

Common Fixed Point and Endpoint Theorems for a Countable Family of Multi-Valued Mappings

Hüseyin Işık ¹, Babak Mohammadi ^{2,*}, Choonkil Park ^{3,*} and Vahid Parvaneh ⁴

- ¹ Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, 49250 Muş, Turkey; isikhuseyin76@gmail.com
- ² Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran
- ³ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- ⁴ Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran; zam.dalahoo@gmail.com
- * Correspondence: bmohammadi@marandiau.ac.ir (B.M.); baak@hanyang.ac.kr (C.P.)

Received: 4 December 2019; Accepted: 24 December 2019; Published: 21 February 2020

Abstract: We prove some common fixed point and endpoint theorems for a countable infinite family of multi-valued mappings, as well as Allahyari et al. (2015) did for self-mappings. An example and an application to a system of integral equations are given to show the usability of the results.

Keywords: common fixed point; endpoint; infinite family; multi-valued mapping; (HS) property

1. Introduction

The study of common fixed point for a family of contraction mappings was initiated by Ćirić in [1]. Recently, in 2015, Allahyari et al. [2] introduced some new type of contractions for a countable family of contraction self-mappings and studied common fixed point for them.

On the other hand, existence of a fixed point for multi-valued mappings has been important for many mathematicians. In 1969, Nadler [3] extended the Banach contraction principle to multi-valued mappings. After that, many authors generalized Nadler's result in different ways (see, for instance [4–8]).

In 2012, Samet et al. [9] introduced the notion of α -admisssible mappings and a new type of contraction to a mapping $T : X \rightarrow X$ called α - ψ -contractive mapping, that is, $\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y))$ for all $x, y \in X$. This result generalized and improved many existing fixed point results. In the last few years, some authors have extended the notion of α -admisssibility and α - ψ -contraction to multi-valued mappings (see, [10,11]). In addition, common fixed point for a finite family or countable family of multi-valued mappings has been studied by some researchers (see, for example [12–16]).

The aim of this paper is to extend the new type of common contractivity for a family of mappings, introduced by Allahyari et al. (2015), to α -admisssible multi-valued mappings.

Let (X, d) be a metric space, 2^X the set of all nonempty subsets of X, and $C\mathcal{L}(X)$ the set of all nonempty closed subsets of X. Assume that \mathcal{H} is the generalized Hausdorff metric on $C\mathcal{L}(X)$ defined by

$$\mathcal{H}(A,B) = \begin{cases} \max\{\sup_{x \in A} D(x,B), \sup_{y \in B} D(y,A)\}, & \text{if it exists,} \\ \infty, & \text{otherwise,} \end{cases}$$
(1)

for all $A, B \in C\mathcal{L}(X)$, where $D(x, B) = \inf_{y \in B} d(x, y)$. Let $T : X \to 2^X$ is a multi-valued mapping. An element $x \in X$ is said to be a fixed point of T if $x \in Tx$, and x is called an endpoint of T whenever $Tx = \{x\}$.

2. Main Results

Now, we are ready to state and prove the main results of this study.

Definition 1. Let X be an arbitrary space and $\alpha : X \times X \rightarrow [0, \infty)$ be a function. Assume that $T_n : X \rightarrow 2^X$ (n = 1,2,...) is a family of multi-valued mappings. We say that $\{T_n\}$ is α -admissible whenever for each $x \in X$ and $y \in T_n x$ with $\alpha(x,y) \ge 1$, we have $\alpha(y,z) \ge 1$ for all $z \in T_{n+1}y$.

Theorem 1. Let (X,d) be a complete metric space and $0 < a_{i,j}$ (i, j = 1, 2, ...) with $a_{i,i+1} \neq 1$ for all i = 1, 2, ... satisfy:

(i) for each j, $\overline{lim}_{i\to\infty}a_{i,j} < 1$; (ii) $\sum_{n=1}^{\infty} A_n < \infty$, where $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \rightarrow [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \rightarrow C\mathcal{L}(X)$ (n = 1,2,...) such that

$$\alpha(x,y)\mathcal{H}(T_ix,T_jy) \leqslant a_{i,j}[D(x,T_jy) + D(y,T_ix)],\tag{2}$$

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$. Moreover, assume that the following assertions hold:

- (iii) there exist $x_0 \in X$ and $x_1 \in T_1 x_0$ with $x_0 \neq x_1$ and $\alpha(x_0, x_1) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;
- (v) for each sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common fixed point in X.

Proof. Using (*iii*) and (2), we have

$$D(x_1, T_2x_1) \leq \alpha(x_0, x_1) \mathcal{H}(T_1x_0, T_2x_1) \\\leq a_{1,2}[D(x_0, T_2x_1) + D(x_1, T_1x_0)] \\= a_{1,2}D(x_0, T_2x_1) \\\leq a_{1,2}[d(x_0, x_1) + D(x_1, T_2x_1)],$$

which implies

$$D(x_1, T_2 x_1) \leq \frac{a_{1,2}}{1 - a_{1,2}} d(x_0, x_1) < \frac{a_{1,2}}{1 - a_{1,2}} p d(x_0, x_1),$$

where p > 1 is a fixed number. From the above inequality, there exists $x_2 \in T_2x_1$ such that $d(x_1, x_2) < \frac{a_{1,2}}{1-a_{1,2}}pd(x_0, x_1)$. Since $\{T_n\}$ is α -admissible, we have $\alpha(x_1, x_2) \ge 1$. Similarly,

$$D(x_2, T_3 x_2) \leq \frac{a_{2,3}}{1 - a_{2,3}} d(x_1, x_2) < \frac{a_{2,3}}{1 - a_{2,3}} \frac{a_{1,2}}{1 - a_{1,2}} p d(x_0, x_1),$$

and so there exists $x_3 \in T_3 x_2$ such that $d(x_2, x_3) < \frac{a_{2,3}}{1-a_{2,3}} \frac{a_{1,2}}{1-a_{1,2}} pd(x_0, x_1)$. Continuing this process, we obtain a sequence $\{x_n\}$ in X such that $x_{n+1} \in T_{n+1}x_n$, $\alpha(x_n, x_{n+1}) \ge 1$, and

$$d(x_n, x_{n+1}) < A_n p d(x_0, x_1), \quad \text{for all } n = 1, 2, \dots.$$
 (3)

For any $n, m \in \mathbb{N}$ with n < m, from triangle inequality, we get

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leq \sum_{k=n}^{m-1} A_k p d(x_0, x_1) \to 0$$

as $n, m \to \infty$. Therefore, we have shown that $\{x_n\}$ is a Cauchy sequence. Since (X, d) is complete, there exists $x \in X$ such that $x_n \to x$. From (v), we get $\alpha(x_n, x) \ge 1$ for all n. Now, we shall show that x is a common fixed point of T_n . Let m be an arbitrary positive integer. Then, for any $n \in \mathbb{N}$, we have

$$D(x, T_m x) \leq d(x, x_n) + D(x_n, T_m x) \leq d(x, x_n) + \alpha(x_{n-1}, x) \mathcal{H}(T_n x_{n-1}, T_m x) \leq d(x, x_n) + a_{n,m} [D(x_{n-1}, T_m x) + D(x, T_n x_{n-1})] \leq d(x, x_n) + a_{n,m} [D(x_{n-1}, T_m x) + d(x, x_n)].$$

Taking *lim* in both sides of the above inequality, as $n \to \infty$, we get

$$D(x, T_m x) \leq (\lim_{n \to \infty} a_{n,m}) D(x, T_m x),$$

which implies $D(x, T_m x) = 0$ and so $x \in T_m x$. \Box

Theorem 2. Let (X, d) be a complete metric space and $0 < a_{i,j}$ (i, j = 1, 2, ...) with $a_{i,i+1} \neq 1$ for all i = 1, 2, ... satisfy:

(i) for each (j), $\overline{lim}_{i\to\infty}a_{i,j} < 1$; (ii) $\sum_{n=1}^{\infty} A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \rightarrow [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \rightarrow C\mathcal{L}(X)$ (n = 1, 2, ...) such that

$$x(x,y)\mathcal{H}(T_{i}x, T_{j}y) \leq a_{i,j} \max\{d(x,y), D(x, T_{i}x), D(y, T_{j}y), D(x, T_{j}y), D(y, T_{i}x)\},$$
(4)

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$. Moreover, assume that the following assertions hold:

- (iii) there exist $x_0 \in X$ and $x_1 \in T_1 x_0$ with $x_0 \neq x_1$ and $\alpha(x_0, x_1) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;
- (v) for each sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common fixed point in X.

Proof. By (*iii*) and (4), we have

$$D(x_1, T_2x_1) \leq \alpha(x_0, x_1) \mathcal{H}(T_1x_0, T_2x_1) \\ \leq a_{1,2} \max\{d(x_0, x_1), D(x_0, T_1x_0), D(x_1, T_2x_1), D(x_0, T_2x_1), D(x_1, T_1x_0)\} \\ \leq a_{1,2}[d(x_0, x_1) + D(x_1, T_2x_1)],$$

which implies

$$D(x_1, T_2 x_1) \leq \frac{a_{1,2}}{1 - a_{1,2}} d(x_0, x_1) < \frac{a_{1,2}}{1 - a_{1,2}} p d(x_0, x_1),$$

which p > 1 is a fixed number. From the above inequality, there exists $x_2 \in T_2x_1$ such that $d(x_1, x_2) < \frac{a_{1,2}}{1-a_{1,2}}pd(x_0, x_1)$. Continuing in this manner and as in proof of Theorem 1, we obtain a sequence $\{x_n\}$ with

 $\alpha(x_n, x_{n+1}) \ge 1$ and $x \in X$ such that $x_n \to x$. Using (*v*), we get $\alpha(x_n, x) \ge 1$ for all *n*. Next, we show that *x* is a common fixed point of T_n . Let *m* be an arbitrary positive integer. Then, for any $n \in \mathbb{N}$, we have

$$D(x, T_m x) \leq d(x, x_n) + D(x_n, T_m x)$$

$$\leq d(x, x_n) + \alpha(x_{n-1}, x) \mathcal{H}(T_n x_{n-1}, T_m x)$$

$$\leq d(x, x_n) + a_{n,m} \max\{d(x_{n-1}, x), D(x_{n-1}, T_n x_{n-1}), D(x, T_m x), D(x_{n-1}, T_m x), D(x, T_n x_{n-1})\}$$

$$\leq d(x, x_n) + a_{n,m} \max\{d(x_{n-1}, x), d(x_{n-1}, x_n), D(x, T_m x), D(x_{n-1}, T_m x), d(x, x_n)\}.$$

Taking \overline{lim} as $n \to \infty$, we obtain $D(x, T_m x) \leq (\overline{lim}_{n\to\infty}a_{n,m})D(x, T_m x)$, which implies $D(x, T_m x) = 0$. This means that $x \in T_m x$ and the proof is complete. \Box

Theorem 3. Let (X,d) be a complete metric space and $0 \le a_{i,j}$, $0 < b_{i,j}$ (i, j = 1, 2, ...) with $a_{i,i+1} \ne 1$ for all i = 1, 2, ... satisfy:

(*i*) for each *j*, $\overline{lim}_{i\to\infty}a_{i,j} < 1$ and $\overline{lim}_{i\to\infty}b_{i,j} < \infty$; (*ii*) $\sum_{n=1}^{\infty} A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{b_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \rightarrow [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \rightarrow C\mathcal{L}(X)$ (n = 1,2,...) such that

$$\alpha(x,y)\mathcal{H}(T_ix,T_jy) \leqslant a_{i,j}D(y,T_jy)\varphi(D(x,T_ix),d(x,y)) + b_{i,j}d(x,y),$$
(5)

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$, where $\varphi : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ is a continuous function such that $\varphi(t, t) = 1$ for all $t \in [0, \infty)$ and for any $t_1, s_1, t_2, s_2 \in [0, \infty)$,

$$t_1 \leqslant t_2, s_1 = s_2 \Longrightarrow \varphi(t_1, s_1) \leqslant \varphi(t_2, s_2).$$

Moreover, assume that the following assertions hold:

- (iii) there exist $x_0 \in X$ and $x_1 \in T_1 x_0$ with $x_0 \neq x_1$ and $\alpha(x_0, x_1) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;

(v) for each sequence
$$\{x_n\}$$
 in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common fixed point in X.

Proof. By (*iii*) and (5), we have

$$D(x_1, T_2 x_1) \leq \alpha(x_0, x_1) \mathcal{H}(T_1 x_0, T_2 x_1) \\ \leq a_{1,2} D(x_1, T_2 x_1) \varphi(D(x_0, T_1 x_0), d(x_0, x_1)) + b_{1,2} d(x_0, x_1) \\ \leq a_{1,2} D(x_1, T_2 x_1) \varphi(d(x_0, x_1), d(x_0, x_1)) + b_{1,2} d(x_0, x_1) \\ \leq a_{1,2} D(x_1, T_2 x_1) + b_{1,2} d(x_0, x_1),$$

which gives us

$$D(x_1, T_2 x_1) \leq \frac{b_{1,2}}{1 - a_{1,2}} d(x_0, x_1) < \frac{b_{1,2}}{1 - a_{1,2}} p d(x_0, x_1),$$

where p > 1 is a fixed number. From the above inequality, there exists $x_2 \in T_2 x_1$ such that $d(x_1, x_2) < \frac{b_{1,2}}{1-a_{1,2}} pd(x_0, x_1)$. Similarly,

$$D(x_2, T_3 x_2) \leq \frac{b_{2,3}}{1 - a_{2,3}} d(x_1, x_2) < \frac{b_{2,3}}{1 - a_{2,3}} \frac{b_{1,2}}{1 - a_{1,2}} p d(x_0, x_1),$$

and so there exists $x_3 \in T_3 x_2$ such that $d(x_2, x_3) < \frac{b_{2,3}}{1-a_{2,3}} \frac{b_{1,2}}{1-a_{1,2}} p d(x_0, x_1)$. Continuing this process, we obtain a sequence $\{x_n\}$ in X such that $x_{n+1} \in T_{n+1}x_n$, $\alpha(x_n, x_{n+1}) \ge 1$, and

$$d(x_n, x_{n+1}) < A_n p d(x_0, x_1), \quad \text{for all } n = 1, 2, \dots.$$
(6)

Again, as in the proof of Theorem 1, we conclude that $\{x_n\}$ is a Cauchy sequence, and so there exists $x \in X$ such that $x_n \to x$. From the assumption (v), we get $\alpha(x_n, x) \ge 1$ for all n. To show that x is a common fixed point of T_n , let m be an arbitrary positive integer. Then, for any $n \in \mathbb{N}$, we have

$$D(x, T_m x) \leq d(x, x_n) + D(x_n, T_m x) \leq d(x, x_n) + \alpha(x_{n-1}, x) \mathcal{H}(T_n x_{n-1}, T_m x)$$

$$\leq d(x, x_n) + a_{n,m} D(x, T_m x) \varphi(D(x_{n-1}, T_n x_{n-1}), d(x_{n-1}, x)) + b_{n,m} d(x_{n-1}, x)$$

$$\leq d(x, x_n) + a_{n,m} D(x, T_m x) \varphi(d(x_{n-1}, x_n), d(x_{n-1}, x)) + b_{n,m} d(x_{n-1}, x).$$

Taking \overline{lim} in both sides of the above inequality, as $n \to \infty$, we obtain

$$D(x, T_m x) \leq (\overline{\lim}_{n \to \infty} a_{n,m}) D(x, T_m x).$$

We conclude $D(x, T_m x) = 0$ and thus $x \in T_m x$. \Box

3. Common Endpoint Theorems

The notion of endpoints of multi-valued mappings has been studied by some researchers in the last decade (see for instance, [17–19]). In current section, we state and prove some common endpoint theorems for a sequence of multi-valued mappings with the contractions mentioned in Section 2. We need the following definition.

Definition 2. Let $T_n : X \to C\mathcal{L}(X)$ (n = 1, 2, ...) be a sequence of multi-valued mappings. We say that $\{T_n\}$ has (HS) property whenever for each $x \in X$ there exists $y \in T_n x$ such that $\mathcal{H}(T_n x, T_{n+1}y) \ge \sup_{b \in T_{n+1}y} d(y, b)$.

Theorem 4. Let (X,d) be a complete metric space and $0 \le a_{i,j}$ (i, j = 1, 2, ...) with $a_{i,i+1} \ne 1$ for all i = 1, 2, ... satisfy:

(i) for each (j), $\overline{lim}_{i\to\infty}a_{i,j} < 1$; (ii) $\sum_{n=1}^{\infty} A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \to [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \to C\mathcal{L}(X)$ (n = 1,2,...) satisfying (HS) property such that

$$\alpha(x, y)\mathcal{H}(T_i x, T_i y) \leq a_{i,i}[D(x, T_i y) + D(y, T_i x)],\tag{7}$$

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$. Moreover, assume that the following assertions hold:

- (iii) there exists $x_0 \in X$ such that for any $x \in T_1 x_0$, we have $\alpha(x_0, x) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;
- (v) for each sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common endpoint in X.

Proof. Since {*T_n*} has (HS) property, there exists $x_1 \in T_1 x_0$ such that $\mathcal{H}(T_1 x_0, T_2 x_1) \ge \sup_{b \in T_2 x_1} d(x_1, b)$. From (*iii*), we have $\alpha(x_0, x_1) \ge 1$. Similarly, there exists $x_2 \in T_2 x_1$ such

that $\mathcal{H}(T_2x_1, T_3x_2) \ge \sup_{b \in T_3x_2} d(x_2, b)$. Since $\{T_n\}$ is α -admissible, so $\alpha(x_1, x_2) \ge 1$. If we continue this process, we obtain a sequence $\{x_n\}$ in X such that $x_n \in T_n x_{n-1}$, $\alpha(x_{n-1}, x_n) \ge 1$, and

$$\mathcal{H}(\mathcal{T}_n x_{n-1}, \mathcal{T}_{n+1} x_n) \ge \sup_{b \in \mathcal{T}_{n+1} x_n} d(x_n, b),$$
(8)

for all $n \ge 1$. Then we have

$$d(x_n, x_{n+1}) \leq \sup_{b \in \mathcal{T}_{n+1}x_n} d(x_n, b) \leq \alpha(x_{n-1}, x_n) \mathcal{H}(\mathcal{T}_n x_{n-1}, \mathcal{T}_{n+1} x_n) \\ \leq a_{n,n+1} [D(x_{n-1}, \mathcal{T}_{n+1} x_n) + D(x_n, \mathcal{T}_n x_{n-1})] \\ \leq a_{n,n+1} [d(x_{n-1}, x_{n+1})] \leq a_{n,n+1} [d(x_{n-1}, x_n) + d(x_n, x_{n+1})].$$

From the above inequality, we get

$$d(x_n, x_{n+1}) \leq \frac{a_{n,n+1}}{1 - a_{n,n+1}} d(x_{n-1}, x_n) \leq \dots \leq A_n d(x_0, x_1).$$

Hence $\{x_n\}$ is a Cauchy sequence, and so there exists $x \in X$ such that $x_n \to x$. From (v) we deduce $\alpha(x_n, x) \ge 1$ for all n. Now we show that x is a common endpoint of T_n . Let $m \in \mathbb{N}$ be arbitrary. Then, for any $n \in \mathbb{N}$, we have

$$\begin{aligned} \mathcal{H}(\{x\}, T_m x) &\leq d(x, x_n) + \mathcal{H}(\{x_n\}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + \alpha(x_{n-1}, x_n)\mathcal{H}(T_n x_{n-1}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + a_{n,n+1}[D(x_{n-1}, T_{n+1}x_n) + D(x_n, T_n x_{n-1})] \\ &\quad + a_{n+1,m}[D(x_n, T_m x) + D(x, T_{n+1}x_n)] \\ &\leq d(x, x_n) + a_{n,n+1}[d(x_{n-1}, x_{n+1})] + a_{n+1,m}[D(x_n, T_m x) + d(x, x_{n+1})]. \end{aligned}$$

Taking \overline{lim} as $n \to \infty$, we obtain

$$\mathcal{H}(\{x\}, T_m x) \leq (\overline{lim}_{n \to \infty} a_{n+1,m}) D(x, T_m x) \leq (\overline{lim}_{n \to \infty} a_{n+1,m}) \mathcal{H}(\{x\}, T_m x)$$

which implies $\mathcal{H}(\{x\}, T_m x) = 0$ and so $T_m x = \{x\}$. Since *m* was arbitrary, the proof is complete. \Box

Theorem 5. In the statement of Theorem 4, if we add the extra condition $\alpha(x, y) \ge 1$ for any common endpoints x, y of T_n , then the common endpoint of T_n is unique.

Proof. Let x, y be two common endpoints of T_n . Since $\sum_{n=1}^{\infty} A_n < \infty$, there exists $i_0 \in \mathbb{N}$ such that $\frac{a_{i_0,i_0+1}}{1-a_{i_0,i_0+1}} < 1$, which implies $a_{i_0,i_0+1} < \frac{1}{2}$. Then, using (7), we get

which implies d(x, y) = 0 and so x = y. \Box

Example 1. Consider the space X = [0, 1] with the usual metric d(x, y) = |x - y|. Define a sequence of mappings $T_n: X \to \mathcal{CL}(X)$ by

$$T_n(x) = \begin{cases} \{1\}, & \frac{1}{2} \le x \le 1, \\ \left[\frac{2}{3} + \frac{1}{n+2}, 1\right], & x = 0, \\ \{0\}, & 0 < x < \frac{1}{2}. \end{cases}$$

Also consider the constants $a_{i,j} = \frac{1}{3} + \frac{1}{|i-j|+6}$. Then $\overline{\lim}_{i\to\infty}a_{i,j} = \frac{1}{3} < 1$, for all $j \in \mathbb{N}$. $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}} = 1$. $(\frac{10}{11})^n$. Thus $\sum_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} (\frac{10}{11})^n < \infty$. Also let

$$\alpha(x,y) = \begin{cases} 1, & x, y \in \{0\} \cup \left\lfloor \frac{1}{2}, 1 \right\rfloor, \\ 0, & otherwise. \end{cases}$$

Now we show that $\alpha(x, y) \mathcal{H}(T_i x, T_j y) \leq a_{i,i} [D(x, T_j y) + D(y, T_i x)]$, for all $x, y \in X$. If $0 < x < \frac{1}{2}$ or $0 < y < \frac{1}{2}$, then $\alpha(x,y) = 0$ and we have nothing to prove. Therefore, we may assume $x, y \in \{0\} \cup \lfloor \frac{1}{2}, 1 \rfloor$. We consider the following cases:

- (1) $x, y \in \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. In this case we have $\alpha(x, y) \mathcal{H}(T_i x, T_j y) = \mathcal{H}(\{1\}, \{1\}) = 0 \leq a_{i,j} [D(x, T_j y) + D(y, T_i x)]$, for all $x, y \in X$. (2) $x \in \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and y = 0. In this case we have

$$\begin{split} \alpha(x,y)\mathcal{H}(T_ix,T_jy) &= \mathcal{H}(\{1\}, \left[\frac{2}{3} + \frac{1}{j+2}, 1\right]) \\ &= |1 - (\frac{2}{3} + \frac{1}{j+2})| = \frac{1}{3} - \frac{1}{j+2} \leqslant \frac{1}{3} \\ &\leqslant (\frac{1}{3} + \frac{1}{|i-j|+6})(|x - (\frac{2}{3} + \frac{1}{j+2})| + |0-1|) \\ &= a_{i,j}[D(x,T_jy) + D(y,T_ix). \end{split}$$

(3) x = y = 0, i < j. Then

$$\begin{split} \alpha(x,y)\mathcal{H}(T_ix,T_jy) &= |\frac{2}{3} + \frac{1}{j+2} - (\frac{2}{3} + \frac{1}{i+2})| = \frac{1}{i+2} - \frac{1}{j+2} \leqslant \frac{1}{i+2} \\ &\leqslant (\frac{1}{3} + \frac{1}{|i-j|+6})(\frac{2}{3} + \frac{1}{i+2} + (\frac{2}{3} + \frac{1}{j+2})) \\ &= a_{i,j}[D(x,T_jy) + D(y,T_ix)]. \end{split}$$

Also for $x_0 = 0$ and $x_1 = 1$, we have $x_1 \in \{1\} = \left[\frac{2}{3} + \frac{1}{1+2}, 1\right] = T_1 x_0$ and $\alpha(x, y) = 1 \ge 1$. It is easy to check that $\{T_n\}$ is α -admissible. Also, for any common endpoints x, y, we have $\alpha(x, y) \ge 1$. Thus, all of the conditions of Theorem 4 and Theorem 5 are satisfied. Therefore, the mappings T_n have a unique common endpoint. Here x = 1 is the unique common endpoint of T_n .

Theorem 6. Let (X,d) be a complete metric space and $0 \leq a_{i,j}$ (i,j = 1,2,...) with $a_{i,i+1} \neq 1$ for all i =1, 2, ... satisfy:

(i) for each (j), $\overline{lim}_{i\to\infty}a_{i,j} < 1$; (ii) $\sum_{n=1}^{\infty} A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \to [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \to C\mathcal{L}(X)$ (n = 1,2,...) satisfying (HS) property such that

$$\alpha(x,y)\mathcal{H}(T_ix,T_jy) \leqslant a_{i,j}\max\{d(x,y), D(x,T_ix), D(y,T_jy), D(x,T_jy), D(y,T_ix)\},\tag{9}$$

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$. Moreover, assume that the following assertions hold:

- (iii) there exists $x_0 \in X$ such that for any $x \in T_1x_0$, we have $\alpha(x_0, x) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;
- (v) for each sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common endpoint in X.

Proof. As in the proof of Theorem 4, there exists a sequence $\{x_n\}$ in X such that $x_n \in T_n x_{n-1}$, $\alpha(x_{n-1}, x_n) \ge 1$, and

$$\mathcal{H}(T_n x_{n-1}, T_{n+1} x_n) \geq \sup_{b \in T_{n+1} x_n} d(x_n, b),$$

for all $n \ge 1$. Then we have

$$d(x_n, x_{n+1}) \leq \sup_{b \in T_{n+1}x_n} d(x_n, b) \leq \alpha(x_{n-1}, x_n) \mathcal{H}(T_n x_{n-1}, T_{n+1}x_n)$$

$$\leq a_{n,n+1} \max\{d(x_{n-1}, x_n), D(x_{n-1}, T_n x_{n-1}), D(x_n, T_{n+1}x_n), D(x_{n-1}, T_n x_{n-1})\}$$

$$\leq a_{n,n+1}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})].$$

From the above inequality, we get

$$d(x_n, x_{n+1}) \leq \frac{a_{n,n+1}}{1 - a_{n,n+1}} d(x_{n-1}, x_n) \leq \dots \leq A_n d(x_0, x_1).$$

Thus, $\{x_n\}$ is a Cauchy sequence and so there exists $x \in X$ such that $x_n \to x$ and $\alpha(x_n, x) \ge 1$ for all n. Now, we show that x is a common endpoint of T_n . Let $m \in \mathbb{N}$ be arbitrary. Then, for any $n \in \mathbb{N}$, we have

$$\begin{aligned} \mathcal{H}(\{x\}, T_m x) &\leq d(x, x_n) + \mathcal{H}(\{x_n\}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + \alpha(x_{n-1}, x_n)\mathcal{H}(T_n x_{n-1}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + a_{n,n+1}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \\ &\quad + a_{n+1,m} \max\{d(x_n, x), D(x_n, T_{n+1}x_n), D(x, T_m x), D(x_n, T_{n+1}x_n)\} \\ &\leq d(x, x_n) + a_{n,n+1}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \\ &\quad + a_{n+1,m} \max\{d(x_n, x), D(x_n, x_{n+1}), D(x, T_m x), D(x_n, T_m x), D(x, x_{n+1})\}. \end{aligned}$$

Taking \overline{lim} in both sides of the above inequality, as $n \to \infty$, we obtain

$$\mathcal{H}(\{x\}, T_m x) \leq (\overline{lim}_{n \to \infty} a_{n+1,m}) D(x, T_m x) \leq (\overline{lim}_{n \to \infty} a_{n+1,m}) \mathcal{H}(\{x\}, T_m x),$$

which implies $\mathcal{H}(\{x\}, T_m x) = 0$ and so $T_m x = \{x\}$. \Box

Theorem 7. With the conditions of Theorem 6, if we add the extra condition $\alpha(x, y) \ge 1$ for any common endpoints x, y of T_n , then the common endpoint of T_n is unique.

Proof. Let *x*, *y* be two common endpoints of T_n . Using (9), we get

$$\begin{aligned} d(x,y) &= \mathcal{H}(T_ix, T_jy) &\leq \alpha(x, y) \mathcal{H}(T_ix, T_jy) \\ &\leq a_{i,j} \max\{d(x, y), D(x, T_ix), D(y, T_jy), D(x, T_jy), D(y, T_ix)\} \\ &= a_{i,j} d(x, y). \end{aligned}$$

Thus, $d(x, y) \leq \overline{lim}_{i \to \infty} a_{i,i} d(x, y)$, which means that d(x, y) = 0 and hence x = y. \Box

Theorem 8. Let (X, d) be a complete metric space and $0 \le a_{i,j}$, $0 \le b_{i,j}$ (i, j = 1, 2, ...) with $a_{i,i+1} \ne 1$ for all i = 1, 2, ... satisfy:

(i) for each (j), $\overline{\lim}_{i\to\infty}a_{i,j} < 1$, $\overline{\lim}_{i\to\infty}b_{i,j} < 1$; (ii) $\sum_{n=1}^{\infty}A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{b_{i,i+1}}{1-a_{i,i+1}}$.

Let $\alpha : X \times X \to [0, \infty)$ be a given function and $\{T_n\}$ be a sequence of multi-valued operators $T_n : X \to C\mathcal{L}(X)$ (n = 1,2,...) satisfying (HS) property such that

$$\alpha(x,y)\mathcal{H}(T_ix,T_jy) \leqslant a_{i,j}D(y,T_jy)\varphi(D(x,T_ix),d(x,y)) + b_{i,j}d(x,y),$$
(10)

for all $x, y \in X$; i, j = 1, 2, ... with $x \neq y$ and $i \neq j$, where φ is as in Theorem 3. Moreover, assume that the following assertions hold:

- (iii) there exists $x_0 \in X$ such that for any $x \in T_1x_0$, we have $\alpha(x_0, x) \ge 1$;
- (iv) $\{T_n\}$ is α -admissible;
- (v) for each sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$, we have $\alpha(x_n, x) \ge 1$ for all n.

Then each T_n have a common endpoint in X.

Proof. As in the proof of Theorem 4, there exists a sequence $\{x_n\}$ in X such that $x_n \in T_n x_{n-1}$, $\alpha(x_{n-1}, x_n) \ge 1$, and

$$\mathcal{H}(T_n x_{n-1}, T_{n+1} x_n) \geq \sup_{b \in T_{n+1} x_n} d(x_n, b),$$

for all $n \ge 1$. Then we have

$$\begin{aligned} d(x_n, x_{n+1}) &\leq & \sup_{b \in \mathcal{T}_{n+1} x_n} d(x_n, b) \\ &\leq & \alpha(x_{n-1}, x_n) \mathcal{H}(\mathcal{T}_n x_{n-1}, \mathcal{T}_{n+1} x_n) \\ &\leq & a_{n,n+1} D(x_n, \mathcal{T}_{n+1} x_n) \varphi(D(x_{n-1}, \mathcal{T}_n x_{n-1}), d(x_{n-1}, x_n)) + b_{n,n+1} d(x_{n-1}, x_n) \\ &\leq & a_{n,n+1} d(x_n, x_{n+1}) + b_{n,n+1} d(x_{n-1}, x_n). \end{aligned}$$

From the above inequality, we get

$$d(x_n, x_{n+1}) \leq \frac{b_{n,n+1}}{1 - a_{n,n+1}} d(x_{n-1}, x_n) \leq \dots \leq A_n d(x_0, x_1).$$

As in proof of Theorem 1, we conclude that $\{x_n\}$ is a Cauchy sequence, and so there exists $x \in X$ such that $x_n \to x$ and $\alpha(x_n, x) \ge 1$ for all *n*. To show that *x* is a common endpoint of T_n , consider an arbitrary natural number *m*. Then, for any $n \in \mathbb{N}$, we have

$$\begin{aligned} \mathcal{H}(\{x\}, T_m x) &\leq d(x, x_n) + \mathcal{H}(\{x_n\}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + \alpha(x_{n-1}, x_n)\mathcal{H}(T_n x_{n-1}, T_{n+1}x_n) + \alpha(x_n, x)\mathcal{H}(T_{n+1}x_n, T_m x) \\ &\leq d(x, x_n) + a_{n,n+1}D(x_n, T_{n+1}x_n)\varphi(D(x_{n-1}, T_n x_{n-1}), d(x_{n-1}, x_n)) \\ &+ b_{n,n+1}d(x_{n-1}, x_n) \\ &+ a_{n+1,m}D(x, T_m x)\varphi(D(x_n, T_{n+1}x_n), d(x_n, x)) + b_{n+1,m}d(x_n, x) \\ &\leq d(x, x_n) + a_{n,n+1}d(x_n, x_{n+1}) + b_{n,n+1}d(x_{n-1}, x_n) \\ &+ a_{n+1,m}D(x, T_m x)\varphi(d(x_n, x_{n+1}), d(x_n, x)) + b_{n+1,m}d(x_n, x). \end{aligned}$$

Taking \overline{lim} as $n \to \infty$, we obtain

$$\begin{aligned} \mathcal{H}(\{x\}, \mathcal{T}_m x) &\leq (\overline{lim}_{n \to \infty} a_{n+1,m}) D(x, \mathcal{T}_m x) \\ &\leq (\overline{lim}_{n \to \infty} a_{n+1,m}) \mathcal{H}(\{x\}, \mathcal{T}_m x), \end{aligned}$$

which shows $\mathcal{H}(\{x\}, T_m x) = 0$. Thus $T_m x = \{x\}$. \Box

Theorem 9. In the statement of Theorem 8, if we add the extra condition $\alpha(x, y) \ge 1$ for any common endpoints *x*, *y* of T_n , then the common endpoint of T_n is unique.

Proof. Let *x*, *y* be two common endpoints of T_n . Using (10), we have

$$\begin{aligned} d(x,y) &= \mathcal{H}(T_ix, T_jy) \\ &\leqslant \alpha(x, y)\mathcal{H}(T_ix, T_jy) \\ &\leqslant a_{i,j}D(y, T_jy)\varphi(D(x, T_ix), d(x, y)) + b_{i,j}d(x, y) \\ &= b_{i,j}d(x, y). \end{aligned}$$

Therefore, $d(x, y) \leq \overline{lim}_{i \to \infty} b_{i,i} d(x, y)$. Hence d(x, y) = 0, which means that x = y.

4. Application to Integral Equations

Take I = [0, T]. Let $X := C(I, \mathbb{R})$ be the set of all real valued continuous functions with domain *I*. Define the meric *d* on *X* with

$$d(x,y) = \sup_{t \in I} (|x(t) - y(t)|) = ||x - y||.$$

Consider the system of integral equation:

$$x(t) = p(t) + \int_0^T G(t,s)F_n(s,x(s))ds, \quad t \in I, \ n = 1,2,3,\dots.$$
(11)

Our hypotheses on the data are the following:

- (*A*) $p: I \to \mathbb{R}$ and $F_n: I \times \mathbb{R} \to \mathbb{R}$ are continuous, for all $n \in \mathbb{N}$;
- (*B*) $G: I \times I \rightarrow \mathbb{R}$ is continuous and measurable at $s \in I$ for all $t \in I$;
- (C) $G(t,s) \ge 0$ for all $t, s \in I$ and $\int_0^T G(t,s) ds \le 1$ for all $t \in I$;
- (D) there exists $x_0 \in X$ such that $x_0(t) \leq \int_0^T G(t,s)F_1(s,x_0(s))ds$, for all $t \in I$; (E) for any $x \in X$ with $x(t) \leq \int_0^T G(t,s)F_n(s,x(s))ds$, for all $t \in I$, then we have $\int_0^T G(t,s)F_n(s,x(s))ds \leq \int_0^T G(t,s)F_{n+1}(s,\int_0^T G(s,\tau)F_n(\tau,x(\tau))d\tau)ds$, for all $t \in I$.

Let $0 \le a_{i,j}$ (*i*, *j* = 1, 2, ...) with $a_{i,i+1} \ne 1$ for all *i* = 1, 2, ... satisfy:

- (*F*) for each (j), $\overline{lim}_{i\to\infty}a_{i,j} < 1$; (*G*) $\sum_{n=1}^{\infty}A_n < \infty$ where $A_n = \prod_{i=1}^n \frac{a_{i,i+1}}{1-a_{i,i+1}}$;
- (*H*) for each $t \in I$, $x, y \in X$ with $x \leq y$, and $i \neq j$, we have

$$|F_{i}(t, x(t)) - F_{j}(t, y(t))| \leq a_{i,j}(|x(t) - \int_{0}^{T} G(t, s)F_{j}(s, y(s))ds| + |y(t) - \int_{0}^{T} G(t, s)F_{i}(s, x(s))ds|).$$
(12)

Theorem 10. Under the assumptions (A)–(H), the system of integral Equation (11) has a solution in X.

Proof. Define $Y_n : X \to X$ as

$$(Y_n x)(t) = p(t) + \int_0^T G(t,s)F_n(s,x(s))ds, \ t \in I$$

for all $n \in \mathbb{N}$. In addition, define $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & x(t) \leq y(t) \text{ for all } t \in I, \\ 0, & otherwise. \end{cases}$$

Let *x*, *y* be two arbitrary elements of *X*. If $x \leq y$, then $\alpha(x, y) = 0$ and so inequality (2) holds, obviously. Now, let $x \leq y$. Then

$$\begin{split} |(\mathbf{Y}_{i}x)(t) - (\mathbf{Y}_{j}y)(t)| &= |\int_{0}^{T} G(t,s)(F_{i}(s,x(s)) - F_{j}(s,y(s))ds| \\ &\leqslant \int_{0}^{T} G(t,s)|F_{i}(s,x(s)) - F_{j}(s,y(s))|ds \\ &\leqslant \int_{0}^{T} G(t,s)a_{i,j}(|x(s) - \int_{0}^{T} G(s,\tau)F_{j}(\tau,y(\tau))d\tau| \\ &+ |y(s) - \int_{0}^{T} G(s,\tau)F_{i}(\tau,x(\tau))d\tau|)ds \\ &\leqslant \int_{0}^{T} G(t,s)a_{i,j}(|x(s) - (\mathbf{Y}_{j}y)(s)| + |y(s) - \mathbf{Y}_{i}x)(s)|)ds \\ &\leqslant \int_{0}^{T} G(t,s)a_{i,j}(||x - (\mathbf{Y}_{j}y)|| + ||y - \mathbf{Y}_{i}x)(s)||)ds \\ &\leqslant a_{i,j}(||x - \mathbf{Y}_{j}y|| + ||y - \mathbf{Y}_{i}x||) \end{split}$$

for every $t \in I$. Take sup in the above inequality to find that

$$\begin{aligned} \alpha(x,y)d(\mathbf{Y}_{i}x,\mathbf{Y}_{j}y) &= ||\mathbf{Y}x - \mathbf{Y}y|| \\ &\leq a_{i,j}(||x - \mathbf{Y}_{j}y|| + ||y - \mathbf{Y}_{i}x||) = a_{i,j}(d(x,\mathbf{Y}_{j}y) + d(y,\mathbf{Y}_{i}x)). \end{aligned}$$

The properties (*D*) and (*E*) yield that properties (*iii*) and (*iv*) of Theorem 1 are satisfied. Obviously, the property (*v*) of Theorem 1 holds. Thus, by that theorem, $\{Y_n\}$ have a common fixed point, that is, the system of integral Equation (11) having a solution. \Box

Author Contributions: Writing–original draft, H.I., B.M., C.P. and V.P.; Writing–review and editing, H.I., B.M., C.P. and V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ćirić, L.B. On a family of contractive maps and fixed points. Publ. Inst. Math. 1974, 17, 45–51.
- 2. Allahyari, R.; Arab, R.; Haghighi, A.S. Common fixed point theorems for infinite families of contractive maps. *Math. Sci.* **2015**, *9*, 199–203. [CrossRef]
- 3. Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [CrossRef]
- 4. Amini-Harandi, A.; O'Regan, D. Fixed point theorems for set-valued contraction type maps in metric spaces. *Fixed Point Theory Appl.* **2010**, 2010, 390183. [CrossRef]
- 5. Işık, H.; Ionescu, C. New type of multivalued contractions with related results and applications. *U.P.B. Sci. Bull. Ser. A* **2018**, *80*, 13–22.
- 6. Işık, H.; Parvaneh, V.; Mohammadi, B.; Altun, I. Common fixed point results for generalized Wardowski type contractive multi-valued mappings. *Mathematics* **2019**, *7*, 1130. [CrossRef]
- 7. Kaddouri, H.; Işık, H.; Beloul, S. On new extensions of *F*-contraction with application to integral inclusions. *U.P.B. Sci. Bull. Ser. A* **2019**, *81*, 31–42.
- 8. Saleem, N.; Vujakovic, J.; Baloch, W.U.; Radenovic, S. Coincidence point results for multivalued Suzuki type mappings using *θ*-contraction in *b*-metric spaces. *Mathematics* **2019**, *7*, 1017. [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. *Nonlinear Anal.* 2012, 75, 2154–2165. [CrossRef]
- 10. Hasanzade Asl, J.; Rezapour, S.; Shahzad, N. On fixed points of α - ψ -contractive multifunctions. *Fixed Point Theory Appl.* **2012**, 2012, 212.
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ćirić generalized multifunctions. *Fixed Point Theory Appl.* 2013, 2013, 24. [CrossRef]
- 12. Bunyawat, A.; Suantai, S. Common fixed points of a countable family of multivalued quasinonexpansive mappings in uniformly convex Banach spaces. *Int. J. Comput. Math.* **2010**, 2274–2279.
- 13. Bunyawat, A.; Suantai, S. Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces. *Bull. Iran. Math. Soc.* **2013**, 1125-1135.
- 14. Sagar, P.; Malhotra, S.K. Common fixed points of a countable family of I-nonexpansive multivalued mappings in Banach spaces. *Am. J. Appl. Math. Stat.* **2014**, **2**, 239–243. [CrossRef]
- 15. Wangkeeree, R. Implicit iteration process for finite family of nonexpansive nonself-mappings in Banach spaces. *Int. J. Math. Sci. Engg. Appl.* **2007**, *1*, 1–12.
- Zuo, Z. Iterative approximations for a family of multivalued mappings in Banach spaces. J. Math. Inequal. 2010, 4, 549–560. [CrossRef]
- 17. Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. *Nonlinear Anal.* **2010**, *72*, 132–134. [CrossRef]
- 18. Mohammadi, B.; Rezapour, S. Endpoints of Suzuki type quasi-contractive multifunctions. *U.P.B. Sci. Bull. Ser. A* **2015**, 77, 17–20.
- Moradi, S.; Khojasteh, F. Endpoints of multi-valued generalized weak contraction mappings. *Nonlinear Anal.* 2011, 74, 2170–2174. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).