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Abstract: The objective of our research was to study asymptotic properties of the class of higher
order differential equations with a p-Laplacian-like operator. Our results supplement and improve
some known results obtained in the literature. An illustrative example is provided.
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1. Introduction

In this work, we are concerned with oscillations of higher-order differential equations with a
p-Laplacian-like operator of the form(

r (t)
∣∣∣(y(n−1) (t)

)∣∣∣p−2
y(n−1) (t)

)′
+ q (t) |y (τ (t))|p−2 y (τ (t)) = 0. (1)

We assume that p > 1 is a constant, r ∈ C1 ([t0, ∞),R) , r (t) > 0, q, τ ∈ C ([t0, ∞), R) , q >

0, τ (t) ≤ t, limt→∞ τ (t) = ∞ and the condition

η (t0) = ∞, (2)

where
η (t) :=

∫ ∞

t

ds
r1/(p−1) (s)

.

By a solution of (1) we mean a function y ∈ Cn−1[Ty, ∞), Ty ≥ t0, which has the property

r (t)
∣∣∣(y(n−1) (t)

)∣∣∣p−2
y(n−1) (t) ∈ C1[Ty, ∞), and satisfies (1) on [Ty, ∞). We consider only those

solutions y of (1) which satisfy sup{|y (t)| : t ≥ T} > 0, for all T > Ty. A solution of (1) is called
oscillatory if it has arbitrarily large number of zeros on [Ty, ∞), and otherwise it is called to be
nonoscillatory; (1) is said to be oscillatory if all its solutions are oscillatory.

In recent decades, there has been a lot of research concerning the oscillation of solutions of various
classes of differential equations; see [1–24].

It is interesting to study Equation (1) since the p-Laplace differential equations have applications
in continuum mechanics [14,25]. In the following, we briefly review some important oscillation criteria
obtained for higher-order equations, which can be seen as a motivation for this paper.

Elabbasy et al. [26] proved that the equation(
r (t)

∣∣∣(y(n−1) (t)
)∣∣∣p−2

y(n−1) (t)
)′

+ q (t) f (y (τ (t))) = 0,
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is oscillatory, under the conditions ∫ ∞

t0

1
rp−1

(t)
dt = ∞;

additionally,

∫ ∞

`0

(
ψ (s)− 1

pp φp (s)
((n− 1)!)p−1 ρ (s) a (s)

((p− 1) µsn−1)
p−1 − (p− 1) ρ (s)

a1/(p−1) (s) ηp(s)

)
ds = +∞,

for some constant µ ∈ (0, 1) and ∫ ∞

`0

kq (s)
τ (s)p−1

sp−1 ds = ∞.

Agarwal et al. [2] studied the oscillation of the higher-order nonlinear delay differential equation[∣∣∣y(n−1) (t)
∣∣∣α−1

y(n−1) (t)
]′
+ q (t) |y (τ (t))|α−1 y (τ (t)) = 0.

where α is a positive real number. In [27], Zhang et al. studied the asymptotic properties of the
solutions of equation [

r (t)
(

y(n−1) (t)
)α]′

+ q (t) yβ (τ (t)) = 0‚ t ≥ t0.

where α and β are ratios of odd positive integers, β ≤ α and∫ ∞

t0

r−1/α (s)ds < ∞. (3)

In this work, by using the Riccati transformations, the integral averaging technique and
comparison principles, we establish a new oscillation criterion for a class of higher-order neutral
delay differential Equations (1). This theorem complements and improves results reported in [26]. An
illustrative example is provided.

In the sequel, all occurring functional inequalities are assumed to hold eventually; that is, they
are satisfied for all t large enough.

2. Main Results

In this section, we establish some oscillation criteria for Equation (1). For convenience, we denote
that F+ (t) := max {0, F (t)} ,

B (t) :=
1

(n− 4)!

∫ ∞

t
(θ − t)n−4


∫ ∞

θ q (s)
(

τ(s)
s

)p−1
ds

r (θ)


1/(p−1)

dθ

and

D (s) :=
r (s) δ (s) |h (t, s)|p

pp
[

H (t, s) A (s) µ sn−2

(n−2)!

]p−1 .

We begin with the following lemmas.

Lemma 1 (Agarwal [1]). Let y(t) ∈ Cm [t0, ∞) be of constant sign and y(m) (t) 6= 0 on [t0, ∞) which
satisfies y (t) y(m) (t) ≤ 0. Then,
(I) There exists a t1 ≥ t0 such that the functions y(i) (t) , i = 1, 2, ..., m− 1 are of constant sign on [t0, ∞) ;
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(II) There exists a number k ∈ {1, 3, 5, ..., m− 1} when m is even, k ∈ {0, 2, 4, ..., m− 1} when m is odd, such
that, for t ≥ t1,

y (t) y(i) (t) > 0,

for all i = 0, 1, ..., k and
(−1)m+i+1 y (t) y(i) (t) > 0,

for all i = k + 1, ..., m.

Lemma 2 (Kiguradze [15]). If the function y satisfies y(j) > 0 for all j = 0, 1, ..., m, and y(m+1) < 0, then

m!
tm y (t)− (m− 1)!

tm−1 y′ (t) ≥ 0.

Lemma 3 (Bazighifan [7]). Let h ∈ Cm ([t0, ∞) , (0, ∞)) . Suppose that h(m) (t) is of a fixed sign, on [t0, ∞),
h(m) (t) not identically zero, and that there exists a t1 ≥ t0 such that, for all t ≥ t1,

h(m−1) (t) h(m) (t) ≤ 0.

If we have lim
t→∞

h (t) 6= 0, then there exists tλ ≥ t0 such that

h (t) ≥ λ

(m− 1)!
tm−1

∣∣∣h(m−1) (t)
∣∣∣ ,

for every λ ∈ (0, 1) and t ≥ tλ.

Lemma 4. Let n ≥ 4 be even, and assume that y is an eventually positive solution of Equation (1). If (2) holds,
then there exists two possible cases for t ≥ t1, where t1 ≥ t0 is sufficiently large:

(C1) y′ (t) > 0, y′′ (t) > 0, y(n−1) (t) > 0, y(n) (t) < 0,
(C2) y(j)(t) > 0, y(j+1)(t) < 0 for all odd integer

j ∈ {1, 2, ..., n− 3}, y(n−1) (t) > 0, y(n) (t) < 0.

Proof. Let y be an eventually positive solution of Equation (1). By virtue of (1), we get(
r (t)

∣∣∣(y(n−1) (t)
)∣∣∣p−2

y(n−1) (t)
)′

< 0. (4)

From ([11] Lemma 4), we have that y(n−1) (t) > 0 eventually. Then, we can write (4) in the from(
r (t)

(
y(n−1) (t)

)p−1
)′

< 0,

which gives

r′ (t)
(

y(n−1) (t)
)p−1

+ r (t) (p− 1)
(

y(n−1) (t)
)p−2

y(n) (t) < 0.

Thus, y(n) (t) < 0 eventually. Thus, by Lemma 1, we have two possible cases (C1) and (C2). This
completes the proof.

Lemma 5. Let y be an eventually positive solution of Equation (1) and assume that Case (C1) holds. If

ω (t) := δ (t)

 r (t)
∣∣∣(y(n−1) (t)

)∣∣∣p−1

yp−1 (t)

 , (5)
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where δ ∈ C1 ([t0, ∞) , (0, ∞)) , then

ω′ (t) ≤
δ′+ (t)
δ (t)

ω (t)− δ (t) q (t)
(

τn−1 (t)
tn−1

)p−1

− (p− 1) µtn−2

(n− 2)! (δ (t) r (t))1/(p−1)
ωp/(p−1) (t) . (6)

Proof. Let y be an eventually positive solution of Equation (1) and assume that Case (C1) holds.
From the definition of ω, we see that ω (t) > 0 for t ≥ t1, and

ω′ (t) ≤ δ′ (t)
r (t)

∣∣∣(y(n−1) (t)
)∣∣∣p−1

yp−1 (t)
+ δ (t)

(
r (t)

∣∣∣(y(n−1) (t)
)∣∣∣p−1

)′
yp−1 (t)

−δ (t)
(p− 1) y′ (t) r (t)

∣∣∣(y(n−1) (t)
)∣∣∣p−1

yp (t)
.

Using Lemma 3 with m = n− 1, h (t) = y′ (t), we get

y′ (t) ≥ µ

(n− 2)!
tn−2y(n−1) (t) , (7)

for every constant µ ∈ (0, 1). From (5) and (7), we obtain

ω′ (t) ≤ δ′ (t)
r(t)|(y(n−1)(t))|p−1

yp−1(t)
+ δ (t)

(
r(t)|(y(n−1)(t))|p−1)′

yp−1(t)

−δ (t) (p−1)µtn−2

(n−2)!
r(t)|(y(n−1)(t))|p

yp(t) .
(8)

By Lemma 2, we have
y (t)
y′ (t)

≥ t
n− 1

.

Integrating this inequality from τ (t) to t, we obtain

y (τ (t))
y (t)

≥ τn−1 (t)
tn−1 . (9)

Combining (1) and (8), we get

ω′ (t) ≤ δ′ (t)
r(t)|(y(n−1)(t))|p−1

yp−1(t)
− δ (t)

q(t)(y(p−1)(τ(t)))
yp−1(t)

−δ (t) (p−1)µtn−2

(n−2)!
r(t)|(y(n−1)(t))|p

yp(t) .
(10)

From (9) and (10), we obtain

ω′ (t) ≤
δ′+ (t)
δ (t)

ω (t)− δ (t) q (t)
(

τn−1 (t)
tn−1

)p−1

− (p− 1) µtn−2

(n− 2)! (δ (t) r (t))1/(p−1)
ωp/(p−1) (t) . (11)

It follows from (11) that

δ (t) q (t)
(

τn−1 (t)
tn−1

)p−1

≤
δ′+ (t)
δ (t)

ω (t)−ω′ (t)− (p− 1) µtn−2

(n− 2)! (δ (t) r (t))1/(p−1)
ωp/(p−1) (t) .

This completes the proof.
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Lemma 6. Let y be an eventually positive solution of Equation (1) and assume that Case (C2) holds. If

ψ (t) := σ (t)
y′ (t)
y (t)

, (12)

where σ ∈ C1 ([t0, ∞) , (0, ∞)) , then

σ (t) B (t) ≤ −ψ′ (t) +
σ′ (t)
σ (t)

ψ (t)− 1
σ (t)

ψ2 (t) . (13)

Proof. Let y be an eventually positive solution of Equation (1) and assume that Case (C2) holds. Using
Lemma 2, we obtain

y (t) ≥ ty′ (t) .

Thus we find that y/t is nonincreasing, and hence

y (τ (t)) ≥ y (t)
τ (t)

t
. (14)

Since y > 0, (1) becomes(
r (t)

(
y(n−1) (t)

)p−1
)′

+ q (t) yp−1 (τ (t)) = 0.

Integrating that equation from t to ∞, we see that

lim
t→∞

(
r (t)

(
y(n−1) (t)

)p−1
)
− r (t)

(
y(n−1) (t)

)p−1
+
∫ ∞

t
q (s) yp−2 (τ (s)) = 0. (15)

Since the function r
(

y(n−1)
)p−1

is positive
[
r > 0 and y(n−1) > 0

]
and nonincreasing((

r
(

y(n−1)
)p−1

)′
< 0

)
, there exists a t2 ≥ t0 such that r

(
y(n−1)

)p−1
is bounded above for all

t ≥ t2, and so limt→∞

(
r (t)

(
y(n−1) (t)

)p−1
)
= c ≥ 0. Then, from (15), we obtain

−r (t)
(

y(n−1) (t)
)p−1

+
∫ ∞

t
q (s) yp−2 (τ (s)) ≤ −c ≤ 0.

From (14), we obtain

−r (t)
(

y(n−1) (t)
)p−1

+
∫ ∞

t
q (s) y (s)p−1 τ (s)p−1

sp−1 ds ≤ 0.

It follows from y′ (t) > 0 that

−y(n−1) (t) +
y (t)

r1/(p−1) (t)

(∫ ∞

t
q (s)

(
τ (s)

s

)p−1
ds

)1/(p−1)

≤ 0.

Integrating the above inequality from t to ∞ for a total of (n− 3) times, we get

y′′ (t) +

∫ ∞
t (θ − t)n−4

( ∫ ∞
θ q(s)

(
τ(s)

s

)p−1
ds

r(θ)

)1/(p−1)

dθ

(n− 4)!
y (t) ≤ 0. (16)



Axioms 2020, 9, 14 6 of 11

From the definition of ψ (t), we see that ψ (t) > 0 for t ≥ t1, and

ψ′ (t) = σ′ (t)
y′ (t)
y (t)

+ σ (t)
y′′ (t) y (t)− (y′ (t))2

y2 (t)
. (17)

It follows from (16) and (17) that

σ (t) B (t) ≤ −ψ′ (t) +
σ′ (t)
σ (t)

ψ (t)− 1
σ (t)

ψ2 (t) .

This completes the proof.

Definition 1. Let

D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}.

We say that a function H ∈ C (D,R) belongs to the class < if
(i1) H (t, t) = 0 for t ≥ t0, H (t, s) > 0, (t, s) ∈ D0.
(i2) H has a nonpositive continuous partial derivative ∂H/∂s on D0 with respect to the second variable.

Theorem 1. Let n ≥ 4 be even. Assume that there exist functions H, H∗ ∈ <, δ, A, σ, A∗ ∈
C1 ([t0, ∞) , (0, ∞)) and h, h∗ ∈ C (D0,R) such that

− ∂

∂s
(H (t, s) A (s)) = H (t, s) A (s)

δ′ (t)
δ (t)

+ h (t, s) . (18)

and

− ∂

∂s
(H∗ (t, s) A∗ (s)) = H∗ (t, s) A∗ (s)

σ′ (t)
σ (t)

+ h∗ (t, s) . (19)

If

lim sup
t→∞

1
H (t, t0)

∫ t

t0

[
H (t, s) A (s) δ (s) q (s)

(
τn−1 (s)

sn−1

)p−1

− D (s)

]
ds = ∞, (20)

for some constant µ ∈ (0, 1) and

lim sup
t→∞

1
H∗ (t, t0)

∫ t

t0

(
H∗ (t, s) A∗ (s) σ (s) B (s)− σ (s) |h∗ (t, s)|2

4H∗ (t, s) A∗ (s)

)
ds = ∞, (21)

then every solution of (1) is oscillatory.

Proof. Let y be a nonoscillatory solution of Equation (1) on the interval [t0, ∞). Without loss of
generality, we can assume that y is an eventually positive. By Lemma 4, there exist two possible cases
for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Assume that (C1) holds. From Lemma 5, we get that (6) holds. Multiplying (6) by H (t, s) A (s)
and integrating the resulting inequality from t1 to t, we have

∫ t

t1

H (t, s) A (s) δ (s) q (s)
(

τn−1 (s)
sn−1

)p−1

ds

≤ −
∫ t

t1

H (t, s) A (s)ω′ (s) ds +
∫ t

t1

H (t, s) A (s)
δ′ (s)
δ (s)

ω (s) ds

−
∫ t

t1

H (t, s) A (s)
(p− 1) µsn−2

(n− 2)! (δ (s) r (s))1/(p−1)
ωp/(p−1) (s) ds
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Thus

∫ t

t1

H (t, s) A (s) δ (s) q (s)
(

τn−1 (s)
sn−1

)p−1

ds

≤ H (t, t1) A (t1)ω (t1)−
∫ t

t1

(
− ∂

∂s
(H (t, s) A (s))− H (t, s) A (s)

δ′ (t)
δ (t)

)
ω (s) ds

−
∫ t

t1

H (t, s) A (s)
(p− 1) µsn−2

(n− 2)! (δ (s) r (s))1/(p−1)
ωp/(p−1) (s) ds

This implies

∫ t

t1

H (t, s) A (s) δ (s) q (s)
(

τn−1 (s)
sn−1

)p−1

ds

≤ H (t, t1) A (t1)ω (t1) +
∫ t

t1

|h (t, s)|ω (s) d (s) (22)

−
∫ t

t1

H (t, s) A (s)
(p− 1) µsn−2

(n− 2)! (δ (s) r (s))1/(p−1)
ωp/(p−1) (s) ds.

Using the inequality

βUVβ−1 −Uβ ≤ (β− 1)Vβ, β > 1, U ≥ 0 and V ≥ 0, (23)

with β = p/ (p− 1) ,

U =

(
(p− 1) H (t, s) A (s)

µsn−2

(n− 2)!

)(p−1)/p
ω (s)

(δ (s) r (s))1/p

and

V =

(
p− 1

p

)p−1

|h (t, s)|p−1

 δ (s) r (s)(
(p− 1) H (t, s) A (s) µsn−2

(n−2)!

)p−1


(p−1)/p

,

we get

|h (t, s)|ω (s)− H (t, s) A (s)
(p− 1) µsn−2

(n− 2)! (δ (s) r (s))1/(p−1)
ωp/(p−1)

≤ δ (s) r (s)(
H (t, s) A (s) µsn−2

(n−2)!

)p−1

(
|h (t, s)|

p

)p
,

which with (23) gives

∫ t

t1

(
H (t, s) A (s) δ (s) q (s)

(
τn−1 (s)

sn−1

)p−1

− D (s)

)
ds ≤ H (t, t1) A (t1)ω (t1)

≤ H (t, t0) A (t1)ω (t1) .
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Then

1
H (t, t0)

∫ t

t0

(
H (t, s) A (s) δ (s) q (s)

(
τn−1 (s)

sn−1

)p−1

− D (s)

)
ds

≤ A (t1)ω (t1) +
∫ t1

t0

A (s) δ (s) q (s)
(

τn−1 (s)
sn−1

)p−1

ds

< ∞,

for some µ ∈ (0, 1), which contradicts (20).
Assume that Case (C2) holds. From Lemma 6, we get that (13) holds. Multiplying (13) by

H∗ (t, s) A∗ (s), and integrating the resulting inequality from t1 to t, we have

∫ t

t1

H∗ (t, s) A∗ (s) σ (s) B (s) ds ≤ −
∫ t

t1

H∗ (t, s) A∗ (s)ψ′ (s) ds +
∫ t

t1

H∗ (t, s) A∗ (s)
σ′ (s)
σ (s)

ψ (s) ds

−
∫ t

t1

H∗ (t, s) A∗ (s)
σ (s)

ψ2 (s) ds

= H∗ (t, t1) A∗ (t1)ψ (t1)−
∫ t

t1

H∗ (t, s) A∗ (s)
σ (s)

ψ2 (s) ds

−
∫ t

t1

(
− ∂

∂s
(H∗ (t, s) A∗ (s))− H∗ (t, s) A∗ (s)

σ′ (t)
σ (t)

)
ψ (s) ds.

Then∫ t

t1

H∗ (t, s) A∗ (s) σ (s) B (s) ds ≤ H∗ (t, t1) A∗ (t1)ψ (t1) +
∫ t

t1

|h∗ (t, s)|ψ (s) d (s)

−
∫ t

t1

H∗ (t, s) A∗ (s)
σ (s)

ψ2 (s) ds.

Hence we have

∫ t

t1

(
H∗ (t, s) A∗ (s) σ (s) B (s)− σ (s) |h∗ (t, s)|2

4H∗ (t, s) A∗

)
ds ≤ H∗ (t, t1) A∗ (t1)ψ (t1)

≤ H∗ (t, t0) A∗ (t1)ψ (t1) .

This implies

1
H∗ (t, t0)

∫ t

t0

(
H∗ (t, s) A∗ (s) σ (s) B (s)− σ (s) |h∗ (t, s)|2

4H∗ (t, s) A∗

)
ds

≤ A∗ (t1)ψ (t1) +
∫ t

t0

A∗ (s) σ (s) B (s) ds < ∞

which contradicts (21). Therefore, every solution of (1) is oscillatory.

In the next theorem, we establish new oscillation results for Equation (1) by using the comparison
technique with the first-order differential inequality:

Theorem 2. Let n ≥ 2 be even and r′ (t) > 0. Assume that for some constant λ ∈ (0, 1),
the differential equation

ϕ′ (t) +
q (t)

r (τ (t))

(
λτ

n−1
(t)

(n− 1)!

)p−1

ϕ (τ (t)) = 0 (24)

is oscillatory. Then every solution of (1) is oscillatory.
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Proof. Let (1) have a nonoscillatory solution y. Without loss of generality, we can assume that y (t) > 0
for t ≥ t1, where t1 ≥ t0 is sufficiently large. Since r′ (t) > 0, we have

y′ (t) > 0, y(n−1) (t) > 0 and y(n) (t) < 0. (25)

From Lemma 3, we get

y (t) ≥ λtn−1

(n− 1)!r1/p−1 (t)
r1/p−1 (t) y(n−1) (t) , (26)

for every λ ∈ (0, 1). Thus, if we set

ϕ (t) = r (t)
[
y(n−1) (t)

]p−1
> 0,

then we see that ϕ is a positive solution of the inequality

ϕ′ (t) +
q (t)

r (τ (t))

(
λτ

n−1
(t)

(n− 1)!

)p−1

ϕ (τ (t)) ≤ 0. (27)

From [22] (Theorem 1), we conclude that the corresponding Equation (24) also has a positive
solution, which is a contradiction.

Theorem 2 is proved.

Corollary 1. Assume that (2) holds and let n ≥ 2 be even. If

lim
t→∞

inf
∫ t

τ(t)

q (s)
r (τ (s))

(
τ

n−1
(s)
)p−1

ds >
((n− 1)!)p−1

e
, (28)

then every solution of (1) is oscillatory.

Next, we give the following example to illustrate our main results.

Example 1. Consider the equation

y(4) (t) +
γ

t4 y
(

9
10

t
)
= 0, t ≥ 1, (29)

where γ > 0 is a constant. We note that n = 4, r (t) = 1, p = 2, τ (t) = 9t/10 and q (t) = γ/t4. If we set
H (t, s) = H∗ (t, s) = (t− s)2 , A (s) = A∗ (s) = 1, δ (s) = t3, σ (s) = t, h (t, s) = (t− s)

(
5− 3ts−1)

and h∗ (t, s) = (t− s)
(
3− ts−1) then we get

η (s) =
∫ ∞

t0

1
r1/(p−1) (s)

ds = ∞

and

B (t) =
1

(n− 4)!

∫ ∞

t
(θ − t)n−4


∫ ∞

θ q (s)
(

τ(s)
s

)p−1
ds

r (θ)


1/(p−1)

dθ

= 3γ/
(

20t2
)

.
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Hence conditions (20) and (21) become

lim sup
t→∞

1
H (t, t0)

∫ t

t0

(
H (t, s) A (s) δ (s) q (s)

(
τn−1 (s)

sn−1

)p−1

− D (s)

)
ds

= lim sup
t→∞

1

(t− 1)2

∫ t

1

[
729γ

1000
t2s−1 +

729γ

1000
s− 729γ

500
t− s

2µ

(
25 + 9t2s−2 − 30ts−1

)]
ds

= ∞ (if γ > 500/81)

and

lim sup
t→∞

1
H∗ (t, t0)

∫ t

t0

(
H∗ (t, s) A∗ (s) σ (s) B (s)− σ (s) |h∗ (t, s)|2

4H∗ (t, s) A∗ (s)

)
ds

= lim sup
t→∞

1

(t− 1)2

∫ t

1

[
3γ

20
t2s−1 +

3γ

20
s− 3γ

10
t− s

4

(
9− 630ts−1 + t2s−2

)]
ds

= ∞ (if γ > 5/3) .

Thus, by Theorem 1, every solution of Equation (29) is oscillatory if γ > 500/81.

3. Conclusions

In this work, we have discussed the oscillation of the higher-order differential equation
with a p-Laplacian-like operator and we proved that Equation (1) is oscillatory by using the
following methods:

1. The Riccati transformation technique.
2. Comparison principles.
3. The Integral averaging technique.

Additionally, in future work we could try to get some oscillation criteria of Equation (1) under the
condition

∫ ∞
t0

1
r1/(p−1)(t)

dt < ∞. Thus, we would discuss the following two cases:

(C1) y (t) > 0, y(n−1) (t) > 0, y(n) (t) < 0,
(C2) y (t) > 0, y(n−2) (t) > 0, y(n−1) (t) < 0.
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