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Abstract: The objective of our research was to study asymptotic properties of the class of higher
order differential equations with a p-Laplacian-like operator. Our results supplement and improve
some known results obtained in the literature. An illustrative example is provided.
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1. Introduction

In this work, we are concerned with oscillations of higher-order differential equations with a
p-Laplacian-like operator of the form

(r 0 | (s »)[ "y <t>)/ +q () ly (cO)F Py (1) =o. M

We assume that p > 1is a constant, r € C! ([ty,),R), r(t) > 0, g,T € C([ts,), R), q >
0, T(#) <t limie T (t) = o0 and the condition

1 (to) = oo, )

where
ds

7 () ::/t ey yt

By a solution of (1) we mean a function y € C""![T,, ), T, > t;, which has the property

r(t) ‘(y(”’l) (t)) ‘p zy(”’l) (t) € C![T,, ), and satisfies (1) on [Ty, o). We consider only those
solutions y of (1) which satisfy sup{|y (t)| : t > T} > 0, forall T > Tj. A solution of (1) is called
oscillatory if it has arbitrarily large number of zeros on [Ty, ), and otherwise it is called to be
nonoscillatory; (1) is said to be oscillatory if all its solutions are oscillatory.

In recent decades, there has been a lot of research concerning the oscillation of solutions of various
classes of differential equations; see [1-24].

It is interesting to study Equation (1) since the p-Laplace differential equations have applications
in continuum mechanics [14,25]. In the following, we briefly review some important oscillation criteria
obtained for higher-order equations, which can be seen as a motivation for this paper.

Elabbasy et al. [26] proved that the equation

(ro | @) " o) a0 swEon =o
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is oscillatory, under the conditions

© 1
ty 1 (t)

additionally,

0 1 (n=1)H)" " p(s)a(s) (r—1p(s)

for some constant u € (0,1) and

* (s
/fo kq (s) o1 ds = oo.

Agarwal et al. [2] studied the oscillation of the higher-order nonlinear delay differential equation

a—1

Uy(nv )|y (t)} +q () y () y(z () =o.

where « is a positive real number. In [27], Zhang et al. studied the asymptotic properties of the
solutions of equation

[ (v )] Faf @y =0 txn

where o and S are ratios of odd positive integers, p < a and

/too r % (s)ds < co. 3)
0

In this work, by using the Riccati transformations, the integral averaging technique and
comparison principles, we establish a new oscillation criterion for a class of higher-order neutral
delay differential Equations (1). This theorem complements and improves results reported in [26]. An
illustrative example is provided.

In the sequel, all occurring functional inequalities are assumed to hold eventually; that is, they
are satisfied for all t large enough.

2. Main Results

In this section, we establish some oscillation criteria for Equation (1). For convenience, we denote
that F; (t) := max {0, F (t)},

TTS))p—l ds 1/(P_1)

(
0) de

o Jo a(s)
B(t) := (n_14)!/t (6 —t)"* o 1 r(

and
r(s)d(s) |h(ts)l”
a2 1P—1°
PP [H (t5) A(s) iy

We begin with the following lemmas.

D (s) :=

Lemma 1 (Agarwal [11). Let y(t) € C™ [ty,0) be of constant sign and y"™ (t) # 0 on [ty,c0) which
satisfies y () y™ (t) < 0. Then,
(I) There exists a t; > tq such that the functions y® (t), i = 1,2,...,m — 1 are of constant sign on [ty, ©);
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(IX) There exists a number k € {1,3,5, ...,m — 1} when m is even, k € {0,2,4, ..., m — 1} when m is odd, such
that, for t > tq,

foralli=0,1,... kand

foralli=k+1,..,m.

Lemma 2 (Kiguradze [15]). If the function y satisfies y) > 0 for all j = 0,1, ..., m, and y"+1) < 0, then

myw -y 2o

Lemma 3 (Bazighifan [71). Let h € C™ ([tg, ), (0,00)) . Suppose that h("™) (t) is of a fixed sign, on [ty, o),
Ja(m) (t) not identically zero, and that there exists a t1 > to such that, forall t > t1,

R (1) B0 () < 0.
If we have tlirnh (t) # 0, then there exists t) > tq such that
— 00

A

"= G

pm—1 ’h(mfl) (t)

forevery A € (0,1) andt > t.

Lemma 4. Let n > 4 be even, and assume that y is an eventually positive solution of Equation (1). If (2) holds,
then there exists two possible cases for t > t1, where t1 > ty is sufficiently large:

(C1) ¥y () >0,y"(t) >0, y=D (1) >0, y (1) <0,
(Co)  yW(t) > 0,yUtV(t) < 0 for all odd integer
je{1,2,.,n=3},y" V() >0, y™(t) <o,

Proof. Let y be an eventually positive solution of Equation (1). By virtue of (1), we get

(r 0 | (s 0)[ "y <t>)' <0, @

From ([11] Lemma 4), we have that y("~1) () > 0 eventually. Then, we can write (4) in the from

(ro (= 0)") <o,

which gives

-1 p—2

7 (@) e -1 (v ®) v @ <o

Thus, y™) (t) < 0 eventually. Thus, by Lemma 1, we have two possible cases (C;) and (C,). This
completes the proof. O

Lemma 5. Let y be an eventually positive solution of Equation (1) and assume that Case (Cy) holds. If

r@ ] (v o)
yPH ()

w(t):=4(t) ©)
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where 5 € C! ([t, ), (0,00)), then

S OB O\ (pepr? /-1
W (1)< o0 =000 (T ) et AL IR

Proof. Let y be an eventually positive solution of Equation (1) and assume that Case (C;) holds.
From the definition of w, we see that w (t) > 0 for f > t1, and

=) (1)) " ro] (s @)
o' () < 8 i ‘ (::l;pl (t()t)) ‘ +0 (1) < ’ <yyp1 (t) ) ‘ >
-1y O o]0 ®)
0 v (’t() )
Using Lemma 3 withm =n—1, h(t) =y (t), we get
v (1) > L2y (p), %)

(n—2)

for every constant i € (0,1). From (5) and (7), we obtain

(O] (v @)|P ! ()] (v )7
-1 tn—z Y(t) y(n—l)(t)
—5(t) <P(njg)! \(W) )

| r

By Lemma 2, we have

<
—~
~
~—
AV
~~

m=1 (9)
Combining (1) and (8), we get

, o O L e (P ()
w (t) < 4 (t) ypfl(tz) ()|( ( i((t)))|p a0 (10)
—Dut" 2 r(e)|(y\" (¢
— (1) ey 70

From (9) and (10), we obtain

W' () <

A0) )\ (p—1) pt"? -
;(t)w(t)—é(t)q(t)< = ) _(n—2)!((5(t)r(t))1/(17_1)wp/(p V. @y

It follows from (11) that

n— -1 ! n—
5(t)q(t) (Ttnllm)p <% - (P=DE"2 1) gy

This completes the proof. [
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Lemma 6. Let y be an eventually positive solution of Equation (1) and assume that Case (Cy) holds. If

P (t) =0 (t) MoK (12)
where o € C! ([tg, ), (0,00)), then
p a (t) 1
(OB (1) < ¢/ () + v () = ¥ (). (13)

Proof. Let y be an eventually positive solution of Equation (1) and assume that Case (C;) holds. Using
Lemma 2, we obtain

y () >ty (¢).

Thus we find that y/¢ is nonincreasing, and hence

y(r(®) 2y (1)

Since y > 0, (1) becomes

(ro () ™) +a0w o) =o

Integrating that equation from f to oo, we see that

lim (r(t) (y<"—1> (t))’”) —r(t) (y<" D t +/ s$)yP2 (T (s)) = 0. (15)

t—00

p—1

Since the function r (y(”_l)) is positive [r > 0and y*=1 > 0} and nonincreasing

1N/ -1
<<r (y“"”)p ) < 0) , there exists a t, > tj such that r (y(”’l))p is bounded above for all
-1
t > t5, and so lim; (r (1) (y(”_l) (t))p ) = ¢ > 0. Then, from (15), we obtain

p—1

@ (0 0) + [Cae vt < —e<o.

From (14), we obtain

-1

) () /too q(s)y (s)"" %ds <o0.

S

It follows from i/’ (t) > 0 that

n— £ 0 S p-1 1/(P—1)
—yl 1>(t)+rl/g(l))(t)</t 7 (s) <Tg)) ds> <.

Integrating the above inequality from ¢ to oo for a total of (n — 3) times, we get

_ 1/(p—-1)
o o (e (F2) s
- (200D i

(n—4)!

y' (1) + y(t) <0. (16)
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From the definition of i (), we see that () > 0 for t > t;, and

v )y ()~ (1) 17)

+0o(t) 200

This completes the proof. [
Definition 1. Let
D={(t;s) €ER?:t>s>ty}and Dy = {(t,s) € R?:t > s> to}.

We say that a function H € C (D, R) belongs to the class R if
(i1) H(t,t) =0fort > ty,H (t,s) >0, (t,5) € Dy.
(i) H has a nonpositive continuous partial derivative dH /ds on Dy with respect to the second variable.

Theorem 1. Let n > 4 be even. Assume that there exist functions H,H, € R, §,A,0,A, €
C! ([to,00), (0,00)) and h, h. € C (Do, R) such that

—%(H(t,s)A(s)) :H(t,s)A(s)i((t?—i-h(t,s). (18)
and
d _ (1)
~ 5% (Hy (t,5) Ax (s)) = Hy (t,5) Ax (5) =0 +h (8,5). (19)
If -
) 1 t n—1 -
limsup - /to lH(t,s)A(s)é(s)q(s) (Tsngs)> —D(s)] ds = oo, (20)
for some constant y € (0,1) and
. L 7 (s) e (L)1 ) o _
hrgs:spm /fo <H* (t,s) Ax(s)o(s)B(s) — 4H*(t,s)A*(s)> ds = oo, (21)

then every solution of (1) is oscillatory.

Proof. Let y be a nonoscillatory solution of Equation (1) on the interval [tp, o0). Without loss of
generality, we can assume that y is an eventually positive. By Lemma 4, there exist two possible cases
for t > t;, where t; > t is sufficiently large.

Assume that (C7) holds. From Lemma 5, we get that (6) holds. Multiplying (6) by H (¢,s) A (s)
and integrating the resulting inequality from #; to t, we have

[ 09465006 (Zm2)a

fy

5 (s)

< _/tltH(t,s)A(S)w' (S)ds+/tltH(t,s)A(s) 5 w (s) ds
f (p—1)ps"? )
) /tl AR (n—2)1(5(s)r (s))"/ P~ w7V (s) ds
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Thus

<H(tHh)A(t) w(t) —/t]t —% (H(t,s)A(s))—H(ts)A(s) ‘:g))) w (s)ds
t (p—1)ps"? -
- ) A PRETTHERET RO
This implies
t Tnfl (S) p—1
/tl H(t,s) A(s)6(s)q (s) < — > ds
S H(m) A (t) + [ h(H9)]@(6)d() 22)
! S A (s (p—1ps" 2 WP =1 (g) ds
e R e
Using the inequality
pUvF T —uP < (p—-1)VvF, p>1,U>0andV >0, (23)

withp=p/(p—1),

(o Hs A 2SN el
U—((p 1)H(f/)A()(n_2)!> (6(s

)r(s)"?
and
- ()7 (5 o
v=(E=1\ s W) ,
( : ) ((p-DHE AR ED)
we get
(p—1)pus"? _
sl @ -Ht) A6 e

which with (23) gives

t n—1 s p—1
/. (H(t,sws)é(s)q(s)(Tsn_i)) —D(s))ds < H(Lh)A(h)w (k)

< H (f, fo) A (tl) w (fl) .
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Then

t n—=1(g p-1
Hém%A<HUﬁVH@Mﬁq®<T¢§)> _D@st

for some u € (0, 1), which contradicts (20).
Assume that Case (C;) holds. From Lemma 6, we get that (13) holds. Multiplying (13) by
H, (t,5) A« (s), and integrating the resulting inequality from #; to ¢, we have

/ttH* (ts) A, (s)o (s)B(s)ds < — ttH* (1,5) A, (s)lp’(s)ds+/ttH* (t,5) A. (s)‘;/((:))lp(s)ds
R0,
— H (th) A (h)y(h) — /tlt sz (s) ds

[ (5 w9 A ) - H w9 4.0 Sy o
Then

[ H ) A G a6 BE s < H(bh) A )9 ()+ [ Ihe (1) 9(5)d (9

tH, (t,8) As (s)
— /tl — ol ® 1/)2 (s)ds.

Hence we have

IN

H, (t,t1) A (1) 9 (1)

H, (t,t0) A (11) ¢ (1) .

t 2
[ (008 @owae -2l ) o

IN

This implies

1 gt o (s) | (t,5)°
k) /to (H (t,9) A« (5)9 (5)B(5) = 3o % )ds

<A (h)+ [ Al(5)(s)B(s)ds < oo

to
which contradicts (21). Therefore, every solution of (1) is oscillatory. O

In the next theorem, we establish new oscillation results for Equation (1) by using the comparison
technique with the first-order differential inequality:

Theorem 2. Let n > 2 be even and ' (t) > 0. Assume that for some constant A € (0,1),
the differential equation

n—1 p—1
¢%o—+rﬁﬁg)<?;fﬁ> p(x () =0 @

is oscillatory. Then every solution of (1) is oscillatory.
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Proof. Let (1) have a nonoscillatory solution y. Without loss of generality, we can assume that y (t) > 0
for t > t1, where t; > t is sufficiently large. Since 1’ (t) > 0, we have

¥ (t) >0, y" U (t) > 0and y") () < 0. (25)
From Lemma 3, we get

/\ti’l—l

O Y=y O AR OF 26)

for every A € (0,1). Thus, if we set

then we see that ¢ is a positive solution of the inequality

n—1 p—1
o' () + q(t) (2(: 1(;)) e (T() <O0. (27)

From [22] (Theorem 1), we conclude that the corresponding Equation (24) also has a positive
solution, which is a contradiction.
Theorem 2 is proved. O

Corollary 1. Assume that (2) holds and let n > 2 be even. If

- n—1))rt
tIE?O inf :(t) p (qr(zs))) (’L'n_1 (S)>p ' ds > %, (28)

then every solution of (1) is oscillatory.

Next, we give the following example to illustrate our main results.
Example 1. Consider the equation
WD Xy ( 2 o 51 2
y ()+t4y<10 0,t>1, (29)
where v > 0 is a constant. We note thatn =4, r (t) =1, p =2, T(t) = 9t/10and q (t) = /%, If we set

H(t,s) = Hi(t,5) = (t—5)*, A(s) = A (s) = 1,6(s) = £3,0(s) = ¢, h(t,s) = (t—s) (5—3ts71)
and hy (t,s) = (t —s) (3 — ts~1) then we get

00 1
17(s) = /to 1/(p—1) (s) ds = oo

and
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Hence conditions (20) and (21) become

I 1 t =1 (s)\F! p
i —_— H(t,s)A(s)d —_— -D
mswpr s [ (0940000 () -De))as
1 1729y » 1 729y 729« s 2 _o 1
)2/1 {1000ts +710005 00 t 5(254-91‘5 30ts ) ds

= limsu
t—>oop(t -1

=0 (ify > 500/81)

and

2
hrtrlitlpm(lfﬂfo) /t: <H* (t,s) A« (s) o (s) B (s) — m> ds

_ 1 "3v0. 1,3y, 37, s 1, 2.2

Thus, by Theorem 1, every solution of Equation (29) is oscillatory if oy > 500/81.

3. Conclusions

In this work, we have discussed the oscillation of the higher-order differential equation
with a p-Laplacian-like operator and we proved that Equation (1) is oscillatory by using the
following methods:

1. The Riccati transformation technique.
2. Comparison principles.
3. The Integral averaging technique.

Additionally, in future work we could try to get some oscillation criteria of Equation (1) under the
condition [, tzo mdt < 0. Thus, we would discuss the following two cases:
£ >0,y V() >0, y () <0,

(C) y(t)>0,y"2 () >0, y=V(t) <o.

—
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