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We consider a holographic quark model where the confinement is a consequence of the quark 
condensate. Surprisingly, the equation of motion of our holographic model can be mapped to the old 
spin-less bag model. Both models correctly reproduce the linear Regge trajectory of hadrons for zero 
quark mass. For the case of non-zero quark mass, the model lead us to Heun’s equation. The mass term 
is precisely the origin of the higher singularity, which changes the system behavior drastically. Our result 
can shed some light on why the chiral transition is so close to the confinement transition. In the massive 
case, the Schroedinger equation is exactly solvable, but only if a surprising new quantization condition, 
additional to the energy quantization, is applied.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A frequent question for the phase diagram of the quantum 
chromo dynamics (QCD) [1,2] is why the chiral and the de-
confinement transitions are so close, while two are separate con-
cepts. The former is defined when the current quark mass is zero, 
while the latter is due to the infrared dynamics QCD which is of-
ten summarized by the QCD string [3,4] and its spectrum called 
Regge trajectory,

α′m2 = n + β. (1)

The (approximate) coincidence of the phase boundaries will be ex-
plained if one can show that one is a consequence of the other.

Some time ago, Gürsey [7] showed that the spectrum of semi-
classical bag model introduced by Lichtenberg et al. [6] for the 
meson follows the Regge trajectory if the quark mass vanishes. In 
a recent paper [5], the model for non-vanishing quark mass was 
studied numerically and the spectrum turns out to be highly non-
linear. Since the linear confinement appears only for the vanishing 
quark mass, which allows to define the chiral symmetry, one may 
wonder if the chiral symmetry is a consequence of the confine-
ment dynamics.

In this paper, we consider a holographic model which gives 
the linear confinement in the presence of the quark condensate, 
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so that the confinement is consequence of the quark condensate 
in this model. This is a holographic fermion model coupled with 
a neutral scalar. We show that the equation of motion of this 
model can be mapped to the Lichtenberg model. Considering that 
two models are based on completely different idea, presence of 
such mapping is quite remarkable. In both models the presence of 
current quark mass is inconsistent with Regge trajectory, and the 
quark mass triggers the change of the singularity type from the 
hypergeometric type to Heun’s type. The linear trajectory appears 
at a limit where higher singularity disappears.

We will develop polynomials whose roots gives quantized value 
of hadron spectrum and we explicitly calculated the hadron spec-
trum in the presence of the quark mass to understand the spec-
trum analytically. It turns out that the drastic change of spectrum 
in the presence of quark mass is a consequence of change of the 
singularity type, which requests an extra quantization: apart from 
the energy, one more parameter in the potential should be quan-
tized, which is rather a surprising phenomena. One should notice 
that this is relevant to general situations: whenever Schrödinger 
equation has the potential with both even and odd powers of ra-
dial coordinate, there are extra quantizations apart from that of 
energy.

Finally, we also emphasize that the massless limit of the spec-
trum is singular. Such inconsistencies of the spectrum of hadron in 
the presence of the quark mass suggests that the chiral symmetry 
should be tied with the color confinement, although the dynamical 
mechanism of suppressing the quark mass is still an open question.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Holographic fermion as a constituent quark

To consider the hadron mass problem in terms of effective the-
ory, it is convenient to consider a model of constituent quark, 
where all the correlation by the gluons are encoded into the con-
stituent quark mass. Namely, we consider a fermion χ in a bag 
which is dual to the fermion ψ living outside the central region 
of the AdS. The dynamics of ψ in the warped space determines 
the mass of the excitation, which we interpret as the constituent 
quark. Such mass of the constituent quark can be used to describe 
meson mass as well as baryon mass, by assuming that there is no 
interaction between constituent quarks.

For this, we consider following fermion action in AdS space 
with coupling to the scalar describing the bare quark mass and 
chiral condensation M .

Sψ =
∫

dd+1x
√−giψ̄

(
�μDμ − m − �

)
ψ + S�, (2)

where Dμ = ∂μ + 1
4 ωabμ�ab . One may simply consider this as a 

model for a Baryon instead of a constituent quark. We consider 
only d = 3 for the analytical simplicity. The dynamics of the boson 
� is given by

S� =
∫

dd+1x
√−g

(
− |∂μ�|2 − m2

�|�|2
)
. (3)

We treat all the fields in the probe limit where the metric is fixed 
as that of AdS4:

ds2 = (dz2 + ημνdxudxν)/z2, with η00 = −1. (4)

Bulk mass of the boson, m2
� , is given in terms of the conformal 

dimension of the dual operator: m2
� = �(� − d). We will fix it 

such that � = 2, so that m2
� = −2 in d = 2 + 1 and m2

� = −4
for d = 3 + 1. Although � = 2 for the operator q̄q is realized in 4 
dimension at the lower boundary of conformal window of N f /Nc

[8], here we consider 2+1 case only. The field equation then gives

� = M0z + Mz2, in AdS4, (5)

which is an exact solution of the scalar field equation in the probe 
limit.

The equation of motion of (2) is given by

(
�μDμ − m − q�

)
ψ = 0, (6)

which can be written as a Schrödinger equation

−
′′
n(z) + V (z)
n(z) = En
n(z), (7)

with V (z) = m(m − 1) + �2

z2
, (8)

= m(m − 1)

z2
+ q2(Mz + M0)

2, (9)

En := m2
n − 2qM(m + 1

2
). (10)

We interpret m2
n as the constituent quark mass inside a Hadron 

and it was shown that for M0 = 0, spectrum is linear [9–11]

m2
n = 4qM(n + m + 1/2). (11)

Notice that when M = 0 we have m2
n = ω2 − k2 = 0 so that the 

only spectrum is massless one with ω = k, which can not be the 
spectrum of a confined object: the energy of the confined mass-
less quark contribute to the mass of the hadron containing it. That 
is what we mean by constituent quark mass. Therefore we can say 
that M is the order parameter of the confinement transition as 
well as that of the chiral transition. Notice that in 2+1 dimension 
there is no chiral symmetry. By chiral symmetry breaking (CSB) 
in this paper, what we meant is ‘non-zero quark condensate’ M , 
which is equivalent to CSB in 3+1 dimensional case. The chiral 
symmetry itself is not relevant to our discussion.

We also emphasize that since M ∼ 〈q̄q〉 is the slope of the 
Regge trajectory, the linear confinement is consequence of the non-
zero quark condensate. Therefore two transitions must be identical 
in this model. Although it is not clear whether this is a model 
specific property or a generic property of QCD, above argument 
explain the coincidence of two transition at least partially in the 
context of this specific model.

When the quark mass M0 �= 0, we will show shortly that it will 
lead to a type of Heun’s equation.

3. Heun’s equation

If we formally replace z → r,

m → −L, qM0 → mq, qM → b

2
, and 
n → u, (12)

then eq. (7) defined in AdS4 space becomes[
− d2

dr2
+ V (r)

]
u(r) = Eu(r), (13)

V (r) =
(

mq + 1

2
bτ r

)2 + L(L + 1)

r2
, (14)

which is a Heun’s equation [12–14] with 4-singularies. One inter-
esting observation is that above equation is precisely the radial 
equation coming from the bag model [6,7,5] for a meson, whose 
mass squared is given by 4E . We emphasize that the physical ideas 
and the spaces in which they are defined are completely different: 
one in AdS4 and the other in a flat space R3.

To reveal the mathematical structure more clearly, we consider 
slightly generalized one defined by the potential

V (r) = c2r2 + br − a

r
+ L(L + 1)

r2
, (15)

which is obtained from the potential eq. (14) by shifting V → V −
a/r − m2

q and redefining c = bτ /2 and b = mqbτ . Factoring out the 
behavior near r = 0 by u(r) = rL+1 f (r), above equation becomes

d2 f (r)

dr2
+ 2(L + 1)

r

df (r)

dr
+

(
E − c2r2 − br + a

r

)
f (r) = 0. (16)

Factoring out near ∞ behavior by f (r) = exp
(
− c

2 r2 − b
2c r

)
y(r)

and introducing ρ = √
cr, a0 = a/c1/2, b0 = b/c3/2, E = E/c, we 

get the bi-confluent Heun’s equation:

ρ
d2 y

dρ2
+

(
μρ2 + ερ + ν

) dy

dρ
+ (�ρ + εω) y = 0, (17)

with μ = −2, ε = −b0, ν = 2L + 2 and

� = E + b2
0/4 − (2L + 3), and ω = L + 1 − a0/b0. (18)

It has a regular singularity at the origin and an irregular singularity 
of rank two [12–14] at the infinity.

Substituting y(ρ) = ∑∞
n=0 dnρ

n into (17), we obtain the recur-
rence relation:

dn+1 = An dn + Bn dn−1 for n ≥ 1, with (19)

An = − ε(n + ω)

(n + 1)(n + ν)
, Bn = − � + μ(n − 1)

(n + 1)(n + ν)
. (20)

The first two dn ’s are given by d1 = A0d0 and d−1 = 0.
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It is essential to notice that when mq = 0, we have

An = ε = b0 = 0, (21)

so that the three term recurrence relation given in eq. (19) is re-
duced to two term recurrence relation between dn+1 and dn−1 and 
the Heun’s equation is reduced to hypergeometric one. That is, the 
quark mass is precisely the term increasing the singularity order.

Now, unless y(ρ) is a polynomial, u(r) is divergent as ρ → ∞. 
Therefore we need to impose regularity conditions by which the 
solution is normalizable. If we impose two conditions [12–14],

B N+1 = dN+1 = 0 where N ∈N0, (22)

the series expansion becomes a polynomial of degree N: as one 
can see from eq. (19), eq. (22) is sufficient to give dN+2 = dN+3 =
· · · = 0 recursively. Then the solution is a polynomial of order N , 
yN(ρ) = ∑N

i=0 diρ
i . The question whether imposing both equa-

tions in eq (22) is really necessary was studied numerically in our 
earlier work [5]. In general, dN+1 = 0 will define a N + 1-th order 
polynomial PN+1 in a0, b0, so that Eq. (22) gives

EN,L = 2N + 2L + 3 − b2
0/4, PN+1(a0,b0) = 0, (23)

where the first comes from B N+1 = 0, and it is nothing but the 
usual energy quantization condition. Below we will examine the 
meaning of the second equation. To do that we need explicit ex-
pressions of a few lower order polynomial PN+1:

P1(a0,b0) = b0(L + 1) − a0,

P2(a0,b0) = (b0(L + 1) − a0)(b0(L + 2) − a0) − 4(L + 1),

P3(a0,b0) = (L + 1)(L + 2)(L + 3)b3
0 − (3L(L + 4) + 11)a0b2

0

+
(

3(L + 2)a2
0 − 4(L + 1)(4L + 9)

)
b0 − a3

0 + 4(4L + 5)a0,

P4(a0,b0) = (L + 1)(L + 2)(L + 3)(L + 4)b4
0

−2(2L + 5)(L(L + 5) + 5)a0b3
0

+
(
(6L(L + 5) + 35)a2

0 − 4(L + 1)(5L(2L + 11)) + 72
)

b2
0

−
(

2(2L + 5)a3
0 + 4(20L(L + 4) + 69)a0

)
b0 − 20(2L + 3)a2

0

+144(L + 1)(L + 2) + a4
0, (24)

4. Extra quantization

We have seen that a0, b0 should be related by PN+1(a0, b0) =
0. This means that if we fix one of them, the other should be a 
solution of a polynomial equation. Let’s examine a few low orders 
in N. We normalize the solution using d0 = 1 for simplicity.

1. For N = 0: P1(a0, b0) = b0(L + 1) − a0 = 0. The eigenfunction 
is y0(ρ) = 1.

2. For N = 1, P2(a0, b0) = 0 defines a hyperbola in a0, b0 such 
that there are always two branches because the discriminant 
D = b2

0 + 16(L + 1) > 0. That is, for a given b0, a0 always 

has real solutions. 2a0 = b0(2L + 3) ±
√

b2
0 + 16(L + 1). In this 

case, y1(ρ) = 1 + d1ρ with d1 =
(
−b0 ±

√
b2

0 + 16(L + 1)
)
/

(4L + 4).
3. For 2 ≤ N , PN = 0 has N branches. P4 = 0 is plotted in Fig. 1. 

Apart from the central region where a0, b0 ∼ O(1) which is 
shown in Fig. 1(a) the curves are approximately linear. Such 
linearity can be confirmed by drawing the same figure in large 
scale as in Fig. 1(b), where we used L = 0. Note that the slopes 
of the lines: a0/b0 = 1, 2, 3, 4.
Table 1
Roots of a0 for b0 = 1, N = 4.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L = 0 −7.50342 −2.26852 2.5487 7.93985 14.2834
L = 1 −9.22584 −2.68053 3.72372 10.4374 17.7452
L = 2 −10.4722 −2.80774 4.79946 12.6207 20.8598
L = 3 −11.4284 −2.78208 5.84226 14.6311 23.7371
L = 4 −12.1842 −2.65493 6.8699 16.5287 26.4406

Table 2
Roots of a0 for b0 = 1, N = 5.

a(N=5)
00 a(N=5)

01 a(N=5)
02 a(N=5)

03 a(N=5)
04 a(N=5)

05

L = 0 −10.5701 −4.75187 0.363597 5.60184 11.6841 18.6724
L = 1 −12.7643 −5.82539 0.801156 7.5262 14.7189 22.5434
L = 2 −14.4605 −6.49042 1.30825 9.19107 17.3924 26.0593
L = 3 −15.834 −6.93228 1.86483 10.7358 19.8467 29.319
L = 4 −16.9777 −7.22567 2.45866 12.2089 22.1509 32.3849
L = 5 −17.9475 −7.4102 3.08179 13.6334 24.3443 35.2982

For general N , we can show that for large enough a0, b0, 
Pt+1(a0, b0) = 0 gives following relation.

a0

b0
= ac

b
� L + 1 + K , for K = 0,1, · · · , N. (25)

This means that for a given b0, there are N + 1 a0’s for any L. This 
is also true for |a0|, |b0| ≤ O(1) although we can not write down 
the explicitly. Similarly if we set a0 = 0, the allowed values of b0
are given by the crossing points of N +1 branches of the PN+1 = 0
with the vertical line a0 = 0. We call such fixing b-quantization. 
See Fig. 1a.

Such extra quantization is a consequence of the Heun’s equa-
tion. As we have seen before explicitly, for the hypergeometric 
equations, the three term recurrence relation is reduced to two 
term one after factoring out the asymptotic form so that we need 
to fine tune only one parameter, the energy, to have a polynomial 
solution. For the Heun’s equation, its higher singularity requests 
higher regularity: the three term recurrence relation is not reduced 
to the two term one, which in turn request an extra quantization 
of system parameter apart from the energy eigenvalue.

Notice that due to the N, L dependence of b0, the spectrum E
is NOT linear in N anymore. Notice also that for a-quantization, E
is linear in N, L and does not depend on a quantized value of a0
as far as a0 is actually given by one of those quantized value that 
depends on N , L and b0. Table 1 tells us all possible roots of a0’s 
for each L when N = 4 and b0 = 1. Similarly, Table 2 shows us all 
possible roots of a0’s for each L when N = 5 and b0 = 1. As you 
can see easily from the table, most of the quantized values are in 
the linear regime where a0 ≈ (L + 1 + K )b0.

From the explicit calculation, we found the following pattern: 
List N+1 a0 in the increasing order such that a0K is K -th one, K =
0, 1, · · · , N . Then the polynomial solution for the a0K has K nodes. 
The number of nodes does not depend on L. Figs. 2(a) shows that 
polynomial y4 with a0K , K = 0, 1, 2, 3, 4 has K nodes in N = 4 in 
the region ρ > 0. We fixed L = 0 and b0 = 1. Figs. 2(b) shows that 
polynomials y5 with a03 has 3 nodes in N = 5 independent of the 
value of L = 0, 1, 2, 3, 4, 5. There are two nodes in the unphysical 
region ρ < 0.

5. Spectrum for nonzero quark mass

We have seen that two very different models lead to the same 
Heun’s equation. The spectrum of the Lichtenberg bag model for 
mq = 0 was obtained in [7] and it is linear:

E2
N,L = 4bτ (N + L + 3/2). (26)
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Fig. 1. Contour of P4(a0,b0) = 0 and its asymptotic view. Fig. (a) also shows definition of a0 (or b0)-quantization depending on we fix b0 or a0.

Fig. 2. (a) Polynomial y4 for various a0K for each a0K , K = 0, · · · ,4. (b) y5 for various a03 corresponding to L = 0,1, · · · ,5.
On the other hand, for mq �= 0, b can not be an arbitrary value. It 
is determined by b-quantization because the parameter a = 0. The 
value of b for given N, L was determined numerically [5] and given 
by:

For odd N ,

bτ ≈ 8

5

(
N + 6

5
L + 5

3

)
m2

q (27)

For even N ,

bτ ≈ 2

5

(
N + 6

5
L + 5

3

)
m2

q (28)

By inserting eq (27) and eq (28) to eq (26), we see that not only 
the spectrum is highly nonlinear in N, L but also the string tension 
is vanishingly small in the limit of mq → 0, which is inconsistent 
with the nature.

From the correspondence of two system given in eq (12), we 
can read off the spectrum of holographic model from that of the 
bag model by replacing

mq → qM0, bτ /2 → qM, L → |m|, E2
N,L → m2

n. (29)

Exactly parallel comment for the bag model can be applied to the 
spectrum.
6. Summary and discussion

In this paper, we considered a holographic model where the 
confinement is consequence of the non-zero quark condensate M , 
so that M play the role of the order parameter for the confine-
ment transition as well as that for the chiral transition. We also 
showed that the equation of motion of our holographic model can 
be mapped to the Lichtenberg model. The quark mass triggers the 
change of the singularity type from the hypergeometric type to 
Heun’s type. The Regge trajectory appears only at the zero current 
quark mass limit where higher singularity disappears.

Before we finish, we discuss a similar model in AdS5. The scalar 
solution in AdS5 with m2

� = −4 is

� = M0z2 ln z−1 + Mz2, in AdS5. (30)

If the quark mass M0 vanishes, we still have � = Mz2, which 
is necessary power in z to give linear confinement. Therefore in 
this model, exactly the same calculation leads to the same re-
sult of AdS4 model. However, there is one subtlety here. m2

� =
2(2 − 4) = −4 follows from the assumption that the dimension of 
〈q̄q〉 is � = 2, while its value for the free theory is 3 for 3+1 di-
mensional boundary theory. Therefore for our scenario to work, 
we need anomalous dimension γ = −1 In 2+1 dimension, on the 
other hand, we can simply use the m2

� = −2 for � = 2, which is 
the reason why we used AdS4 model in the main text.
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