Tsaih et al. [29]
proposed a rule-based system trading strategies to predict
the direction of the S&P 500 stock index futures using the
reasoning neural network. The results confirmed that the
proposed model outperformed the backpropagation network
and perceptron neural network. Tsai and Hsiao [56] pro-
posed a multiple feature selection model combining prin-
cipal component analysis, genetic algorithm, and decision
trees. Then, a back-propagation neural network is applied
as a prediction model, which yields the best performance in
predicting the price direction of the electronic corporations
in Taiwan stock exchange. Kao et al. [57] proposed a stock
price prediction model by incorporating the wavelet trans-
form, multivariate adaptive regression splines, and support
vector regression for various emerging and mature markets.
The model solved the wavelet sub-series selection problem
and confirmed that the prediction accuracy outperforms the
other five competing approaches. In addition, a sub-series
selected by the model can identify which points in the
past stock price data have had a significant impact on the

predictive model configuration. Shin et al. [58] has applied
the semi-supervised learning, the model has been used for
non-time-series type data, to the time series to predict the
direction of crude oil prices. In order to apply the existing
model to time series prediction, the semi-supervised learning
is modified by considering the similarity between different
sets of time series data, labels in the stock direction, technical
indicator transformation, and feature selection. Ola et al. [27]
confirmed that daily returns of Tehran Stock Exchange stocks
are a chaotic process and that prediction can be improved by
applying time-series tests of the local polynomial approxima-
tion model. Zahedi and Mahdi [32] applied artificial neural
network (ANN) and principal component analysis (PCA) to
the 20 accounting variables of stocks listed on the Tehran
Stock Exchange to confirm the superiority of stock price
forecasting through ANN and the effective factor through
the PCA method. Moradi et al. [28] analyzed and predicted
stock returns by applying the lags coevolving with radial
basis function networks (L-Co-R) algorithm for the Tehran
Stock Exchange and London Stock Exchange, and uses the
Box-Jenkins methods to analyze the Fractal market hypoth-
esis (FMH) between the two exchanges. As a result, they
discovered the fact that L-Co-R algorithm is more applica-
ble for long-term time series, that the Box-Jenkins method
performs better in short-term time series, and that the FMH
is accepted in Tehran Stock Exchange but rejected for London
Stock Exchange.

In the perspective of utilizing new input variable, many
variables have been proposed including the price-driven mea-
sure [46], [59], volatility-driven measure [39], [46], and
Google trends [40], which extended to the text mining-based
variables from the financial news [41]–[45]. Specifically,
Khansa and Liginlal [60] analyzed the relationship between
the stock returns of information security firms and the inten-
sity of malicious attacks using artificial neural networks and
vector autoregression analysis. The results confirmed that the
malicious intensity has a one-month-lagged positive effect on
the stock price return of information security firms, and the
time-delayed artificial neural network acts as a complemen-
tary approach to the existing VAR analysis. In this milieu,
the time-delayed artificial neural network showed 95% accu-
racy while the regression counterpart only showed 85%.
Nam and Seong [61] performed the prediction on stock
price direction using various machine learning algorithms
by incorporating the Granger-causality of the financial news
data in the Korean market. Note that the TE is applied in
Granger-causality analysis and multiple kernel learning to
combine features of target firms and Granger-causal firms.
The results confirmed that the proposed model outperformed
the benchmarks and verified that the direction of stock price
could be predicted based on the news of the Granger-causal
firms even when the target firms had no news.

In summary, the RF has been recognized as a decent
classifier that has been heavily used in stock price predic-
tion. Also, the XGB is also a popular boosting-type ensem-
ble classifier used for classification problems [62], [63].
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The LSTM, a model that improves the exploding and
vanishing gradient problem in the recurrent neural network,
has shown decent performances in sequence learning and
time series prediction, which eventually leads to studied in
financial time series prediction [64], [65]. Thus, in this study,
we focus on discovering a useful input variable in predicting
the stock price direction by utilizing the ETE-driven net-
work indicator based on five representative machine learning
algorithms: LR as a traditional predictive model, MLP as
a back-propagated neural network, RF as a bagging-type
ensemblemethod, XGB as a boosting-type ensemblemethod,
and LSTM as a single classifier model.

III. METHODS
A. EFFECTIVE TRANSFER ENTROPY
1) TRANSFER ENTROPY
TE [11] is a non-parametric indicator to measure the
Granger-causal relationship between two processes. Note that
the TE can detect the non-linear Granger-causal relationship.
It is widely used in fields such as social networks, neuro-
science, and financial market analysis due to its efficient
detection of the asymmetric interaction in the system. When
two variables interact with each other, a time series of one
variable Y can affect the future time point of another time
series of variableX . Let a time seriesX is aMarkov process of
degrees k; then it refers that the state xn+1 of X is affected by
k previous states of the same variable, which can be expressed
as,

p(xn+1|xn, xn−1, . . . , x0)

= p(xn+1|xn, xn−1, . . . , xn−k+1), xi ∈ X (1)

where p(A|B) represents a conditional probability of A
given B, p(A|B) = p(A,B)/p(B). Furthermore, let the state
xn+1 of X is dependent on the l previous states of Y , then the
TE from a variable Y to a variable X can be defined as the
average information included in Y excluding the information
reflected by the past state of X for the next state information
of X . Therefore, if X and Y denote the amount of information
measured by the Shannon entropy(= −

∑
i pi log2 pi), and

the variable xn+1 of X is affected by k previous states of X
and l previous states of Y , the TE from the variable Y to the
variable X can be defined as follows.

TE (k,l)
Y→X =

∑
i

p(xn+1, x(k)n , y(l)n )log2p(xn+1|x
(k)
n , y(l)n )

−

∑
i

p(xn+1, x(k)n , y(l)n )log2p(xn+1|x
(k)
n )

=

∑
i

p(xn+1, x(k)n , y(l)n )log2
p(xn+1|x

(k)
n , y(l)n )

p(xn+1|x
(k)
n )

(2)

where i = {xn+1, x
(k)
n , y(l)n }, x

(k)
n = (xn, xn−1, . . . , xn−k+1),

y(l)n = (yn, yn−1, . . . , yn−l+1), and p(A,B) is the joint proba-
bility of A and B.

The definition of TE assumes that events at some point
are affected by events of k and l previous states. Based on
the previous research [66] showing the low memory in the
log-returns of stock prices, we computed the TE under the
conditions k = l = 1, which expresses the weak form
of efficient market hypothesis stating that the current price
reflects all past information. Hence, the (2) can be re-defined
as follows.

TEY→X =
∑
i

p(xn+1, xn, yn)log2
p(xn+1|xn, yn)
p(xn+1|xn)

=

∑
i

p(xn+1, xn, yn)log2
p(xn+1, xn, yn)p(xn)
p(xn+1, xn)p(xn, yn)

(3)

where i = {xn+1, xn, yn}.
In summary, TEY→X is the difference between the infor-

mation regarding the future value of Xi obtained from Xi
and Yi and the information regarding the future value of Xi
obtained only from Xi. So, the positive TEY→X indicates that
the variable Y affects the future value of the variable X , which
can be interpreted as the intensity of the Granger-causality to
the variable X of the variable Y . In the same context, TEY→X
means the degree to which the dynamics of Y affects the
transition probability of X , which can be seen as the amount
of information flow from Y to X . Therefore, a large TE value
refers to more significant information flow. Also, the TE can
measure the amount of in-flow information coming from Y
to X through TEY→X and the amount of out-flow information
going from X to Y through TEX→Y , respectively, based on its
asymmetric property.

2) EFFECTIVE TRANSFER ENTROPY
TE is a proper measure to estimate a statistical dependency
regardless of the data type. However, a relatively large amount
of data is required to derive the transfer entropy. Also, a criti-
cal disadvantage of TE is its inclusion of noise due to the finite
sample effects and non-stationarity of data. In this context,
ETE [16] is proposed to solve the disadvantage of TE. At first,
we randomly shuffle the elements of each time series to
break the Granger-causal relationship between variables, yet
keeping the individual probability distributions of each time
series. Then, we obtain transfer entropy from this time series,
called the randomized TE (RTE). Finally, we obtain ETE by
subtracting the RTE from the original TE to eliminate the
noise.

ETEY→X = TEY→X − RTEY→X (4)

In this study, we choose to use an average of 25 RTE simu-
lations. Also, we set 22 bins to construct the discrete probabil-
ity distribution for the log-returns of the stock prices. In order
to reduce the influence of outliers of log-returns, we inte-
grated the log-returns less than −6% and greater than +6%
into bin #1 and #22, respectively. Then, the interval between
−6% and +6% is divided by 0.6% (from bin #2 to #21).
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B. MACHINE LEARNING ALGORITHMS
1) LOGISTIC REGRESSION
LR [47] is a multivariate analysis model used to predict
the likelihood of an event using a linear combination of
independent variables. In general, the LR is useful when the
dependent variable is a binary or a multinomial categorical
variable and is mainly used in the financial sector to predict
the direction of stock prices or analyze the classification
among companies. In this study, the LR was applied as a
model representing a linear model, and the stock price direc-
tion of the cumulative log-returns was classified based on a
cut-off value of 0.5.

2) MULTILAYER PERCEPTRON
MLP is a kind of feed-forward artificial neural network and
consists of an input layer, a hidden layer, and an output layer.
Each node, except the input nodes, is a neuron that uses a non-
linear activation function and is themost common structure of
a neural network learning through back-propagation. In this
study, we set the number of hidden layers and their neurons
as learning parameters of the MLP. Note that the number of
hidden layers is composed of 4, 8, and 16. Then, the num-
ber of neurons per layer was defined as follows. In case of
4-hidden layers, the number of neurons for each layer is (256,
128, 64, 32), (128, 64, 32, 16), (64, 32, 16, 8), (32, 16, 8,
4), (16, 8, 4, 2), which yields five sets of hidden layers.
In 8-hidden layers, the number of neurons for each layer of the
4-hidden layers is repeated twice (e.g., (256, 256, 128, 128,
64, 64, 32, 32)), In 16-hidden layers, the number of neurons
was repeated four times, which yields a total of 15 (3 hidden
layers × 5 neurons) MLPs. Finally, the ReLU was applied to
the activation function.

3) RANDOM FOREST
RF [48], a kind of ensemble learningmethod used for classifi-
cation and regression analysis, is a method to obtain a classi-
fier with high accuracy and stability by generating amultitude
of decision trees and combining each predictive value. Since
the RF generates multiple decision trees through bagging
and learns by selecting variables randomly for each tree,
it is robust against noise and outliers as well as overcomes
the disadvantage that the existing single decision tree tends
to incur over-fitting according to the training set. Although
the training and test time increases as the number of trees
increases, a large forest exhibits a relatively continuous result
and better generalization ability than a small forest, which
increases the stability of the model. In this study, we set
the number of trees and variables as learning parameters of
a random forest where the numbers of trees are 100, 150,
and 200, and the numbers of randomly selected variables
are from 8 to 16 by two intervals based on the square root
of the lags applied when constructing the data set. In sum-
mary, a total of 15 parameter sets (3 trees × 5 variables) are
used.

4) EXTREME GRADIENT BOOSTING
XGB [49] is a gradient boosting algorithm that emphasizes
parallel processing and optimization. The gradient boosting
machine (GBM) method can be defined as follows. After
constructing weak learners, the training set and consistency
are evaluated to construct new weak learners using the gradi-
ent descent method as the explanatory variable. By repeating
such a process, several predictive models are ensembled to
construct a strong learner. The GBMs have excellent predic-
tion performance, but there might be an overfitting problem
if the proper number of splits is not obtained due to no fitting
limit of the number of splits in the decision tree. The XGB is
an algorithm that modified the structure of GBM to prevent
the overfitting problem through regularization and enabling
of parallel computation. In this study, we set the number of
trees and depths as learning parameters of the XGB. The
number of trees is set to 100, 150, and 200, whereas the depth
is set to 2 to 10 by two intervals, similar to RF. Therefore,
a total of 15 parameter sets (3 trees × 5 depths) are utilized.
The learning rate was set to 0.1.

5) LONG SHORT-TERM MEMORY NETWORK
LSTM [50], a kind of Recurrent Neural Network (RNN) [67],
is a suitable method for classification or prediction based on
time series data with unknown gaps between essential events.
A typical LSTMunit consists of a cell, input gate, output gate,
and forget gate. The cell maintains dependencies between
the elements of the input sequence and selectively adjusts
the information flow through the gates. The back-propagated
error values at the output layer of the unit remain in the LSTM
unit’s cell, and the error values are continuously supplied to
the LSTM unit’s gate to learn the cut-off value. Through this
process, LSTM networks can deal with vanishing gradient
problems that can occur when learning through traditional
RNNs. The LSTM network architecture used in this paper
is defined as follows. The input size and hidden units are
the numbers of features of the input data. The output is
binary(up/down) data based on the cumulative log-return of
stock during the prediction period. The layers consist of a
fully connected layer of size 2, followed by a softmax layer
and a classification layer. Specifically, we select epoch and
batch size as the learning parameters of LSTM networks.
Through trial and error, the epoch is set to 10, 20, 30 times,
and the batch size is set to 100 intervals from 100 to 500,
which yields a total of 15 parameter sets (3 epoch × 5 batch
size). The parameter pairs used in machine learnings are
summarized in Table 2.

6) ADJUSTED ACCURACY
In finance, the performance of a portfolio is evaluated based
on the risk-adjusted return, commonly known as the Sharpe
ratio [68]. Therefore, we also measure the prediction perfor-
mance of each algorithm based on a concept similar to the
Sharpe ratio. The Sharpe ratio measures the excess return per
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TABLE 2. Parameter set-ups for machine learning algorithms.

unit of deviation, usually referred to as risk, and is defined as,

Sa =
E[Ra − Rf ]

σa
=

E[Ra − Rf ]√
var[Ra − Rf ]

(5)

where Ra is the asset return, Rf is the risk-free return, and σa
is the standard deviation of the asset excess return.

In this study, we propose an adjusted accuracy as a pre-
diction performance measure on the direction of the stock
price. Note that the previous studies mainly compare the
absolute value of accuracy in evaluating the results. In case
of adjusted accuracy, we define Ra, Rf and

√
var[Ra − Rf ]

as the prediction accuracy of a single stock, the benchmark
accuracy 0.5 from the expectation of binary prediction, and
the standard deviation of Ra − Rf , respectively.

IV. DATA AND EXPERIMENT SET-UPS
A. DATA
In this study, the classification of industry and its constituent
stocks are based on The MSCI(Morgan Stanley Capital Inter-
national) USA IMI(Investable Market Index) Sector Indexes
as of December 31, 2018. This index covers approximately
99% of the 2,400 large-, mid-, and small-cap stocks in the
US stock market and divides stocks into 11 sectors based on
the Global Industry Classification Standard (GICS R©).
Based on the stocks in which the company continu-

ously exists within the period of the experiment, we uti-
lize a total of 55 stocks, the top five stocks by market
capitalization in each sector. Note that all the stocks are
listed on the NASDAQ and NYSE. The data period is from
January 3, 2000 to December 31, 2018, which yield
4,779 daily adjusted stock prices of 55 stocks. The data is
extracted fromThomson Reuters Datastream. The descriptive
statistics of the log-returns of entire data are summarized
in Table 3.

B. EXPERIMENT SET-UPS
1) CRISIS AND NON-CRISIS PERIODS
At first, we select the six major events to observe changes of
ETE during the financial crisis a follows: Dot-com bubble,
Subprime mortgage crisis, European crisis, US debt-ceiling
crisis, Brexit, andUS-China tradewar.Minutely, theDot-com
bubble occurred in the US market when the Internet began
to spread as a new business model. Therefore, the crisis

period is set from the beginning of 1995 to Sept 30, 2002,
when most dot-com companies went bankrupt, and Nasdaq
reached its lowest point. The subprime mortgage crisis
is set from Apr 1, 2007, when New Century, the US’s
second-largest subprime mortgage lender, requested fil-
ing for bankruptcy protection, to the first half of 2009
(Jun 30, 2009), when US Congress announced the American
Recovery and Reinvestment Act of 2009. The European
crisis is set from Apr 23, 2010, when the Greek government
requested financial assistance to the EU and the IMF to the
end of 2010 (Dec 31, 2010). The US debt-ceiling crisis is set
from Apr 18, 2011, when the S&P, a renowned credit rating
company, announced its first negative view in history on the
US AAA sovereign-debt rating to Jan 31, 2012, when the US
set an extremely low-interest rate plan to deal with the fall
of its rating. The Brexit is set from May 7, 2015, the day of
the 2015 UK election, where the conservative party which
insisted a hold on the referendum on Brexit won the election,
to Jun 23, 2016, the day of the Brexit referendum. Lastly,
the US-China trade war is set from January 2018, when the
US began to impose sanctions on Chinese companies, to the
end of the experimental period.

From the perspective of stocks and events, we check
whether the 55 stocks employed in this study could repre-
sent the US market. Then, we choose the S&P 500 as a
representative indicator of the entire US market in order to
examine the actual relationship between the selected financial
crisis and the US market. The S&P 500 price, log-returns of
S&P 500, and the average log-returns of 55 stocks are shown
in Figure 1.

FIGURE 1. Price and log-returns of S&P 500, and the average log-returns
of 55 stocks.
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TABLE 3. Descriptive statistics for representative stocks in S&P 500.

The result shows that the average log-returns are similar to
that of the S&P 500. Furthermore, we set the selected events
as gray boxes. In the gray boxes, the volatility of log-returns
in the USmarket is relatively high, indicating that the selected
events represent the financial crises in the US market.

To analyze the time-varying property of ETE, we use
the moving window method and set four different sizes:
1 month (1M, 20 days), 3 months (3M, 60 days), 6 months
(6M, 120 days), and 1 year (1Y, 240 days). In this regard,
we can obtain 55 × 55 ETE matrix for 55 stocks for each
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FIGURE 2. Dataset structure used to compute the ETE and to perform the prediction.

time point and derive a time series of the total mean value of
ETE at each time point. Then, we examine the evolutions of
ETEwith the major US financial crises to explore appropriate
sizes of moving windows size.

For the selected appropriate moving window-based ETE,
we derive the average of inflow (ETEY→X ) and outflow
(ETEX→Y ) values at each time point and define these two
indicators as the ETE network indicator. Furthermore, we per-
form time series analysis and interval analysis of informa-
tion flow by sector through the time series of ETE network
indicators.

2) MACHINE LEARNING FRAMEWORK
We construct the training dataset based on a various mixture
of input and target variables. The input variable(x) at each
time point for each stock consist of three cases in two vari-
ables: ETE network indicators for inflow and outflow and
lags for 3 months (3M, 60 days), 6 months (6M, 120 days),
and 1 year (1Y, 240 days) of time series of each stock’s
past log-returns. Then, the target variable(y) is the cumulative
log-returns in different prediction periods for 1 week (1W,
5 days), 1 month (1M, 20 days), and 3 months (3M, 60 days).

Note that the categorized (positive & negative) cumulative
log-returns are used for algorithms. This process is then

repeated for the different ETEs obtained from different sizes
of moving windows. Figure 2 summarizes the dataset struc-
ture used in this study.

For each dataset, we compare the prediction performances
of the mixture of log-returns and ETE network indicator
against that of plain log-returns. In this regard, we aim to
check the following statements in terms of prediction per-
formance: (1) the validity of ETE network indicators and
(2) the most applicable machine learning algorithm. Specifi-
cally, the learning is performed as follows. At first, the entire
data is divided into 50%of training and 50%of test sets. Then,
we normalize the stock log-returns and inflow and outflow
ETEs based on their means and standard deviations of each
training set. The associated periods of training set for 3M and
6Mmoving windows are from 2000-01-03 to 2009-08-17 and
from 2000-01-03 to 2009-09-29, respectively. Note that we
only train 70% randomly sampled set from the training set
to achieve the generalized training results. Then, we com-
pare the prediction performance of test set for 3M and 6M,
whose periods from 2009-08-18 to 2018-12-31 and from
2009-09-30 to 2018-12-31, respectively. Figure 3 shows an
example of the proposed machine learning framework.

We define a prediction accuracy to reflect a proportion of
correctly classified direction of the cumulative log-returns in
the test set.
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FIGURE 3. A scenario of the proposed machine learning framework.

Based on the prediction accuracy, we can define the pre-
diction performance of each machine learning algorithm. For
LR, the performance of the algorithm is the same as the
prediction accuracy since the LR does not possess any model
parameters. In contrast, for MLP, RF, XGB, and LSTM,
we set 15 parameter sets, which yield 15 different results of
prediction accuracy.

Based on the previous studies [35], [39], the prediction
accuracy of LR for a single stock is the same as the accuracy
of LR, whereas those of other four models are defined as the
averages of top five results in prediction accuracy among the
15 parameter sets. In contrast, a model-specific prediction
accuracy for each sector is defined as the average of the
prediction accuracy of stocks associated in each sector. The
same approach is used to define the overall performance
of five models. We calculate the averages of the prediction
accuracy of all stocks. In case of the improvement of predic-
tion accuracy incurred by ETE network indicator, the LR is
defined as the simple difference of each stock, and the MLP,
RF, XGB and LSTM are defined as the average of the top
five among the accuracy differences between parameter sets.
Furthermore, the same approach is applied to the adjusted
accuracy, which can be obtained by (5). Finally, the overall
framework can be summarized as a step-by-step procedure
described in Figure 4.

V. RESULTS AND DISCUSSIONS
A. EFFECTIVE TRANSFER ENTROPY
Figure 5 shows the effective transfer entropy of 55 major
stocks in the US market for different sizes of moving
windows. For each moving window, we plot the mean of TE,
RTE, and ETE matrix that consists of the entire 55 stocks.
In all the moving windows, we confirm that the ETE,
a noise-reduced TE through RTE, tends to bemore stable than
a simple TE. Specifically, the ETE of the 1M moving win-
dow shows a noise-shaped oscillation, which fails to detect
any particular changes in financial time-series. In contrast,
the ETE of the 1Y moving window is too smooth to provide

the information for the entire period, where roughly 50% is
filled with zero. Therefore, we focus on the analysis of ETEs
of 3M and 6M moving windows.

Figure 6 shows the average ETEs of 3M and 6M moving
windows by presenting the six financial crisis as gray regions.
The average ETE is relatively high in the gray regions for
both cases, which suggests the implication of financial crisis
based on the increased ETE. Note that the average ETE
of 3M moving windows is usually smaller than that of 6M
movingwindow, whereas the average ETE of 3M showsmore
volatile movement with more detailed information than that
of 6M moving windows ETE. Since the ETEs of 3M and
6M seem to possess meaningful information regarding the
financial markets, we further investigate the characteristics
of ETE in terms of the detection of its evolution pattern and
cross-sectional analysis on the financial crisis in the level of
financial sectors.

Furthermore, we plot the average ETE of a sector for the
total, crisis, and non-crisis periods in Figure 7 as a heatmap to
investigate the information flow between individual sectors.
Note that the sector ETE is defined as the average of ETEs of
stocks associated in the sector. Comparing the heatmaps of
the total, crisis, and non-crisis periods in the top of Figure 7a
and Figure 7b, the information flow between sectors in the
crisis period is significantly higher than that of non-crisis
period. Note that the brighter the color, the stronger the
information transfer.

Besides, we further investigate the evolutions of inflow and
outflow ETE of different sectors for 3M and 6Mmoving win-
dows in Figure 8. Note that Total indicates the average of all
sectors, which equates the evolutions of inflow and outflow.
In both 3M and 6M moving windows ETE, the inflow and
outflow ETE of the financial crisis period were observed to
be larger in all sectors than the non-financial crisis period.
Although ETEs of two moving windows generally show the
same trend, the difference between inflow and outflow ETE
is prominent in 3Mmoving windows. However, a more stable
rise and fall of ETE is observed in 6M than 3M moving
windows.
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FIGURE 4. Procedure for the stock price prediction using the ETE.

Also, in order to check the strength of the information flow
of each sector, we plot the values of outflow minus inflow
in Figure 9. Note that a positive value indicates a more sub-
stantial outgoing information transfer from a specific sector
to other sectors that incoming information transfer and vice
versa. At first, the difference between inflow and outflow
for total is zero as shown in Figure 8. In the case of 3M
moving windows in Figure 9a, TELE, COND, and INFT
show the most positive values in the dot-com bubble located
in the first gray region from the left. In particular, INFT shows
the most persistent and large positive values. On the contrary,
in the same dot-com bubble period, ENRG, HLCA, and UTIL
exhibit negative values most time.

Given that the period is a dot-com bubble, the strong
outgoing information transfer from the INFT is because the
period is closely related to the bubble economy of informa-
tion technology companies. In the Subprime mortgage and
European crises, FINC and REES show the most positive
values, whereas CONS, INFT, and UTIL show the most
negative values. Again, FINC and REES are directly related
to the subprime mortgage crisis, and the FINC is the sector
most affected by the European crisis.

Similar to 3Mmovingwindows ETE, 6Mmovingwindows
ETE in Figure 9b shows different directions and intensity
of information transfer for each sector. In conclusion, it is
confirmed that outflow and inflow ETEs show the character-
istics of each sector according to a different time, and such
information could be useful in predicting the direction of
future stock prices.

B. PREDICTION PERFORMANCE IN DIFFERENT MODELS
AND PARAMETER SETS
We intend to utilize the evolution of ETE, which has a market
explanatory power, as an input variable in predicting the
direction of future stock price based on the LR, MLP, RF,
XGB and LSTM. Especially, the prediction performance of
the model using the inflow and outflow ETE values, which
can be defined as ETE network indicators, as input variables
are compared with that of the model without the ETE values.
Table 4 summarizes the average prediction accuracy of all
models for different moving windows, lags, and prediction
periods.

The results show that there is no significant difference in
prediction accuracy among different moving windows. As the
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FIGURE 5. Evolution of TE, RTE, and ETE for different moving windows.

FIGURE 6. Evolution of average ETE in 3M and 6M moving windows.

lag increases, the prediction accuracy, in general, tends to
decrease slightly, whereas the prediction accuracy tends to
increase in the long term rather than the short term. More
importantly, the improvement of prediction performance
by utilizing the ETE network indicator is detected in all

parameter sets. Also, the improvement tends to increase as
the prediction period increases.

Therefore, we suggest that the ETE network indicators can
be used to improve the performance of the stock price forecast
in the US market.
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FIGURE 7. Heatmaps of the average ETE in different periods. **Note: Numbers from 1 to 11 sequentially represent the TELE, COND, ENRG,
HLCA, INDS, MTRS, FINC, CONS, INFT, UTIL, REES, respectively.

TABLE 4. Overall accuracies in different dataset structure.

Besides, the detailed results on the prediction accuracy
in different models can be investigated by evaluating the
prediction accuracy and adjusted accuracy in (5). Table 5
summarizes prediction performances for different machine
learning algorithms, moving windows, lags, prediction peri-
ods, and integration of ETE indicator. Also, we mark the top
five accuracies and the adjusted accuracy of a total of 30 sets
of models and parameters.

From the perspective of accuracy, the improvements by
integrating ETE network indicators are detected in all models.
The longer the prediction period, the higher the accuracy,
and there is little difference in accuracy between the moving
windows. In LR and LSTM, the smaller the lag, the higher
the accuracy. However, the MLP, RF, XGB did not show any

change in accuracy for different lags. Since the top five of the
accuracy is all present in the RF and most of the top five of
the improvement present in the MLP, the absolute prediction
performance is highest in the RF and the improvement of the
accuracy through the ETE network indicator is the largest in
the MLP.

From the perspective of adjusted accuracy, all models
except the LR show lower adjusted accuracy over the longer
term. Since most of the top five of the adjusted accuracy
present in MLP, it implies that the prediction performance
of MLP is high and consistent. Specifically, in most of the
top five of the improvement, there are two LSTMs in the 1W
prediction period, and the rest are all in the MLP. The RF and
XGB show the adjusted accuracy improvement observed in
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FIGURE 8. Evolution of inflow and outflow ETE in different sectors.

the 1W prediction period with significantly smaller improve-
ment in the 1M and 3M prediction period. Although the
prediction performance of the LR is similar to those of other
models in terms of accuracy, the adjusted accuracy shows that
the prediction performance of the LR is not stable as those of
other models.

Overall, we discover that all five machine learning algo-
rithms have improved the accuracy through the ETE network
indicator and suggest that the MLP and LSTM are the most
suitable models for predicting future stock price direction
predictions when considered the accuracy and adjusted accu-
racy simultaneously. Note that the RF has the advantage of

high accuracy, whereas the MLP and LSTM have the charac-
teristic of consistent improvement in prediction performance.

C. PREDICTION PERFORMANCE IN DIFFERENT SECTORS
Since the adequacy of models established, the detailed anal-
ysis of the prediction performances in the different sectors is
evaluated based on the accuracy and adjusted accuracy of the
MLP, RF, XGB, and LSTM. Note that we exclude the LR due
to its poor performance in the adjusted accuracy. Table 6 and 7
summarize the accuracy and adjusted accuracy of each sector,
respectively, for different moving windows, lags, prediction
periods, and integration of ETE indicator.
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FIGURE 9. Evolution of ‘outflow - inflow’ ETE in different sectors.

Table 6 demonstrates that accuracy tends to increase in all
four algorithms in a more extended prediction period except
for the TELE sector of RF. The improvement of accuracy is
observed for all conditions of MLP and almost all sectors
in LSTM. For the 1W prediction period of RF and XGB,
the improvement of accuracy is generally observed in all
sectors regardless of lag. However, the decrease in accuracy
is observed in some sectors in 1M or 3M prediction periods.

Table 7 shows that the adjusted accuracy of four algo-
rithms tends to be higher for short-term predictions than long-
term. The improvement by using the ETE network indicators
tend to vary by sector and condition where TELE, FINC,

and INFT show the increase of adjusted accuracy in most
conditions.

Furthermore, we summarize the accuracy and adjusted
accuracy with their improvements in each sector for differ-
ent moving windows based on the average of performance
for all lags and prediction periods in Table 8. Although the
performance of machine learning algorithms differs for each
sector, we depict sectors with good performance regardless
of the algorithm.

In order to further analyze the prediction performance
on each sector, we draw the scatter plots for accuracy and
adjusted accuracy in Figure 10. Note that the sector-by-sector
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TABLE 5. Accuracy and adjusted accuracy for different machine learning algorithms.

mean of the prediction performance is on the X -axis, whereas
the mean of improvement achieved by integrating ETE
network indicator is on the Y -axis. We set the means of

X− and Y− axes as red dashed lines and the ±1σ , an indif-
ferent region, as a gray box. Specifically, the first quadrant
of the scatter plot is the best-case scenario for the proposed
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TABLE 6. Accuracy and its improvement by ETE network indicators.

111676 VOLUME 8, 2020



S. Kim et al.: Predicting the Direction of US Stock Prices Using ETE and Machine Learning Techniques

TABLE 7. Adjusted accuracy and its improvement by ETE network indicators.
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TABLE 8. Accuracy, adjusted accuracy, and their improvements in different sectors.

prediction framework containing the sectors with high predic-
tion accuracy and improvement. The second (fourth) quadrant
encompasses sectors that have poor (decent) prediction per-
formance but have decent (poor) performance improvement
from ETE indicator. The third quadrant is the worst-case
scenario containing sectors with poor performance in both
prediction performance and performance improvement from
ETE indicator.

Figure 10a and 10b shows the results on accuracy and
adjusted accuracy, respectively. At first, in the accuracy
aspect in Figure 10a, the best sector for prediction is INDS

located in the first quadrant of all MLP, XGB, and LSTM
cases and the fourth quadrant of RF. Sectors in the sec-
ond quadrant with high accuracy improvement are INFT,
TELE, HLCA. In particular, INFT and TELE are located
in the second quadrants under all conditions. INFT can be
found to deviate significantly from the indifferent region
in terms of accuracy in RF, LSTM, confirming significant
performance improvements due to the ETE network indi-
cators. Likewise, TELE shows the decent imrpovement in
XGB. Although HLCA is mostly in indifferent region, it is
located in the second quadrant under all conditions except
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FIGURE 10. Prediction performance vs. prediction improvement.

the case of XGB in 3M and LSTM in 6M. Sectors mostly
found in the fourth quadrant with high prediction accuracy
are UTIL and REES. UTIL is located in the fourth quad-
rant in all conditions except for the LSTM, whereas REES
is distant from the indifferent region except for the MLP
in 6M. Sectors that are not biased in a particular quadrant
are FINC, CONS, MTRS, and COND. FINC is located in
the second quadrant of RF and XGB and the third quadrant of
MLP and LSTM, showing decent improvement in ensemble
methods. CONS is located in the indifferent region under all
conditions, but it was located in the first quadrant of LSTM
and the fourth quadrant of the rest of the models with high

accuracy performance. MTRS is mostly in the indifferent
region without a specific trend. CONDwas located in the first
quadrant of MLP and LSTM in 3M, showing higher accuracy
and improvement, and mostly in the indifferent region in the
remaining conditions. Lastly, the sector belonging to the third
quadrant of the worst-case scenario is ENRG. Specifically,
ENRG was located in the third quadrant under all conditions
except XGB in 3M, indicating poor performance in both
prediction accuracy and its improvement.

Then, in the adjusted accuracy aspect in Figure 10b, INDS,
UTIL, and REES are all located in the first and fourth quad-
rant except for UTIL of XGB in 6M, showing consistent high
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accuracy. In particular, the high improvement of consistent
accuracy is also found in INDS for MLP, UTIL for LSTM,
and REES for MLP in 6M and XGB in 3M. HCLA except
for XGB in 3M and INFT except for MLP in 6M, LSTM
in 6M, and XGB in 3M are located in the second quadrant,
showing the high improvement in the consistent prediction
performance. Also, the high improvement in consistent accu-
racy is observed in TELE of LSTM, FINC of ensemble
methods including RF and XGB, and ENRG of MLP. Sectors
belonging to the third quadrant of the worst-case scenario are
CONS, MTRS, and COND. Especially, MTRS is located in
the third quadrant of MLP in 6M and XGB in 3M, whereas
COND is located in the third quadrant of RF in 3M, XGB
in 3M, and LSTM in 6M. Note that CONS is mostly located
in the indifferent region of the third quadrant.

In conclusion, the first quadrant sector consistently outper-
forms the other sectors in all cases, while the third quadrant
sector consistently performs poorly. Thus, we claim that there
is a more suitable sector for the application of ETE network
indicators in predicting the direction of the stock.

VI. CONCLUSION
Throughout the paper, we analyze the Granger-causal rela-
tionship of major US stocks according to financial events
based on the time-varying ETE using the moving window
method. Then, we utilize and examine the ETE network
indicator as a feature to improve the prediction performance
of the direction of the stock price through machine learning
algorithms.

Many previous studies are describing Granger-causal rela-
tionships in the financial system using TE, which can identify
asymmetry information flow between components. In this
context, ETE used in this paper is an advanced method for
controlling noise in measuring the information flow, which
is a disadvantage of TE. Furthermore, the previous research
on TE has focused on analyzing market phenomena in con-
nection with Granger-causal relationships, whereas this paper
focuses on a more practical question such as the utilization of
ETE in the financial market. Thus, the novelty of this paper
lies in the fact that, in our best knowledge, this is the first
attempt to integrate the ETE of an individual US stock to
analyze the USmarket and to predict the direction of the stock
price.

The findings of this paper can be summarized as follows.
At first, we discover that the time-varying ETE based on the
3M and 6Mmoving windows have market explanatory power
using 55 stocks from 11 sectors and six cases of financial
crises in the US financial market. Secondly, we detect the
increases in the influence of sectors related to the financial
crisis and the absolute size of information flow in the market.
Thirdly, the utilization of ETE network indicators as new
features improves the prediction on the stock price direc-
tion for all cases of the LR, MLP, RF, XGB and LSTM.
In particular, the smaller the lag for prediction, the longer
the prediction period, the higher the prediction accuracy.
Fourthly, we identify the MLP and LSTM as more suitable

machine learning algorithms in predicting the direction of
stock price based on the adjusted accuracy, newly introduced
performance measure based on the concept of risk-adjusted
return. Lastly, we reveal the suitable sectors for the utilization
of ETE network indicators.

The limitation of this research that should be addressed
in future studies is the computation time to obtain the
time-varying ETE. Especially, it is necessary to optimize the
ETE computation algorithm to apply the mechanism to all
stocks in S&P 500 broadly. Also, as a follow-up task, we are
planning to propose and test the portfolio investment strate-
gies using the prediction results and the Black-Litterman
model.
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