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Abstract. In data mining research, outliers usually represent extreme values that deviate from other
observations on data. The significant issue of existing outlier detection methods is that they only
consider the object itself not taking its neighbouring objects into account to extract location fea-
tures. In this paper, we propose an innovative approach to this issue. First, we propose the notions
of centrality and centre-proximity for determining the degree of outlierness considering the distri-
bution of all objects. We also propose a novel graph-based algorithm for outlier detection based
on the notions. The algorithm solves the problems of existing methods, i.e. the problems of local
density, micro-cluster, and fringe objects. We performed extensive experiments in order to confirm
the effectiveness and efficiency of our proposed method. The obtained experimental results showed
that the proposed method uncovers outliers successfully, and outperforms previous outlier detection
methods.
Key words: graph-based outlier detection, centrality, centre-proximity.

1. Introduction

In contemporary research in different data-mining applications, outlier detection is a pri-
mary activity. Generally speaking, outliers represent extreme values that deviate from
other observations on data. Often outliers are considered as a noise or an experimental
error, however, they may bring some important information. Detected outliers usually are
seen as potential candidates for abnormal data that may lead to model misspecification and
incorrect results. However, in some situations, they can be considered as a novelty within
the datasets. In other words, an outlier is an observation that diverges from an overall pat-
tern on a sample. Two kinds of outliers can be distinguished: univariate and multivariate.
Univariate outliers are connected to a distribution of values in a single feature space while
multivariate outliers are connected to an n-dimensional space (of n-features). Outliers also
can be classified as parametric or non-parametric as we consider a distribution of values
for selected features.
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Fig. 1. A 2-dimensional dataset.

In literature, there is no exact definition of an outlier as it highly depends on unseen
assumptions about the data structure and the selected detection method. In our research,
we concentrate on outliers as objects that are dissimilar to the majority of other objects
(Barnett and Lewis, 1994; Han and Kamber, 2000; Hawkins, 1980; Akoglu et al., 2010;
Huang et al., 2016; Yerlikaya-Ö et al., 2016; Domingues et al., 2018; Kieu et al., 2018).
Detection of such outliers is of high importance for different applications and it is partic-
ularly based on specific datasets. Typical application domains include detecting misuse of
medicines, detecting network intrusions (Song et al., 2013; Fanaee-T and Gama, 2016),
and detecting economic and financial frauds (Chan et al., 2010; Friedman et al., 2007).

To illustrate our approach and understanding of outliers in this paper we will illus-
trate it visually. In Fig. 1, a 2-dimensional dataset is shown. There are many objects with
characteristics similar to those of object o1 (for example, object o4), and these objects are
considered to be “normal objects”. A set of similar normal objects could form a clus-
ter (Widyantoro et al., 2002). An object o2 is dissimilar to normal objects. In our paper,
we will consider and detect such objects as outliers. Contrary to object o2, object o3 and
a small number of its neighbouring objects possess some similar characteristics, forming
a small cluster. The objects in this small cluster are rather dissimilar from the majority
of the objects. Accordingly, we will define this small cluster as a micro-cluster as object
o3 and its neighbouring objects form some kind of outliers (Papadimitriou et al., 2003).
Objects such as o4 are normal but also are distant from the core of the cluster they be-
long to. We call such objects fringe objects. Fringe objects should not be mixed with real
outliers (Papadimitriou et al., 2003). Researchers have to be aware of the fact that normal
objects and outliers could not be differentiated using some absolute criteria. A variety
of relative criteria should be considered as nature and the characteristics of datasets are
different like: size of the dataset, the distribution of objects in the dataset, and so on.

As nowadays outlier detection is a challenging research area, a wide range of methods
is used (Bay and Schwabacher, 2003; Böhm et al., 2009; Breunig et al., 2000; Knorr and
Ng, 1999; Knorr et al., 2000; Moonesinghe and Tan, 2008; Papadimitriou et al., 2003;
Ramaswamy et al., 2000). The majority of these methods use their own object location
features which reflect the relative characteristics of each object over the distribution of all
objects in the dataset. The standard flow of activities is presented below:

• Step 1. Within the methods, the first activity is to compute location features of each
object in the dataset.
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• Step 2. After that, an outlierness score is assigned to the object that reflect those location
features. In fact, an outlierness score of an object i indicates how much a different object
i is compared to other objects in the dataset.

• Step 3. Finally, the methods consider as outliers the top m objects with the highest
outlierness score.

The significant issue of existing outlier detection methods is that they extract location
features only taking into account the characteristics of the object itself. They do not pay
attention to the characteristics of its neighbouring objects nor the distribution of all of the
objects in the dataset. Therefore, the location features of each object are highly dependent
on the parameters given by users. This is the main reason for the well-known local density
and micro-cluster problems (Papadimitriou et al., 2003). The key issue of these methods
is that they are highly based on the location features of objects. Consequently, the local
density problem is a phenomenon that outliers are determined only depending on its lo-
cal density. The essential problem is the micro-cluster problem as in such circumstances
micro-clusters cannot be detected as outliers.

Additional quality of some methods is that when calculating the outlierness score of
each object, they consider not only the location features of the object itself but also the
location features of its neighbouring objects (Breunig et al., 2000). However, because of
the fundamental limitations of their location features that do not consider the distributions
of all objects in the dataset, they still have the micro-cluster problem.

Having in mind the above mentioned limitations of existing methods, in this paper
we are going to propose a novel approach.1 First, we propose the notions of centrality
and centre-proximity as novel relative location features that can take into consideration
the characteristics of all the objects in the dataset, rather than only the characteristics of
the object itself. Furthermore, we propose a graph-based method for outlier detection that
calculates the outlierness score of each object using these two newly introduced relative
location features. Our method models a given dataset as a k-NN graph and calculates the
centrality and centre-proximity scores of each object from the k-NN graph iteratively. To
show the effectiveness of our method, we carried out a variety of experiments. The ob-
tained results are promising and also compared with the previous outlier detection meth-
ods, our method achieves the best precision.

The rest of the paper is organized as follows. Section 2 is devoted to some existing
outlier detection methods and points out their deficiencies. Section 3 brings an overview
of our proposed method and outlines its main four goals. Technical details of our method
are presented in Section 4. In Section 5, we explain graph modelling schemes for our
graph-based outlier detection. Experimental results of performance analysis to verify the

1A preliminary version of this work has been presented as a poster (4 pages) in ACM CIKM 2012 (Bae
et al., 2012). This paper has additional contributions compared with its preliminary version listed as follows:
(1) we define four goals of the proposed method to clarify its advantages; (2) we propose three graph models for
our method and compare their effectiveness via extensive experiments; (3) we propose two weighting schemes
for our method and compare their effectiveness via extensive experiments; (4) we show the results obtained by
applying the proposed method to a real-world NBA dataset; (5) we show the superiority of the proposed method
over more competitors.
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superiority of our method are presented in Section 6. Finally, Section 7 brings concluding
remarks and possibilities for future work.

2. Related Work

In this section, we first introduce previous outlier detection methods, which are statistics-
based, distance-based, density-based, and RWR-based methods. We then point out their
problems in outlier detection.

2.1. Statistics-Based Outlier Detection

The statistics-based outlier detection method finds the most suitable statistical distribution
model for the distribution of objects in the given dataset and detects the objects that deviate
from the statistical distribution model as outliers (Chandola et al., 2009).

If the dataset is generated under a specific statistical distribution model, the statistics-
based outlier detection method will work well as a feasible solution to the detection of
outliers. However, the problem is that most real-world data is not generated from a specific
statistical distribution model (Chandola et al., 2009; Knorr and Ng, 1999; Knorr et al.,
2000). Additionally, when detecting outliers from a multi-dimensional dataset, it is very
difficult to find a statistical distribution model that can fit the distribution of almost all
objects in the dataset in terms of all dimensions (Chandola et al., 2009; Knorr and Ng,
1999; Knorr et al., 2000).

2.2. Distance-Based Outlier Detection

The distance-based outlier detection method uses the distance among objects as a location
feature, and detects as outliers the ones whose distance to other objects exceed a specific
threshold (Ramaswamy et al., 2000). Here, the threshold is a user-defined parameter.

There have been several previous studies on distance-based outlier detection. The DB-
outlier method (Knorr and Ng, 1999; Knorr et al., 2000) uses the number of other objects
near the target object o to find out whether o is an outlier or not. If there are less than p ob-
jects within the distance d from o, o is considered an outlier. k-Dist method (Ramaswamy
et al., 2000) uses the k-Dist as a location feature, and detects the top m objects having the
largest k-Dist value as outliers. Here, the k-Dist is the distance from each object to its k-th
nearest object.

Distance-based outlier detection methods use the features that only consider the char-
acteristics of the object itself. Thus, it could cause the local density problem (Papadim-
itriou et al., 2003). Figure 2 shows an example of a 2-dimensional dataset with the local
density problem. The dataset has two clusters (c1, c2) and an outlier o1. To classify object
o1 as an outlier, DB-outlier should set d = d1. However, normal objects inside c2 also are
classified as outliers with d = d1. If DB-outlier set d = d2 to classify objects in c2 as
normal objects, then o1 also is classified as a normal object.
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Fig. 2. An example of the local density problem.

Fig. 3. An example of the micro-cluster problem.

2.3. Density-Based Outlier Detection

The density-based outlier detection methods classify an object as an outlier by considering
the relative density of the target object (Breunig et al., 2000). The density of an object
could be decided by the number of objects around it.

The LOF method (Breunig et al., 2000; Na et al., 2018) is a typical example of the
density-based outlier detection. The LOF method defines the density of an object as the
average reachability distance from the object to its k-nearest objects. Here, the reachability
distance from object p to object q is a large value between the distance of the two objects
and the distance between q and the k-th nearest object of q. In the LOF method, an object p
has a high outlierness score if the density of p is lower than that of p’s neighbouring
objects.

The density-based methods consider the characteristics of the target object itself by
comparing it with its neighbouring objects. By considering neighbouring objects alto-
gether, the local density problem is prevented. However, in density-based methods there
still exists the micro-cluster problem (Moonesinghe and Tan, 2008).

Figure 3 shows an example of a 2-dimensional dataset with the micro-cluster problem.
The dataset includes two clusters (c1, c2) and one micro cluster (c3). The density of an



440 D.-H. Bae et al.

object o1 inside c3 is similar to that of its neighbouring objects which are also inside the
micro-cluster c3. In such a case that the outliers form a micro-cluster, the density-based
outlier methods may classify them as normal objects.

This problem arises because they take only the neighbouring objects into account when
determining if an object is an outlier. Thus, we should also consider the characteristics of
all the objects in the dataset to overcome the micro-cluster problem and the local-density
problem.

2.4. RWR-Based Outlier Detection

The RWR-based outlier detection methods (Moonesinghe and Tan, 2008) model a given
dataset as a graph, and perform the Random Walk with Restart (RWR) (Brin and Page,
1998) on the modelled graph to detect outliers. Here, the inversed number of the RWR
score of each object is considered as its outlierness score.

There are two methods in RWR-based outlier detections. The Outrank-a method mod-
els a given dataset as a complete weighted graph where weights are the similarity between
every pair of objects and the Outrank-b method, from the same complete weighted graph,
deletes the edges with the similarity lower than a specific threshold t . Because these meth-
ods use a graph, they have the advantage that the characteristics of all the objects could
be considered when deciding whether or not an object is an outlier.

However, in the RWR-based methods, the RWR score is transferred through a directed
edge in a single direction, and they cannot differentiate the fringe objects from the outlier
objects. Furthermore, the Outrank-a method, which models a dataset as a complete graph,
directly considers the characteristics of all the other objects. As a result, the precision
of outlier detection is low. In the case of Outrank-b, the precision of outlier detection is
greatly affected by the user-defined parameter value t . These problems will be discussed
in Sections 4 and 5 in more detail.

3. Overview

In this section, we define our goals of outlier detection and explain our strategies to achieve
the goals. The following is our list of goals in detecting outliers.

• Goal 1: Outliers should be accurately detected. The proposed method should avoid the
local density problem and the micro-cluster problem. Furthermore, the fringe objects
in clusters should not be classified as outliers.

• Goal 2: For every object in a dataset, the proposed method should not only determine
if it is an outlier or not, but also provide an outlierness score of each object to the user.
The user can use this score to understand how much an object deviates from normal
objects and can decide the number of outliers intuitively. Moreover, the user also can
observe the changes in the outlierness score of each object occurred by the change
in the user-defined parameter values. This provides the user with hints on setting the
parameter values.
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Fig. 4. Overview of the proposed method (k = 1, m = 5).

• Goal 3: The proposed method should be able to handle data of any type and/or any form.
The proposed method should be applicable to multi-dimensional data, non-coordinate
data, and more, in contrast to the statistics-based outlier detection method that has lim-
itations on the applicable data form.

• Goal 4: The number of user-defined parameters should be as small as possible, and the
fluctuation of the precision by the change in user-defined parameter values should be
small. In general circumstances, the user would not have a perfect understanding on a
given dataset. Thus, our proposed method should not be sensitive to its parameters and
provide reasonable accuracy with non-optimal parameters.

We propose a novel outlier detection method to achieve the goals above. First, we
propose two novel location features called centrality and centre-proximity. Both features
could make our proposed method avoid the local-density problem and the micro-cluster
problem by taking the characteristics of each object, its neighbouring objects, and all the
objects in the dataset into account (Goal 1). Centrality and centre-proximity also provide
robustness on parameters to our proposed method (Goal 4).

Second, we build a k-NN graph from a given dataset and analyse the modelled graph
to compute the outlierness score for each object. Thus, our method provides users with
an outlierness score of every object (Goal 2). It is noteworthy that multidimensional data
and/or non-coordinate data can also be modelled as a graph. Therefore, by using such a
strategy, we can relax the constraints on the input data types and/or forms (Goal 3).

As shown in Fig. 4, the proposed method has three steps to detect outliers.
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1. Build a k-NN graph from a given dataset. Each object in the dataset is represented
as a node, the k-NN relationships connecting each object to its k-nearest objects are
represented as directed edges. Each edge has the weight value of the similarity between
the two nodes it connects.

2. For each object in the dataset, calculate the centrality and centre-proximity scores on
the k-NN graph. Using both scores, compute the outlierness score of each node.

3. Return the top m objects with the highest outlierness scores as outliers.

4. Centrality and Centre-Proximity

An object near the centre of a cluster is more likely to have many neighbouring objects
than outliers. The distances between such an object and its neighbouring objects would
be closer than the distances between an outlier object and its neighbouring objects. We
propose two novel location features representing above properties that differentiate the
normal objects and the outlier objects: the centrality and centre-proximity.

To calculate centrality and centre-proximity, we convert the given dataset into a graph
as in existing RWR-based outlier detection methods. Although there are different ways to
build a graph out of a given dataset, we use the k-NN graph for the conversion. We discuss
different graph modelling schemes in Section 5.

Centrality represents how much other objects in the dataset recognize a target object
p as one of the core objects within the cluster. Centre-proximity represents how close a
target object p is to the core objects within the cluster.

The centrality score can be measured by how many other objects recognize the target
object p as their neighbour. The influence of each object that recognizes p as its neighbour
is proportional to its centre-proximity and how much close it is to p. On the other hand,
the centre-proximity score can be measured by how many other objects are recognized by
p as its neighbour. The influence of each object recognized by p as its neighbour is also
proportional to its centrality and how much close it is to p.

We compute the two scores by iteratively referring to each other. The centrality and
centre-proximity of node p can be calculated in the i-th iteration as follows:

Centralityi (p) =
∑

q∈In(p)

wq→p ∗ Centre-Proximityi−1(q)

ZOut(q)

, (1)

Centre-Proximityi (p) =
∑

q∈Out(p)

wp→q ∗ Centralityi−1(q)

ZIn(q)

, (2)

where In(p) is a set of objects that point to p, and Out(p) is a set of objects that p points to.
wp→q is the weight assigned to the edge from p to q. ZOut(q) and ZIn(q) are normalization
factors; ZOut(q) is the sum of all the weights assigned to the edges from q to Out(q), while
ZIn(q) is the sum of all weights assigned to the edges from In(q) to q.

As the two equations above show, centrality and centre-proximity scores have a mutual
reinforcement relationship with each other. A high centreality object makes the centre-
proximity scores of the objects regarding it as their neighbour increase. Respectively,
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// Calculate centrality and centre-proximity scores
DO Assign initial value ‘1’ to the two scores for all objects
FOR i from 0 to MAX_ITERATIONS by 1

FOR j from 1 to NUM_OF_TOTAL_OBJECTS by 1
DO Calculate the centrality score of node j using Eq. (1)
DO Calculate the centre-proximity score of node j using Eq. (2)

DO Normalize the sum of centrality scores of all objects to 1
DO Normalize the sum of centre-proximity scores of all objects to 1

// Calculate outlierness score
FOR i from 1 to NUM_OF_TOTAL_OBJECTS by 1

DO Calculate the outlierness score of node i using Eq. (3)

Fig. 5. Procedure of calculating the outlierness scores.

a high centre-proximity object makes the centrality scores of the objects regarded as its
neighbour increase. This mutual reinforcement relationship between the centrality and
centre-proximity scores is similar to that between the hub and authority scores in HITS
(Kleinberg, 1999).

Second, the centrality and centre-proximity scores of an object have the influence on its
neighbouring objects in proportion to the weights on the edges. This means that an object
has a larger influence on an object close to itself than a far apart object. This concept is
unique with our approach and is not reflected in the mutual reinforcement of HITS.

The detailed procedure for calculating the two scores is shown in Fig. 5. The num-
ber of iterations (MAX_ITERATIONS) decides how far an object influences other ob-
jects in calculating the centrality and centre-proximity scores. If the influence of only
directly connected neighbours is to be considered, we set MAX_ITERATIONS as 1. On
the other hand, if the influence of all the objects in the dataset needs to be considered, we
set MAX_ITERATIONS as the diameter of the modelled graph (Ha et al., 2011).

By iteratively calculating the centrality and centre-proximity scores, each object gets
the centrality and centre-proximity scores that are affected by its indirect neighbours. With
sufficiently large MAX_ITERATIONS (i.e. MAX_ITERATIONS equal to or greater than
the diameter of the graph), both scores are affected by all the objects in the dataset. This
makes the proposed outlier detection method prevent both local density and micro-cluster
problems.

The outliers get low centrality and centre-proximity scores compared to those of the
normal objects. The fringe objects may have low centrality scores as the outliers but their
centre-proximity scores would be generally higher than that of the outliers. To fulfill Goal
1, we use the inverse of the converged centre-proximity score of each object as the final
outlierness score. The outlierness score of node p can be calculated as follows:

Outlierness(p) = 1

Converged_Center-Proximity(p)
. (3)

Figure 6 shows the centrality and centre-proximity scores assigned to each object on a
2-NN graph where edge x → y indicates x thinks y is its neighbour and the thickness of
each edge indicates how much close the two nodes are. The object c is closest to the core
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Object Centrality Centre-proximity
a 0.000 0.128
b 0.040 0.315
c 0.503 0.341
d 0.000 0.313

Fig. 6. Centrality and centre-proximity scores assigned to objects in a 2-NN graph.

of the cluster. Thus it has the highest centrality and centre-proximity scores. The fringe
object d and the outlier object a do not have any objects that recognize them as the cluster
centre, their centrality scores are both 0. However, d has a higher centre-proximity score
(= 0.313) than a (= 0.128) because it is closer to the cluster centre. As a result, we are
able to identify a as an outlier by using the inverse of the centre-proximity score as the
outlierness score.

The RWR score, the location feature in the RWR-based outlier detection method, con-
siders (1) how many objects point to an object, and (2) how many objects exist around the
object. Therefore, the RWR score is similar in concepts to the centrality score, and thus it
cannot differentiate the fringe objects and the outlier objects.

The proposed method has an O(E ∗ i) time complexity for calculating the outlierness
score of each object. Here, E is the total number of edges in the modelled graph, and i

is the number of iterations for calculating the centrality and centre-proximity scores until
they converge.

5. Graph Modelling

We model a graph based on the given dataset to easily calculate the centrality and centre-
proximity scores. The neighbour relationship between two objects can be represented as
an edge in the graph. In Section 5.1, we introduce the three graph modelling schemes to
model a given dataset, and then analyse the effect of each scheme on our outlier detection
method.

The centrality and centre-proximity scores of an object have influence on its neighbour-
ing objects in proportion to the weights on the edges. The weight should have a high score
if two objects have similar characteristics (i.e. located close to each other) and should have
a low score if two objects are different (i.e. located far apart). The details of the weight
assignment methods are discussed in Section 5.2.

5.1. Graph Models

In this section, we analyse three graph modelling schemes, (1) a complete graph, (2) an
e-NN graph, and (3) a k-NN graph, for our proposed outlier detection. The three graph
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Fig. 7. An example showing the problem with a complete graph.

modelling schemes are the same in representing an object as a node, and are different only
in the way they connect nodes with edges. Note that we can model a given dataset as dif-
ferent graph modelling schemes such as minimum spanning tree graphs, k-NN graph vari-
ations, and e-k-NN graphs. However, we employ the three representative (base-formed)
graph modelling schemes having quite different characteristics with each other.

5.1.1. Complete Graph
A complete graph connects each node in the dataset to every other node with a directed
edge. Due to this, the centrality and centre-proximity scores of an object are directly af-
fected by all the other objects in the graph.

In the complete graph, the centrality and centre-proximity scores of each object show
a difference only according to the weight values. Especially, the weights of the edges
connected to objects located at the centre of gravity in the whole graph have the largest
values. Therefore, the objects located at the centre of gravity have the highest centrality and
centre-proximity scores with no relationship to whether they are outliers or not. Figure 7
shows a 2-dimensional dataset. The dataset includes two clusters (c1, c2) and an outlier o1.
Suppose that we model a dataset as a complete graph. In this graph, the outlier o1 has the
highest centrality and centre-proximity scores because it is located at the centre of gravity
in the graph. As a result, o1 is not detected as an outlier in this case.

Additionally, in the complete graph, the number of edges is the square of the total
number of objects in the dataset, and therefore the performance of computing the centrality
and center-proximity scores could deteriorate significantly.

5.1.2. e-NN Graph
An e-NN graph modelling scheme connects an object with other objects that exist within
a specific distance denoted as e as shown in Fig. 8. Due to this, the e-NN graphs for the
same dataset could differ greatly when the value of e changes. In Fig. 8, if e is set to a
value smaller than e1, all of the objects that should be included in the cluster c2 are all
separated and have very low centrality and centre-proximity scores. On the other hand,
if the value of e is set larger than e2, the outlier o1 is included in cluster c1 and has a
high centre-proximity score. This is similar to the local density problem that occurs in the
distance-based outlier detection method.
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Fig. 8. An example of the local density problem with an e-NN graph.

Fig. 9. An example of a distinguishable outlier problem with a directed k-NN graph (k = 3).

As a result, in the e-NN graph, the precision of the outlier detection changes consider-
ably when e changes. Therefore, the user should understand the distribution of the dataset
very well in order to set the proper value for e, which is quite difficult in practice.

5.1.3. k-NN Graph
A k-NN graph modelling scheme connects each object to its k nearest objects with a
directed edge as shown in Fig. 9. Therefore, in the k-NN graph, each object directly affects
its nearest k objects.

In the k-NN graph, the out-degrees of all objects are identical but the in-degrees of
objects vary depending on how many other objects regard it as its k-NN. The objects near
the core of the cluster have high in-degrees, and thus have high centrality and centre-
proximity scores. The outliers and the fringe objects have small in-degrees, and thus have
low centrality scores. However, the fringe objects have more out-edges that are pointing
to high centre-proximity objects than the outlier objects, and thus show higher centre-
proximity scores than those of the outliers. Therefore, it is possible to differentiate outliers
and fringe objects with the k-NN graph.

The precision of outlier detection using the k-NN graph may change with the change in
a parameter value of k. When k is very small, objects are sparsely connected and may not
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be able to clearly form a cluster. As a result, the precision of detecting outliers decreases.
As k increases, the clusters are clearly formed, and thus, the precision increases. However,
when k is very large, the objects in the dataset may be recognized as a single cluster and
show a similar result as the complete graph.

Nevertheless, the k-NN graph scheme shows relatively small fluctuation in the preci-
sion of outlier detection when the value of k changes, compared to the e-NN graph scheme
that forms a very different resulting graph based on the distribution of the dataset. This is
because the k-NN graph scheme equally connects k nearest neighbours for each object.
In this paper, through extensive experiments, we show that modelling a given dataset as a
k-NN graph has a higher precision than the other two graph modelling schemes in outlier
detection and that the precision is less affected by the change in k.

5.2. Weight Assignment

A weight on an edge represents the similarity between two objects connected by the edge.
In this paper, the weight is calculated via the following two methods.

5.2.1. Euclidean Similarity
The Euclidean similarity is the opposite concept of the Euclidean distance. The Euclidean
similarity between two objects a and b is computed by the following equation (Tan et al.,
2005).

Euclidean-Similarity(a, b) = 1 −
√∑d

i=1(ai − bi)2 − min

max − min
, (4)

where each element ei in the vector represents the i-th attribute value of the object, d is the
number of attribute values (dimension) in the object, max indicates the Euclidean distance
between two objects that are farthest apart in the dataset, and min indicates the Euclidean
distance between two objects that are located closest in the dataset.

5.2.2. Cosine Similarity
Each object can be represented as a vector in the Euclidean space. Here, each element ei in
the vector represents the i-th attribute value of the object and d is the number of attribute
values (dimension) in the object. The cosine similarity between two objects a and b is the
cosine value between two corresponding vectors (Tan et al., 2005).

Cosine-Similarity(a, b) =
√∑d

i=1 ai × bi√∑d
i=1 a2

i × ∑d
i=1 b2

i

. (5)

In this paper, we conduct a series of experiments to compare the precision of outlier
detection with different weight assignment methods and to identify the superior one.
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Fig. 10. Chameleon datasets (Karypis et al., 1999).

6. Performance Evaluation

In this section, we measure the performance of our proposed method. First, we evaluate the
quality of found outliers through a simple toy experiment. Second, we examine the change
of the precision with our method while changing parameter values to show the robustness
of our method. Third, we compare the precision and the execution time of our method
with those of previous outlier detection methods. Finally, we show some interesting results
when applying our method to a real-world dataset.

It is noteworthy that we choose k neighbours randomly if one object has more than k

neighbours with same distances (each interior point has four neighbours: up, down, left,
and right in Fig. 9). However, in real-world data, it is a very rare case that one object has
more than k neighbours with exactly same distances. In fact, in our experiments, there are
no such objects having more than k neighbours with the same distances. We conducted our
experiments several times for removing random effect but the precision of each experiment
is exactly the same.

6.1. Environment for Experiments

For experiments, we used (1) the well-known four 2-dimensional synthetic datasets used in
Chameleon (Karypis et al., 1999) and (2) one real-world dataset composed of the records
of the NBA players (Basketball-Reference.com). The Chameleon datasets are composed
of 8,000, 8,000, 8,000, and 10,000 objects, respectively, as shown in Fig. 10. The NBA
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dataset is composed of statistics of 585 basketball players with 23 attributes in the 2004–
2005 NBA regular season.

We used the precision, recall, and the execution time as our evaluation metrics. The
precision and recall are calculated as follows:

Precision = #(ground-truth outliers ∩ predicted outliers)
#predicted outliers

, (6)

Recall = #(ground-truth outliers ∩ predicted outliers)
#ground-truth outliers

. (7)

In the following experiments, we set the number of all predicted outliers as same as the
number of all ground-truth outliers, which makes the precision and recall always have
the same value in all cases (i.e. Precision = Recall). Thus, we only show the precision.
We asked five human experts to build the ground truth labels for the precision and recall.
Each human expert made the decision whether each object is an outlier or not. We use
the decision of the majority of human experts made as the ground-truth. The numbers of
outliers chosen from the Chameleon datasets are 328, 803, 1,163, and 945, respectively.
In Fig. 10, the normal objects are shown as crosses (green colour) and the outliers are
shown as squares (red colour).

All the experiments performed in this paper were executed on Intel i7 920 with 16 GB
RAM running Windows 7, and the programs were coded in C#.

6.2. Qualitative Analysis

We first conducted a toy experiment to show that our proposed method works for the prob-
lems mentioned earlier. For this purpose, we synthetically generated a small 2-dimentional
dataset. The dataset contains two clusters (each with fringe objects and different densities),
a micro-cluster, and a few randomly generated outlier objects. The dataset is composed of
266 objects and 29 outliers.

Figure 11 shows the dataset and the result of our proposed method on it. We used
k = 10 and the Euclidean similarity as a similarity measure. In Fig. 11, the objects marked
with the cross (green colour) are normal objects, and the ones marked with the square
(red colour) are the outliers detected by the proposed method. The results show that our
proposed method does not suffer from (a) the local density problem and (b) the micro-
cluster problem, and (c) can differentiate between fringe objects and outliers.

We also detected outliers using k-Dist (Ramaswamy et al., 2000) (distance-based) and
LOF (Breunig et al., 2000) (density-based) methods. As a result, not surprisingly, all the
three problems mentioned above occurred in the k-Dist method and the two problems
except for the local density problem occurred in the LOF method.

6.3. Analysis on the Proposed Outlier Detection Method

In this subsection, we used the four Chameleon datasets to evaluate the precision of our
method while changing (1) graph modelling schemes, (2) weight assignment methods,
and (3) the number of iterations (MAX_ITERATIONS).
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Fig. 11. Result of the proposed outlier detection method.

Fig. 12. Precision with varying graph modelling schemes.

6.3.1. Analysis on Graph Modelling Schemes
In this experiment, we compare the three different graph modelling schemes we dis-
cussed in Section 5.1: (1) complete graph, (2) e-NN graph, and (3) k-NN graph. We used
Chameleon datasets to build graphs with each modelling scheme. After building graphs,
we detected outliers using our proposed method while varying parameter e of the e-NN
graph from 0.5% to 10% in step of 0.5% of the furthest distance between two objects in
the dataset. Also, the parameter k of the k-NN graph was varied from 0.5% to 10% in
steps of 0.5% of the total number of objects in the dataset, respectively.

A weight on each edge was assigned using the Euclidean similarity, and the number
of outliers to be detected was set as equal to the number of outliers selected by humans in
each dataset.

Figure 12 shows the results. The x-axis indicates the parameter value of each modelling
scheme and the y-axis shows the precision. The complete graph shows the lowest preci-
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Fig. 13. Precision with varying weight assignment methods.

sion. In case of the e-NN graph, the fluctuation of the precision is very large according to
the change of e. The k-NN graph, compared to the other graph modelling schemes, shows
the highest precision and shows a much smaller fluctuation of the precision according to
the parameter change than the e-NN graph.

6.3.2. Analysis on Weight Assignment Methods
In this experiment, we first modelled the four Chameleon datasets as k-NN graphs and
assigned edge weights using (1) the Euclidean similarity and (2) the cosine similarity.
Then, we measured the average precision of our method with a varying parameter k in
the k-NN graph from 0.5% to 10% in steps of 0.5% of the total number of objects in the
dataset. The number of outliers to be detected was set as equal to the number of outliers
selected by humans in each dataset.

Figure 13 shows the results. The Euclidean similarity method shows superior precision
to the cosine similarity method. In the case of the cosine similarity, even for two distant
objects, if the cosine value between their corresponding vectors is 0, a high weight is
assigned to the edge connecting the two objects. This could make our method unable to
accurately detect outliers.

6.3.3. Analysis on the Numbers of Iterations
In this experiment, we measured the average precision of our method changing the number
of iterations (MAX_ ITERATIONS) from 1 to 15 for calculating centrality and centre-
proximity scores. The four Chameleon datasets were modelled as k-NN graphs and the
edge weights were assigned by the Euclidean similarity method. Here, k was set as the
value providing the best precision for each dataset, as shown in Fig. 12. Also, in order to
measure the precision, the number of outliers to be detected was set as equal to the number
of true outliers shown by humans in the dataset.

Figure 14 shows the results. The precision increases as the number of iterations in-
creases. When the number of iterations exceeds 5 or 6, both the centrality and centre-
proximity scores of all the objects converge to a specific value and the precision does not
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Fig. 14. Precision with a varying number of iterations.

change. So, we know that the actual execution time of outlier detection by our method is
not that large.

6.4. Comparisons with Other Methods

In this experiment, we evaluated the average precision and the average execution time
of five different outlier detection methods, k-Dist (Ramaswamy et al., 2000) (distance-
based), LOF (Breunig et al., 2000) (density-based), Outrank-a, Outrank-b (RWR-based),
and the proposed method. For this evaluation, we used four Chameleon datasets. For each
method, we select the parameter values (e.g. k for k-NN graph), among multiple candidate
values, that provide the best precision.

6.4.1. Precision
In this experiment, we used the Chameleon datasets to show the effectiveness of our pro-
posed method by average precisions. We compare our method to the existing outlier de-
tection methods. The parameters for the existing methods were set to the same values
as in their papers that showed the best precision for each dataset (Knorr et al., 2000;
Moonesinghe and Tan, 2008; Ramaswamy et al., 2000; Breunig et al., 2000).

Table 1 shows the results. Our proposed method that takes account of the distribu-
tion of all the objects showed the best average precision. The density-based outlier detec-
tion method (LOF) that only takes account of the influence of the neighbouring objects
showed a higher precision than the distance-based outlier detection method (k-Dist) that
only takes account of the influence of the target object itself. The Outrank methods basi-
cally use a concept similar to the proposed method in terms of modelling a given dataset as
a graph. However, they have problems in their location features and in the graph modelling
schemes, which leads to a very low precision.

6.4.2. Execution Time
In this experiment, we measured the average execution time of five different outlier de-
tection methods over the four Chameleon datasets. To remove randomness effects, we
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Table 1
Precision of five different methods.

k-Dist LOF Outrank-a Outrank-b Proposed
method

data1 0.70 0.85 0.07 0.09 0.88
data2 0.88 0.85 0.13 0.23 0.86
data3 0.94 0.94 0.12 0.17 0.95
data4 0.91 0.89 0.18 0.15 0.91
Average 0.86 0.88 0.13 0.16 0.90

Table 2
Execution time of five different methods (ms).

k-Dist LOF Outrank-a Outrank-b Proposed
method

data1 56,447 52,510 408,352 9,730,417 56,515
data2 55,913 54,718 402,726 7,951,859 57,029
data3 56,054 54,409 403,579 7,836,638 57,214
data4 86,974 89,522 673,850 19,130,638 87,340
Average 63,847 62,790 472,127 11,162,388 64,525

executed them five times and calculated the average execution times. Here, the parame-
ters of each outlier detection method were set to the values that showed the best precision
for each dataset.

Table 2 shows the results in the unit of microseconds (ms). The proposed method,
which takes account of the characteristics of all the objects and shows the highest preci-
sion, does not show any big difference in terms of the execution time compared to other
outlier detection methods.

In case of the Outrank-a method, the given dataset is modelled as a complete graph.
Thus, it was shown to require a lot of time to detect the outliers. In case of the
Outrank-b method, the execution time of the sharing neighbourhood similarity measure
(Ramaswamy et al., 2000), which assigns the edge weight in the Outrank-b method, takes
a huge amount of time. Thus, its overall execution time was shown to be very large.

6.5. Detecting Outliers from a Real-World Dataset

In this experiment, we applied our proposed outlier detection method to a real-world
dataset. The dataset is composed of the statistics of 585 basketball players in the 2004–
2005 NBA regular season. From the NBA dataset, we derived the attributes as shown in
Table 3. To derive the attributes, we used the formulas provided in ESPN (ESPN Fantasy
Basketball). We normalized the domain of each attribute in order to prevent the situation
where the domain of a specific attribute is very large. The attribute a of object v was nor-
malized using the formula va−ā

σa
(Ramaswamy et al., 2000). Here, va is the attribute a of

an object v, ā is the average of attribute a, and σa is the standard deviation of attribute a.
We set k = 5 for the NBA dataset in this experiment. This is because, as shown in

Fig. 12, high accuracy is observed with k set as about 1% of the given data size in terms
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Table 3
Derived attributes from the NBA 2004 dataset.

Derived attributes Description Formula

FG% Field goal percentage #field goals made
#field goals attempted

FT% Free throw percentage #free throws made
#free throws attempted

3P% Three-point percentage #three-point goals made
/ #three-point goals
attempted

ASTPG #assists per game #assists
/ #played games

BLKPG #blocks per game #blocks
/ #played games

MINPG Minutes per game Minutes of played game
/ #played games

PTSPG Points per game Points
/ Number of played
games

REBPG #rebounds per game #rebounds
/ #played games

STLPG #steals per game #steals
/ #played games

TOPG #turnovers per game #turnovers
/ #played games

Table 4
Top 15 outlier 2004 NBA players.

fname lname team gp min FG% FT% 3P% ASTPG BLKPG MINPG PTSPG REBPG STLPG TOPG
Steve Nash PHO 75 2,573 0.78 0.94 1.14 5.61 −0.63 1.38 1.31 −0.05 0.79 2.73
Andrei Kirilenko UTA 41 1,349 0.69 0.44 0.43 0.85 6.00 1.24 1.32 1.16 2.23 1.34
Allen Iverson PHI 75 3,174 −0.01 0.69 0.48 3.59 −0.55 2.15 3.86 0.23 3.93 4.44
Jimmy Jackson PHO 40 997 0.100 1.30 1.30 0.40 −0.59 0.46 0.17 0.18 −0.73 0.41
Larry Hughes WAS 61 2,358 0.05 0.41 0.34 1.69 −0.19 1.80 2.41 1.18 5.00 1.75
Shaun Livingston LAC 30 812 −0.12 0.25 −1.19 1.90 −0.04 0.67 −0.06 −0.19 0.97 1.74
Ruben Patterson POR 70 1,957 1.08 −0.46 −0.76 0.14 −0.18 0.76 0.64 0.20 1.96 1.14
Greg Buckner DEN 70 1,522 1.05 0.41 1.00 0.09 −0.62 0.16 −0.27 −0.19 0.98 −0.60
Reggie Evans SEA 79 1,881 0.52 −0.78 −1.19 −0.58 −0.40 0.36 −0.49 2.45 0.24 0.20
Ben Wallace DET 74 2,672 0.29 −1.3 −0.59 −0.04 4.08 1.55 0.33 3.65 1.78 −0.10
Ervin Johnson MIN 46 410 0.96 −0.26 4.22 −0.92 −0.21 −1.09 −1.04 −0.41 −1.05 −1.00
Kevin Garnett MIN 82 3,121 0.79 0.57 0.11 2.27 2.00 1.74 2.43 4.20 1.88 2.01
Eddie Griffin MIN 70 1,492 −0.39 0.12 0.59 −0.56 2.66 0.11 −0.04 1.27 −0.66 −0.49
Darius Miles POR 63 1,698 0.58 −0.46 0.69 0.18 1.74 0.66 0.85 0.55 1.25 1.73
Anthony Carter MIN 66 742 −0.19 −0.04 −0.55 0.41 −0.23 −0.86 −0.85 −0.99 −0.22 −0.29

of the number of nodes; note that the size of the NBA dataset is 585. The top 15 players
having the highest outlierness scores were detected as outliers. The result is provided in
Table 4. Note that we removed the players having lower ‘Minutes Played’ compared to the
average of 2004 NBA players.

The outliers detected in the NBA dataset not only include the outstanding players but
also may include the players that have poor statistics. Steve Nash, the 3rd outlier, is shown
5.61 times higher in assists per game compared with the average of other players. Andrei
Kirilenko, the 4th outlier, is shown 6 times higher in blockings per game compared with
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the average of other players. Additionally, the best players such as Allen Iverson (top player
in points), Larry Hughes (top player in steals), and Kevin Garnet (top player in rebounds)
were all included in the top 25.2 Other players who were detected as outliers either have
poor statistics or did not play in many games.

7. Conclusions and Future Work

After extensive analysis of existing outlier detection methods we noticed their significant
lack and problems that can cause wrong interpretation of obtained experimental results
with different datasets. Our intention in recent research was to propose a novel method that
would show better effects and performances. In this paper, we have proposed a novel out-
lier detection method based on centrality and centre-proximity notions. Apart from that,
we proposed a graph-based outlier detection method and presented extensive promising
experimental results.

The main contributions of our research presented in this paper could be summarized as
follows: (1) We have proposed two novel relative location features–centrality and centre-
proximity. Both features take account of the characteristics of all the objects in the dataset.
(2) To solve the local density and micro-cluster problems, we have proposed a novel graph-
based outlier detection method. (3) We have explored multiple graph modelling schemes
and weighting schemes for our graph-based outlier detection. (4) The effectiveness and
efficiency of the proposed method have been verified in extensive experiments with both
synthetic and real-world datasets. Comparison with previous methods has been discussed
and the advantages of our approach have been specified.

Based on promising and positive effects we obtained in experiments, we are going to
continue with additional experiments and enhance our efforts in comparative evaluations
with more sophisticated competitors (e.g. neural networks and probabilistic methods) and
more datasets including benchmark datasets.
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