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KEYWORDS Abstract In this paper, a nonlinear fractional emerging telecommunication model with higher—
Emerging telecommunica- order dispersive cubic—quintic is studied by using two recent computational schemes. This kind
tion model; of model is arising in many applications such as machine learning and deep learning, cloud comput-
NLECF S model; ing, data science, dense sensor network, artificial intelligence convergence, integration of Internet of
Modified Khater method; Things, self—service IT for business users, self-powered data centers, and dense sensor networks
Sech-Tanh functions expan- (DSNs) that is used in the turbine blades monitoring and health monitoring. Two practical algo-
sion method Analytical trav- rithms (modified Khater method and sech—tanh functions method) are applied to higher—order dis-
eling wave solutions; persive cubic—quintic nonlinear complex fractional Schrédinger (N L6 &) equation. Many novel

Solitary waves traveling wave solutions are constructed that do not exist earlier. These solutions are considered as

the icon key in the emerging telecommunication field, were they able to explain the physical nature
of the waves spread, especially in the dispersive medium. For more illustration, some attractive

sketches are also depicted for the interpretation physically of the achieved solutions.
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1. Introduction

The contributions of the emerging technologies such as inte-
gration of Internet of things (IoT), cloud computing, self-pow-
ered data centers, data science, artificial intelligence
convergence, dense sensor network, self-service IT for business
users, and machine learning and deep learning are undeniable
in daily life. Hundreds or thousands of cheap and small sen-
sors are using the low—power multiloop wireless. These sensors
have allowed engineers to develop dense sensor networks
(DSNs). The low—power multihop wireless networks have cus-
tomarily supported both of sensor networks and ultra—dense
sense networks. In the former case, for example, these net-
works need to achieve efficient data forwarding among the sen-
sors of the network, being reliable even in adversary conditions
such as under distributed denial of service attacks. These net-
works may need to manage the services in these dense net-
works establishing priorities for assuring that urgent requests
are attended in real-time. DSNs need to apply big data analy-
sis for processing all the information generated by these sen-
sors, as one can observe in smart health equipment such as
intelligent beds for tracking sleeping poses in very critical
patients. Several algorithms have developed for DSNs. For
example, an algorithm was developed for detecting damage
of wind turbine blades utilizing a DSN [4,10,13,36,33].

Recently, many integral equations have been derived and
have been used in DSNs. For example, some authors proposed
Nash equilibrium as the solution for managing integral equa-
tions in the context of decentralized activation in DSNs
[14,30,38]. Also, Jindal and Psounis proposed a mathematical
procedure for finding a correlation of data from DSN with
their spatial information [3,24]. Their numerical process was
generic and could be applied to different domains such as for-
est temperature and water contamination. Their procedure
used several integral equations.

Partial differential equations (PDEs) have been playing an
essential role in the emerging technologies where many nonlin-
ear evolution equations have been derived to describe the
dynamical behavior of several phenomena in several fields,
for example, nonlinear optics, fluid dynamics, Bose—Einstein
condensates, quantum mechanics and several other areas.
However, the inadequate of the PDEs with an—integer order
have been clarified because of the nonlocal property where this
kind of equation does not explain that kind of features. There-
fore, several natural phenomena have been formulated with

nonlinear PDEs with fractional order. Thus, Partial differen-
tial equations (PDEs) have been playing an important role in
the emerging technologies where many nonlinear evolution
equations have been derived to describe the dynamical beha-
viour of several phenomenon in several fields, for example,
nonlinear optics, fluid dynamics, Bose—Einstein condensates,
quantum mechanics and several other areas. However, the
inadequate of the PDEs with an—integer order have been clar-
ified because of the nonlocal property where this kind of equa-
tion do not explain that kind of properties. Therefore, several
nature phenomena have been formulated with nonlinear PDEs
with fractional order [2,6,7,11,12,16-23,26,29].. Thus, many
fractional operators have been derived such as conformable
fractional derivative, fractional Riemann-Liouville deriva-
tives, Caputo, Caputo—Fabrizio definition, and so on
[1,5,9,15,27].

These definitions have been being employed to convert the
fractional nonlinear partial differential equations to a nonlin-
ear integer—order ordinary differential equation. Then the
computational and numerical schemes can be applied to get
various types of solutions for these models and the examples
of these schemes.

The o/ BR fractional operator is considered as one of the
most general recent fractional operators that is derived from
avoiding the deficiencies and defects of some other fractional
operator. This operator is defined as follows.

Definition 1.1. It is given by [28,32.39,35]

P [ e (e

where g, stands for the Mittag—Leffler function, giving by
[25,31]
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This paper studies the analytical solutions of the

NLCF S with higher—order dispersive cubic—quintic arising
in the emerging telecommunication. This fractional model
describes the wave function or state function of a quantum—

Fig. 1

Numerical simulation of Eq. (11) in three-dimensional sketches.
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mechanical system. Moreover, it is also used in the optical fiber
where it occurs in the Manakov system. The NLCFS equation
is given by [8,34,37.40]

lD.i 2 ‘fll+ql‘/“/| 6 D?[“[y 241_)?1“”,6/

+ |9 =0, 3)

where (0 < o < 1), & describes the propagation of the wave
through a nonlinear medium. Additionally, the p,,p, and p;
are dispersions of order 2™ | 3" and 4™ respectively, while
the ¢, and ¢, are the coefficients of two nonlinearities of the
medium, the function q is the gradually varying envelope of
the electromagnetic material, the variables ¢ and x are the
retarded time and the distance along the direction of propaga-
tion respectively. The second and third terms in the above
equations are revealed from the velocity dispersion and the

Kerr effects. Using the next wave transformation
— X, — Y 10 Y = ( o) (h x"+h ") ) (1—a)(dy x " +dy l "% +d3)
[ =0 = 00, Y - Uzt @ - Sty

to Eq. (3), yields
Bps P9+ (12p, b —6pydy 5 —12pydr ) S + (psdy +4py dy — 12p, dy +24d,) S
24,9 244, 9" =0,
(=4pydyhy —12py il +24p, dy [y — 24K\ ) S + 48 (pyds +py) S =0,
(4)
where [d;, [, (i=1,2,3), (j=1,2)] are arbitrary constants.
Differentiating second equation of the system (4) and then sub-

stitute the result into the first equation of the same equation,
gives

ML+l S+ P+ kS =0, (5)

3 2 . .
where {/ﬁ _ l% (12191 —6p, a’% —12p,dy 4pyd h+12py & h—24p; d21_+24/‘1>’

4’; (p3 da+p2)
ky=—24q,,ky=—24q, ks = (psd5+4p,ds — 12p, d5+24d;)].

Applying the homogeneous balance principle to Eq. (5), leads
to (m=1). Thus, we use the next transformation [y :Jf%] to
the Eq. (5), yields

k k
41,yf’2+21%%"+k2yf4+k3yf3+k4.yf2:0. (6)

Applying the homogeneous balance principle to Eq. (6),
obtains (m = 1).

The rest of research paper is organized as follows: Sec-
tion (2), applies the modified Khater method and sech—-tanh
functions expansion method to the suggested model to get
novel solitary wave solutions of it [5.9]. Section (5), explains
the conclusion of all the steps of our paper is detailed.

2. Application

Here in this section, the modified Khater method and sech—
tanh functions expansion method are applied to the
NLECTF S equation to explain the restricted electromagnetic
wave which stretches in media of nonlinear dispersive. Due to
stability among nonlinearity and dispersion effects, the inten-
sity of optical solitons are unchanged, and such categories of
solitary waves are more significant because of their suppleness
in optical of long distance.

2.1. The modified Khater method

Applying the modified Khater method to Eq. (6), leads to for-
mulate the general solution of this model in the following
formula

m

Za %t.j 1)+Zb% i7( +Cl()

Y tag+ b7, (7)

H#(Y)

:(11%"

where [ay, ai, b)] are arbitrary constants to be determined
later. Additionally, & (Y) is the solution function of the fol-
lowing ordinary differential equation

F) =

MEs) (8470 + o7 4 4], (8)

where [0, g, x| are arbitrary constant. Substituting Eq. (7)
along (8) into Eq. (6) and collecting all terms with the same
power of [#"7(") j= -5 -4 .. 45], give a system of alge-
braic equation. Using the Mathematica 12 program for solving
this system, yields

Family I
3ks 30k 3kso 3k; 3k3 (400 — 1)
{a"_‘ T iy T T ay ™ T A ™ T T g

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas
For [3? — 459 < 0& 5 # 0]

1
S1(x,1) = 5 V3e'®

« |- k3 (> — 409) )
k21<—\/459 — y2sin ( Y\/4ég - zz) + ycos ( Yy/400 — )(2) + /)
)

FLr(x,1) = %ﬁei@

o ks (x* — 409)
$kzz(\/45g — %sin ( Y\/450 — 12) + ycos ( Y\/4d0 — 12) — /)
(10)

For [* — 459 > 0& 3 # 0]

1 .
S3(x,1) = Ex/ge’g

< |- ks (2 — 4d0) ;
kzl(\/;/? — 409 sinh ( Y\/XZ — 46@) + y cosh ( Y — 4(59) + z)
(11)

FLu(x,1) :%\/'3‘6/(-)

« k3 (x> — 400) '
kzz(\/xz — 40gsinh (Y\/xz 74(5g) + ycosh ( Y72 7459) - ;()
(12)
For [ :§:K&5:0]
1~ kser Y
5”5(x,t):5\/§e® —m (]3)

For [y =0=x&0=0]
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Lolx,1) = 2\63 e 1) (14)  Figx, 1) =V2e TRl Ay (24)
For [o=0&y # 0&d # 0] For [0 =0&y # 0&¢ # 0]
3. kiye Yt
1) . 15 —el® | W E 7 2
(x, \A ey 13 Fulet) = vy 23
For [6 =0&y # 0& o # 0] For [y? — 450 = 0]
1 : kyye Yx o [k (YB3 Yrrd)—dde( Yy+2)?
Vg(x, t) _ —\/gé"@ LY (16) C’IO\/ ( z (/(;X;;()YXTZ() 7+2) )
2 ka(o — ye '7) Lis(x,1) = i (26)
. V2
For [1> — 450 =0
or [1* — 490 = 0] Family TIT
1 f3,
So(x1) =5 \/;e ° [ kiks (2 — 400) — /K Ia 72 (52 — 409)
ap — 22 ,dp —
ks (490( Y7 +2) = Y2(Y7+4)) :
. 17
X fo Y (Y7 +2) (7 5\ 22 (42 — 400) |
- 2 »b1—>0,k4_>1k1(45Q_12)7
Family 11 k3x
ki Skiy . kixe 3k3 12
{““HT,;’“‘H i k4%4k (40— 17) ka = = s Ky — 3 where (ki # 0, ky# # 0, ky # o)}

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas
For [3* — 450 < 0& 3 # 0]

ei@\/ k1 7(x2—4d0) sec? (% \/m)
ks \z=+/40 1Y\/450— 7
L1o(x, 1) (o0 an (4 m))’

18
7 (18)
Pn(x,1) =e®
y kix(x* — 4de) '
k}(\/“'(’Q 42 sin (Y\/4<)g — ) + ycos ( 450 — XZ) - Z)
(19)
For [* — 450 > 0&6 # 0]
Fi(x,t) =e®
« kix(x* — 490)
k3 (\/xz — 409 sinh (Y\/Xz - 459) + y cosh (Y\/Xz - 4(5@) + )()’
(20)

FLi3(x,1) = €'®

ki y(x* — 4d0)

) $ ks (/72 = dogsinh ( Y/77 —400) + zcosh ( ¥/~ o) 1)

(e2))
For [y =%¢=x&35=0]
e [ ke
SL(x,t) =¢ T =2) (22)
For [y =0 =k&o=0]
e szl
Lis(x, 1) =e oo (23)

For [p=0&y # 0&d # 0]

165k1@ 4](1)(27

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas
For [y? — 469 < 0& 5 # 0]

\/k]k;y(/z 460) \/4«)@ /-\/k2/(3/ (%2 400)(311( Y\/4(5g712)

7 ’
@7)

ylg(x, l) =

e@\//qk;y(/z 449) \/4()@ /-\/A /(3/- 12— 4«)0)00(( T\/459712)
yzo(.x l)

/x3/

V2

(28)
For [ — 459 > 0& 6 # 0]
I@\/\//- 4()0\//(2/%/ﬁ (- 450)1anh( Y/ 72 4bg)+k|k;/ 2-450)
X

Lon(x,t ,
2a(x, 1) = 7
(29)
I@\/\//- 400\//{2/(3/ (72— 4(}0)00111( Y/ %2 4«)@)+k1k31(/- —4d9)
S n(x,1) .
2 ( \/j
(30)
For [y =0 =k&0=0]
eie\/\/x"k%kgcoth (555)+12ki ks
L¢23(X7 t) = \/E . (31)
For [p=0&y # 0&d # 0]
ei® —\/@ijﬂhklhxz
c2
Poa(x, 1) 5 (32)

V2
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Family IV
kiks (12 — 460) — \/IGkG 22 (1> — 40)
ay — 5 ,ap — 0,
25
o/l (12 — 40) (U
| — —T,h —»Zkl (4()@ — )
2
3k5

ks

- W’ where (ky # 0, ko7 # 0, k3 # 0)]
10 — K

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas
For [y? — 450 < 0&6 # 0]

( m)) V22 —400) ks (2—400)
€i® o\ dg—y> tan | 5 50—
k2
<¢25 (X, l‘) = \/i 3
(33)
( W» K222 (2 —400)+ky k3 (12 —40)
pc 1=V 40072 cot (1 v/ 400-12 .
k
yzﬁ(x, t) = \/i 3
(34)
For [1* — 43¢ > 0&d # 0]
e % 3)
S0 JE2K2 2 (249
(\/:—‘A}/W%) ) \/’m+/<1/€3(22—459)
ei@) x 1°—4dgcoth | 5 1> —4d0 | +1 ]
=z
S as(x,1)= 7 3
(36)
For [y =4¢=x&d=0]
oi® K%ﬂq—%
Rl -
Sl 1) = e — @)
For [0 =0&y # 0&¢ # 0]
0 W*’“"ﬂz
e — e "
K
F(x, 1) = 7 : : (38)

2.2. The sech—tanh functions expansion method

Applying the sech—-tanh functions expansion method to Eq.
(6), leads to formulate the general solution of this model in
the following formula

m

A(Y) =Y “sech”™ (Y)(aisech(Y) + b; tanh(Y)) + ay

= aysech(Y) + ap + by tanh(Y), (39)

)

where [ay, ai, b;] are arbitrary constants to be determined
later. Substituting Eq. (39) into Eq. (6) and collecting all terms
with the same power of [sech(Y), tanh(Y)], give a system of
algebraic equation. Using the Mathematica 12 program for
solving this system, yields

Family I

{ 3k;
dy — —

8—162,6!1
Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas

3k;

3k 1543
_)8_k2’b1 — 0,k —’@7/(4 -

64k,

1 /3 .o [ks(sech(Y)—1
yS](xJ):i\/;el@ % (40)
\/ 2
Family II
3k, 3k; 3K 3k
{ao Hfgszﬂl —0,b H*g—kz,kl - 716k2’k4H 16k,

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas

13, ky(tanh( Y) + 1
ySZ(X’t):Z\/;eI@\/}(IE))' (41)
2
Family 111
3k; 31k; 3k; 3k 3k
- b2 k- -2k
{“(’H 8k T 8k T T8k T T 4k T 16k,

Thus, the explicit wave solutions of Eq. (3) are formulated in
the following formulas

Pl = % \/%6"@ \/ ks(tanh( Y) —klsech(T) +1)
2

(42)

3. Figure interpretation

This section gives the physical interpretation of the shown fig-
ures in our paper. All our obtained solutions are considered as
optical soliton wave solutions. This kind of solutions have a
basic importance to illustrate the dynamical behavior of the
particles in the optical waves where the optical soliton is
restricted electromagnetic wave which stretches in media of
nonlinear dispersive. Due to stability among nonlinearity
and dispersion effects, the intensity of optical solitons are
unchanged, and such categories of solitary waves are more sig-
nificant because of their suppleness in optical of long distance.
Our interpretation of the shown figures is given as following.

1. Figs. 1 and 2 show the W—shapes of the absolute, real, and
imaginary solution (11) in the three-dimensional plot (a,b,
¢) to explain the perspective view of the solution and the
absolute, real, and imaginary sketches in two— dimensional
plot (d,e,f) to explain the wave propagation pattern of the
wave along x axis when [0 =0.5,d, =1,d,=2,d; =—1,
o=lLky=-2,k3=-3, 11 =4, 1, =5,7=3,0=2].

2. Figs. 3 and 4 show the W—shapes of the absolute, real, and
imaginary solution (13) in the three-dimensional plot (a, b,
¢) to explain the perspective view of the solution and the
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Fig. 3 Numerical simulation of Eq. (13) in three-dimensional sketches.

(d) ¢
Abs[Ss(x] ) i
0.0141 Re[Ss(x,1)] Im[Ss(x,1)]
0.012} 0.006} 0.006 |

0.010 0.0041 0.004

0.008 0.002

*/ I I ,Il\ (4’
‘ V; \ V«i’

0.004 -0.002

0.002 -0.0041

x -0.006

Fig. 5 Numerical simulation of Eq. (27) in three-dimensional sketches.

absolute, real, and imaginary sketches in two— dimensional 3. Figs. 5 and 6 show the W—shapes of the absolute, real, and
plot (d,e,f) to explain the wave propagation pattern of the imaginary solution (27) in the three-dimensional plot (a, b,
wave along x axis when [x =0.5,d, =1,d> =2, d; = —1, ¢) to explain the perspective view of the solution and the

K=6,ky=-2ks=-3,11=4,1,=75]. absolute, real, and imaginary sketches in two— dimensional
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Fig. 9 Numerical simulation of Eq. (42) in three—dimensional sketches.
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Abs[S33(x,t)]
0.14

Re[S33(x,1)]
0.15
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0.10[
0.08[
0.06
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0.02

Im[S33(x,t)]
0151
0.10

0.05-

-0.051

-0.10

Fig. 10 Numerical simulation of Eq. (42) in two—dimensional sketches.

plot (d,e, f) to explain the wave propagation pattern of the
wave along x axis when [x =0.5,d, =1,d, =2, d; = —1,
o0=lky=-2,ks=-3,k;=6,1,=4,1,=5,xy=3,0=2].

4. Figs. 7 and 8 show the W—shapes of the absolute, real, and
imaginary solution (40) in the three-dimensional plot (a,b,
¢) to explain the perspective view of the solution and the
absolute, real, and imaginary sketches in two— dimensional
plot (d,e, f) to explain the wave propagation pattern of the
wave along x axis when [0« =0.5,d, =1,d, =2,d; = —1,
0=1ky==-3ki=61=45L=5y1=30=2].

5. Figs. 9 and 10 show the breath W—shapes of the absolute,
real, and imaginary solution (42) in the three—dimensional
plot (a,b,c) to explain the perspective view of the solution
and the absolute, real, and imaginary sketches in two-—
dimensional plot (d,e,f) to explain the wave propagation
pattern of the wave along x axis when [x=0.5,d, =7,
612:8,613:87 k3:l,k2:2, ll :37 12:7]

4. Results and discussion

This section shows the novelty of this research paper by
explain the comparison between our obtained solutions and
that obtained in previous paper.

1. Computational schemes:This paper investigated the analyti-
cal solutions of the complex fractional Schrodinger equa-
tion by using two recent computational schemes (modified
Khater method and sech—tanh functions expansion
method). These methods are considered as recent analytical
schemes in this field and they were not applied to this model
yet.

2. Obtained computational wave solutions:

e Eq. (29) equal Eq. (41) when [k§ = %;”’)}

e All our obtained solutions are different from that obt-
ained in [8,34,37,40] where the authors of [8,34,37,40]
used the integral from of the nonlinear complex frac-

tional Schrédinger equation. On the other hand we
investigated the fractional form of this model.

5. Conclusion

In this paper, we investigated the optical soliton wave solu-
tions of the nonlinear complex fractional Schrédinger equation
by using two recent analytical schemes. A new fractional oper-
ator is used to convert the fractional form of this model to a
nonlinear partial differential equation with an—integer order.
The modified Khater method and sech—-tanh functions expan-

sion method were applied to this model. Some new soliton
optical wave solutions were obtained, and some of them were
explained by plotting them in two, three—dimensional in abso-
lute, real, and imaginary values of these solutions. The novelty
of our paper was shown by making the comparison between
our obtained solutions and that were purchased in previously
published articles.
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