
RESEARCH ARTICLE

Cost-aware orchestration of applications over

heterogeneous clouds

Kena Alexander1☯, Muhammad Hanif1☯, Choonhwa LeeID
1*, Eunsam Kim2, Sumi Helal3

1 Division of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea,

2 Department of Computer Engineering, Hongik University, Seoul, Republic of Korea, 3 School of Computing

and Communications, Lancaster University, Lancaster, United Kingdom

☯ These authors contributed equally to this work.

* lee@hanyang.ac.kr

Abstract

The orchestration of applications and their components over heterogeneous clouds is rec-

ognized as being critical in solving the problem of vendor lock-in with regards to distributed

and cloud computing. There have been recent strides made in the area of cloud application

orchestration with emergence of the TOSCA standard being a definitive one. Although

orchestration by itself provides a considerable amount of benefit to consumers of cloud com-

puting services, it remains impractical without a compelling reason to ensure its utilization

by cloud computing consumers. If there is no measurable benefit in using orchestration,

then it is likely that clients may opt out of using it altogether. In this paper, we present an

approach to cloud orchestration that aims to combine an orchestration model with a cost

and policy model in order to allow for cost-aware application orchestration across heteroge-

neous clouds. Our approach takes into consideration the operating cost of the application

on each provider, while performing a forward projection of the operating cost over a period

of time to ensure that cost constraints remain unviolated. This allows us to leverage the

existing state of the art with regards to orchestration and model-driven approaches as well

as tie it to the operations of cloud clients in order to improve utility. Through this study, we

were able to show that our approach was capable of providing not only scaling features but

also orchestration features of application components distributed across heterogeneous

cloud platforms.

Introduction

One of the key concepts of the cloud computing paradigm is the reduction of cost of deploying

and maintaining applications and components. Cloud portability and interoperability should

allow for seamless use and reuse of components across various clouds at an acceptable cost [1].

While cloud computing concepts have provided solutions to key issues within the cloud such

as vendor lock-in, there has only just been a slow increase in the work being done in the realm

of cost analysis of cloud applications [2, 3].

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alexander K, Hanif M, Lee C, Kim E, Helal

S (2020) Cost-aware orchestration of applications

over heterogeneous clouds. PLoS ONE 15(2):

e0228086. https://doi.org/10.1371/journal.

pone.0228086

Editor: Rashid Mehmood, King Abdulaziz

University, SAUDI ARABIA

Received: July 23, 2019

Accepted: January 7, 2020

Published: February 18, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0228086

Copyright: © 2020 Alexander et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files. Note that simulated input data-set

can be generated using our provided code backup.

http://orcid.org/0000-0002-6564-2392
https://doi.org/10.1371/journal.pone.0228086
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228086&domain=pdf&date_stamp=2020-02-18
https://doi.org/10.1371/journal.pone.0228086
https://doi.org/10.1371/journal.pone.0228086
https://doi.org/10.1371/journal.pone.0228086
http://creativecommons.org/licenses/by/4.0/

Recently, cloud application orchestration has gained considerable popularity as a means of

addressing the much-needed cloud portability issue. Cloud orchestration allows applications

to be easily distributed across heterogeneous cloud providers based on different metrics such

as location and time. However, an important impact factor of cloud application orchestration

remains the differences in the cost of the application and components, once they are distrib-

uted across heterogeneous cloud platforms. It may be possible to distribute applications across

various cloud providers. However, if the cost impact of orchestration is not taken into consid-

eration, it may be infeasible to do so [4, 5]. Therefore, there must be some standard methodol-

ogy for determining the cost impact of orchestrating application and components across

heterogeneous cloud providers.

Currently, TOSCA (Topology Orchestration Specification for Cloud Applications) [6] has

established itself as a standard capable of defining the topology of an application to be

deployed within the cloud. While TOSCA is a flexible specification that provides normative

types that may be extended via new type definitions, the standard itself does not define how

the concrete orchestration should be performed. As such, TOSCA does not define a methodol-

ogy for cost analysis of cloud applications.

In this paper, we will present a cost-aware orchestration strategy that involves the combina-

tion of a topology orchestration standard TOSCA, a cloud application deployment and man-

agement platform CAMP [7], and a cloud application cost model capable of determining the

operating cost of a cloud application. In our strategy, we intend to build upon the standard by

adding features for cost analysis as well as include a proposed policy processing technique to

orchestrate applications across heterogeneous cloud providers [8, 9]. The rest of this paper is

structured as follows. In Section II, we present the motivating factors and challenges to our

strategy. Section III introduces the architecture of our approach to cost-aware cloud orchestra-

tion. In Section IV, we present the main implementation concepts used to realize our proposed

approach. Section V evaluates through experimentation and presents our results, after which

we conclude our paper in Section VI.

Motivation and challenges

In looking at the motivation for our study firstly, we considered the fact that a cloud provider

provides virtual machine (VM) images based on different tiers, according to the hardware con-

figuration of the servers required. As each tier of VM utilizes a varying amount of resources

from the provider’s infrastructure, it is only fitting that these tiers be priced differently based

on the resources used in the provider’s datacenter. Microsoft Azure, for example, categorizes

its services based on use cases such as General Purpose, Compute Optimized, Memory Opti-

mized, Storage Optimized, GPU and High Performance Compute [10]. Each of these is further

subdivided. For example, General Purpose category is broken into B, A, and D tiers, as shown

in Table 1. Amazon’s AWS on the other hand provides a slightly different scheme for their

VMs by dividing into both a kind (General, Compute, etc.) and a flavor. Table 2 gives us a look

at a subsection of AWS’s VM classification and division [11]. Apart from being subdivided

based on the configuration of the VMs, cloud Service providers have also started providing

VMs that are burstable such that their performance can burst above a given average and not

incur added cost [12]. These VMs offer a baseline performance at a significantly lower cost to

traditional VMs.

Importantly, what can be seen is that VMs are varied based on different metrics such as the

number of cores and the amount of RAM that is available. Considering that an application

may utilize varying numbers of VMs, each with different configurations, then the operating

cost of the application should be related to the configuration of VMs used to deploy the

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 2 / 21

Funding: This work was supported by the research

fund of Hanyang University (HY-2019) and by the

Basic Science Research Program through the

National Research Foundation of Korea, funded by

the Ministry of Science and ICT (Grant

2017R1A2B4010395 and Grant

2019R1A2C1002221). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0228086

application. Applications deployed to cloud service providers’ infrastructure are usually sub-

jected to varying conditions during their lifetime. Applications may be subjected to spikes in

utilization, changes in the base cost of VMs used in their deployments or the addition or

removal of flavors of VMs from the catalog of VMs offered by providers. As such any one of

Table 1. Microsoft Azure general purpose VM tier.

Instance Cores RAM Temporary Storage Price/hr

B-Series

B1S 1 1 GB 2 GB $0.006

B2S 2 4 GB 8 GB $0.024

B1MS 1 2 GB 4 GB $0.012

B2MS 2 8 GB 16 GB $0.047

B4MS 4 16 GB 32 GB $0.094

B8MS 8 32 GB 64 GB $0.006

A0 Basic

A0 1 0.75 GB 20 GB $0.018

A1 1 1.75 GB 40 GB $0.024

A2 2 3.50 GB 60 GB $0.068

A3 4 7.0 GB 120 Gb $0.176

A4 8 14.0 GB 240 GB $0.352

Av2 Standard

A1 v2 1 2 GB 10 GB $0.036

A2 v2 2 4 GB 20 GB $0.076

A4 v2 4 8 GB 40 GB $0.159

A8 v2 8 16 GB 80 GB $0.333

A2m v2 2 16 GB 20 GB $0.099

A4m v2 4 32 GB 40 GB $0.208

A8m v2 8 64 GB 80 GB $0.437

https://doi.org/10.1371/journal.pone.0228086.t001

Table 2. Amazon AWS general purpose VM tier.

Kind Flavor CPU RAM Storage Price

General t2.small 1 2 EBS Only $0.032

General t2.nano 1 0.5 EBS Only $0.008

General t2.micro 1 1 EBS Only $0.016

General m3.medium 1 3.75 1x4 SSD $0.096

General t2.medium 2 4 EBS Only $0.064

General t2.large 2 8 EBS Only $0.128

General m4.large 2 8 EBS Only $0.129

General m3.large 2 7.5 1x32 SSD $0.193

General t2.xlarge 4 16 EBS Only $0.256

General m4.xlarge 4 16 EBS Only $0.258

General m3.xlarge 4 15 2x40 SSD $0.385

General t2.2xlarge 8 32 EBS Only $0.512

General m4.2xlarge 8 32 EBS Only $0.516

General m3.2xlarge 8 30 2x80 SSD $0.770

General m4.4xlarge 16 64 EBS Only $1.032

General m4.10xlarge 40 160 EBS Only $2.58

General m4.16xlarge 64 256 EBS Only $4.128

https://doi.org/10.1371/journal.pone.0228086.t002

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0228086.t001
https://doi.org/10.1371/journal.pone.0228086.t002
https://doi.org/10.1371/journal.pone.0228086

these situations may result in changes in the cost to operate the application over time. It is

therefore important that an application be aware of these changes and be capable of respond-

ing appropriately in order to mitigate their effects. Our work is, therefore, based on providing

an orchestration strategy capable of managing the cost of an application by controlling the

configuration of the VMs used to compose the application. To illustrate our strategy, we con-

sider a situation involving a microservice application. The application comprises a front-end

written in angular TS and running on Node.js as well as three back-end components, i.e.,

users, products, and orders. Each back-end component is a Java application that runs on an

embedded Jetty server and uses its own Mongo DB data store. In the scenario illustrated in Fig

1, clients interact with the application via the application frontend. Customers create accounts

on the system via the Customers microservice and the catalog of products sold by the company

is handled by the Products microservice. When an order is made by a customer, the order sys-

tem must accept the order and, by combining the customer information with the product

information, the order can be fulfilled. A requirement of the system is that it should be

deployed and managed within the cloud. Since the application is written using a microservices

design, then it is possible that each service may be distributed across multiple cloud providers,

when possible. Following deployment, it is thus the responsibility of the application operations

team to manage the application in the cloud. If this application is required to operate within a

specific budget, then the application operations team must monitor each component and

determine that, as a whole, they do not exceed the budget. Apart from budgetary constraints,

there may also a host of other factors that may affect the application such as changes in the

cost model and pricing used by the cloud providers hosting the application. To allow for cost-

aware application orchestration, we need to address the following key challenges.

Topology model

In order to capture the components of the application, we need to express it in the form of a

typed topological graph. By representing the application in such a form, we can identify each

component of the application and consequently control the cost associated with it. To address

this challenge, we represent the topology of the application using a TOSCA topological graph

Fig 1. Microservice-based application topology.

https://doi.org/10.1371/journal.pone.0228086.g001

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0228086.g001
https://doi.org/10.1371/journal.pone.0228086

[6]. TOSCA allows for the modeling of applications by describing the components using typed

templates. These templates may be defined from normative/built-in types that are present in

the specification or may be formed by extending the normative types to create new types.

Cost model

Application blueprints deployed to the cloud may be fulfilled in different ways depending

on the technology requested by the customer or employed by the vendor. For example, an

application deployed to Kubernetes is fulfilled using Docker containers clustered to form logi-

cal pods, whereas an application deployed to Amazon’s EC2 service may be fulfilled using vir-

tual machine instances [13–15]. As it is possible for a service to be fulfilled through various

means it is important that the model used to define the cost of an application be independent

of vendor specific technology. Hence, the cost accrued by a service deployed on one provider

remains unaffected in the event that that service must be fulfilled by another provider. Not

only is it important that the model be vendor agnostic in order to allow cost to be accumulated

regardless of the method used to fulfill the service, the model should also allow for the accumu-

lation of cost for services deployed across multiple providers. This is usually the case with

multi-cloud applications. To capture these properties, we chose to express the cost model as a

function of the common factors of VMs used to fulfill services in provider clouds, then trans-

late that function into an algorithmic form, embedding it into our policy orchestrator so that it

may be combined with the topology and policies that define our application.

Policy model

Apart from being able to model the cost constraints of an application deployed in the cloud, it

is necessary to also enforce those constraints. In order to provide topology and cost modeling,

we choose to use the TOSCA specification. TOSCA’s specification from version 1.0 provided

imperative policies in the form of BPMN or BPEL plans. These plans specify tasks that should

be taken in the case that some event occurs. The state of the art has since moved to declarative

policy specifications that define constraints of an application or components that should be

adhered to. To address the need for a policy model, we also intend to provide a declarative pol-

icy specification through TOSCA.

Currently, TOSCA only specifies the model of the application. Therefore, it is necessary

that we define a deployment strategy for the model. The deployment strategy used must also

be capable of utilizing the declarative policies specified in TOSCA. For this, we make use of a

CAMP platform that has been extended through the addition of a declarative policy specifica-

tion. OASIS CAMP does not provide application orchestration features, nor does it have a

specification that allows for policies. We, however, utilized an extended CAMP platform that

allows for orchestration through declarative policy specification [9].

Architectural design for cost-aware orchestration

Our approach to cost-aware application orchestration involves the combined use of the three

models which can allow us to dynamically control a cloud application based on the cost of

components. In previous studies, we demonstrated the combination of declarative standards

of TOSCA and CAMP which were used for application delivery and management [8, 9]. In

this work, we expand on that initial study by enhancing the combined model with a cost

model that captures the cost information of an application. The overall architecture of our

work, therefore, involves applications described in a TOSCA model that are translated into a

CAMP model for deployment and management. The cost model information is then embed-

ded into the TOSCA model through the use of properties, artifacts, and policies. The cost

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0228086

model is preserved through the TOSCA-to-CAMP model transformation process into our

extended CAMP model ultimately as policy constraints and properties. We give a comprehen-

sive overview of our approach in Fig 2 defining the details of the components as well as show-

ing how they interact and interconnect. Here we show various cloud providers that are

connected to our combined platform. TOSCA definitions are converted to CAMP and instan-

tiated as an application comprising 1‥n services. Each service interacts with our policy man-

agement component by exposing its sensor information as well as accepting effector actions.

The policy management component is injected with a directive which defines possible actions

allowed by the policy manager. Depending on whether or not sensor values exceed the policy

constraints, the policy management component may initiate an effector by consulting its

directives. The service catalog list services offered by various providers that may be consulted

by the policy management component.

TOSCA topology design. As identified in an early section, the application topology

model allows us to describe the components of the application using a provider-agnostic repre-

sentation. For this representation, it is important that each component of the application be

defined, such that the components that it is comprised of as well as their relationships are

properly defined. For this, we make use of the Topology Orchestration Specification for Cloud

Applications (TOSCA) [6]. TOSCA topology models allow application designers to model the

overall structure of an application through the use of typed templates representing the applica-

tion components. Each template is, in turn, referenced from a type definition which serves as a

meta-model for the template. Therefore, when defining an application model, the components

of the application must reference a defined application node template which in itself references

a node type definition. To make use of TOSCA within our architecture, it is therefore neces-

sary for us to define the node type definitions as well as the node templates that are capable of

reflecting the information we need to capture about our application. We have thus defined

additional, non-normative node type definitions, and making use of the attributes of those

node definitions, we reflect the cost accrued for that component. This is shown in Fig 3. Here

Fig 2. Cost control orchestrator architecture.

https://doi.org/10.1371/journal.pone.0228086.g002

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0228086.g002
https://doi.org/10.1371/journal.pone.0228086

we see an excerpt of the declarative types used to describe the services of the application. The

node is of a container type and contains artifacts, attributes, properties capabilities and

requirements. Each component of the service may hold information about the service or infor-

mation used to instantiate the service on a provider and as can be seen, attribute information

related to the operating cost and fixed cost of a component may be added.

Node templates in TOSCA specify the components of the application. However, in order to

model the connection between these components, TOSCA provides relationship templates

which are also represented as typed templates. Relationship templates specify how the applica-

tion components should be connected to each other. Similar to node templates, relationship

templates are defined from relationship type definitions and also specify attributes that refer to

Fig 3. TOSCA non-normative type showing cost attributes.

https://doi.org/10.1371/journal.pone.0228086.g003

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0228086.g003
https://doi.org/10.1371/journal.pone.0228086

the characteristics of the relationship between two nodes. For example, a software application

node may be attached to another node via “ConnectsTo” relationship. As with node templates,

relationship templates may also specify as attributes the cost accrued for the connection

between the components. We take these into consideration, when defining our topology mod-

els, since it is possible to show the cost of components as well as the cost of connecting specific

components together.

Cost model for cloud orchestration. The cloud computing model is a utility model

whereby cloud providers deliver cloud services to clients at a cost. Cloud providers may fulfill

application deliveries using different facilities. For example, IaaS and PaaS providers may fulfill

application components through dedicated virtual machines upon which the client must

install his software components. Depending on the approach that is used, clients may accrue a

different cost over time. If we consider IaaS and PaaS platforms, applications of these platforms

are comprised of artifacts that are owned by the client and deployed on the platform provided.

If we were to consider each of these, then the cost of the application is influenced by the under-

lying infrastructure, making it possible to estimate the accrued cost of the application as well

as determine a projected cost of the application over a period of time.

However, to determine the cost accrued by an application, it is necessary to develop and use

a cost model that closely associates the cost of an application with its deployment configura-

tion. We build our cost model on the fact that each component of the application can accrue

cost based on the services used by the provider to fulfill it on their platform. Therefore, the

application’s cost should be the combination of the costs of each component that comprises

the application. We illustrate our concept by first defining the rate as the amount charged per

unit time to provision the application component within the provider’s platform. We represent

this as a tuple containing the factors that contribute to this rate, as can be seen in Eq 1. Sec-

ondly, we have defined the operating cost of an application component as the cost charged by

the provider over a period of time t to provision and maintain the VM within its datacenter.

The operating cost is, therefore, derived from the components’ rates and the deployment life

of the application components, as seen in Eq 2. Consequently, the operating cost of the appli-

cation is the sum of the operating costs of each component as given in Eq 3.

Rate ¼ Cðl; i; c;mÞ ð1Þ

Opcomp ¼ Rate � t ð2Þ

Opapp ¼ SOpcomp ð3Þ

Where “l” represents location, “i” is instance/flavor, “c” is CPU, and “m” stands for memory.

Policy design for cost-awareness. Policy design is a critical aspect of our work, as policies

form the back-bone of our application orchestration scheme. TOSCA service template docu-

ments provide the mechanism for specifying declarative policies that are enforced by the

orchestrator engine during deployment.

Typed policies. Previously, we explored the use of declarative policies to control applica-

tion deployment and orchestration [8, 9]. From this, we have seen that declarative policies are

represented in TOSCA as typed components consisting of the constraints that are used to con-

strain the components of the application. In this work, we identify attribute extensions to node

and relationship types. By leveraging these attributes extensions, through constraints, we have

defined declarative policies that can be associated with the components of the application.

Fig 4 gives an example of a declarative policy which states that an associated application should

maintain an operating cost which is within the budgeted range.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0228086

Since declarative policies simply leverage the attributes defined by the application compo-

nents, meaning is given to the policy only through its interpretation. We therefore incorpo-

rated the use of a policy manager which interprets the policies.

Policy management. In our work, declarative policies represent a set of constraints that

should be adhered to. However, our declarative policies do not specify actions that should be

taken in the event of a violation. To capture this, we make use of another concept known as

policy management directives that declaratively specify the properties that are expected to be

altered by an action as well as the expected outcome of actions that may be taken in order to

keep an application component in a valid state. For example, if a component violates a cost

constraint, then the list of actions available to resolve the issue may include a “REFACTOR”

action. Such an action states that, if a refactor is performed, then the operating cost of the com-

ponent is expected to change from its initial value to a new value. An example of this can be

seen in Fig 5. Here, if we consider a deployed application component, then that component

will have properties representing the application’s location (PROVISIONING_LOCATION)

as well as the component’s cost (SERVICE_COST). If the component’s operating cost changes

such that it violates the conditions of the policy, then the policy manager may reference

the directives for an appropriate action to cause the property to change such that it is compli-

ant again. The REFACTOR action seen here is shown to be capable of changing the SERVI-

CE_COST of the component. The REFACTOR action, however, can also effect a change on

other properties. Since these other properties are not part of our policy, the policy manager

need not worry about their changes and may still choose to carry out a REFACTOR action.

Conversely, a budget change may be indirectly caused by an increase in CPU performance of

the VM. In this case, it is possible to affect the operating cost through the use of a REFACTOR

or BURST_ABOVE action, if the current VM is burstable. It should be noted that policy direc-

tives serves to instruct how an attribute is expected to change, after an action is carried out.

However, the algorithmic logic used in the selection of the directives is built into the policy

manager.

Proof-of-concept implementation

In this section, we present the implementation considerations made in our approach. Our

approach aims to combine two standards TOSCA and CAMP through the use of a cost model

in order to deliver a mechanism for providing cost-aware orchestration of application compo-

nents deployed in the cloud.

TOSCA-to-CAMP orchestrator. Our cost-aware orchestrator implementation platform

makes use of extensions to work that was done prior involving the combination of TOSCA

Fig 4. Policy minimizing application operating cost.

https://doi.org/10.1371/journal.pone.0228086.g004

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0228086.g004
https://doi.org/10.1371/journal.pone.0228086

and CAMP [9]. Our platform is composed of an in-house TOSCA parser capable of interpret-

ing TOSCA topologies written in YAML and a CAMP platform that is used to deploy and

manage the application. Our TOSCA parser parses the YAML file and an ATL model con-

verter is used to convert the TOSCA model into a CAMP platform deployment plan. Using an

extended CAMP platform, we were able to deploy the imported CAMP PDP (Platform

Deployment Package) across heterogeneous cloud providers.

Fig 5. Refactor policy directive.

https://doi.org/10.1371/journal.pone.0228086.g005

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0228086.g005
https://doi.org/10.1371/journal.pone.0228086

As the TOSCA standard is capable of making use of declarative policies, we extended our

CAMP platform through the addition of a declarative policy specification, so that we may fully

automate the orchestration of application end-to-end. Apart from the major components, our

platform also relies heavily on another core component, i.e., our policy management engine,

which we will discuss further in the following section, that is responsible for interpreting and

processing the declarative policies used to manage the application.

Cost-aware policy manager. An important aspect of our work is the ability to properly

determine the action required to resolve a cost constraint violation. For this, we use what we

term as a policy management engine or policy manager for performing the analysis required.

The policy manager registers policy management directives which contain actions that may be

carried out in the event of a policy violation. As it is important for the policy manager to per-

form correctly in specific situations, the policy manager should be given proper directives. For

example, if an application component is deployed using a burstable VM, then the policy man-

ager should be aware of the option to burst above the baseline utilization in the event of a per-

formance violation. Our policy manager is also afforded all the necessary information about

the running application components, e.g., the location and tier of the deployed service as well

as the configuration of the VM used to fulfil it. Consider an application component deployed

using a VM based on Microsoft Azure’s general purpose category using an A0 tiered VM. This

image gives 1 CPU core and is priced at a rate of $0.018 per hour on demand as given in

Table 1. The cost of 2 CPUs in this tier, however, jumps to $0.068 per hour. To make use of

this information, our cost-aware policy manager utilizes a cost orchestration algorithm as well

as a service catalog that allows it to query to the rate of services offered by different providers.

Based on the actions that are available to the policy manager supplied as policy management

directives, the policy manager uses our cost orchestration scheme to determine the actions to

be carried out.

Cost orchestration scheme. Our cost orchestration algorithm is critical to determining

the action as well as the carrying them out. Looking at our policy management directives, we

have defined a REFACTOR action as an appropriate action to be carried out in the case of a

violation of a cost constraint. Considering that a performance violation may also trigger a

change in the application’s topology, then it is also important that we define a BURST_ABOVE

action as well. The definitions are shown in Fig 5. In the event that the policy manager decides

that a REFACTOR or action is suitable to solve the issue, it is important that we properly eval-

uate them to ensure that when executed, results in a favorable solution. If we consider a sce-

nario where we are required to reduce the operating cost of a service, we can identify the

following actions:

1. Move (REFACTOR) the service to another VM on the same tier with a lower CPU core

count.

2. Move (REFACTOR) the service to another VM on a different tier of the same provider,

with or without lowering the CPU core count.

3. Move (REFACTOR) the service to another VM on another provider with or without lower-

ing the CPU core count.

In the scenario where an increase in performance would necessitate a VM in a higher tier

which would incur a higher cost then in order to maintain the current operating cost, the fol-

lowing actions may be considered.

1. Increase (BURST_ABOVE) the CPU performance of the current VM to meet the perfor-

mance needs rather than triggering a change of VM.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0228086

Our policy manager must therefore be equipped with an algorithm to determine how to

move the service in order to mitigate the cost constraint violation. The outline of the algorithm

used in our work is given in Fig 6. Here we used a greedy algorithm to test the responses of the

responses of the policy manager to ensure that it evaluated the directives it was given. The

algorithm contains modules for refactoring as well as bursting. Depending on the scenario,

either may be chosen as a viable option to rectify a policy violation. The module will loop until

the service is refactored or it exits due to there being no viable option to refactor to. The refac-

tor sub-module finds three minimum value services that may resolve the violation: the smallest

service on the same tier on the same provider, the smallest service of another tier on the same

provider, and the smallest service of any tier on another provider. The minimum of these three

is the smallest service that may resolve the violation. In the case of a performance violation, a

Fig 6. Cost orchestration algorithm.

https://doi.org/10.1371/journal.pone.0228086.g006

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0228086.g006
https://doi.org/10.1371/journal.pone.0228086

burst action will always be considered over performing a refactor action, as this action does

not alter the operating cost.

Evaluation of results

In evaluating our work we chose to perform a policy enforcement performance evaluation and

a cost-awareness evaluation. For our policy enforcement performance evaluation, it was

important that we measure key areas of performance of our approach. For this we chose a two

point approach,

• Determine the time to detect a cost violation

• Determine how our approach scales with multiple services

In determining the time it takes to detect and initiate an action for a cost violation, it was

clear that our approach needed to be able to detect a violation within the smallest billing period

used by cloud service providers. A majority of cloud service providers make use of per second

billing, hence, it was important that we determine whether our approach can detect a violation

in time less than one (1) second. Once we established if our approach can feasibly detect a vio-

lation within an appropriate time, it was important that we determine how our approach scales

to applications comprising more than one node. As most microservice applications are repre-

sented by multiple, interconnected service, then our approach needed to scale such that appli-

cations of more than one node also provided detection times of less than one (1) second. For

our cost-awareness evaluation we chose to determine how our approach reacts to various sce-

narios. It was important that our approach be capable of not only detecting a violation but also

determining the appropriate action in each scenario. The testbed used for our evaluation com-

prises our test microservice application as presented in Fig 1 on a MacBook Pro 2016 running

with a 2.6 GHz Intel i7 CPU and 16GB of RAM. We supplied our TOSCA and CAMP plat-

forms with the TOSCA application plans and policy management directives respectively, per-

formed our model conversion between the TOSCA application topology and the CAMP

application deployment plan. We then fed simulation data into our orchestrator and observed

the responses to the scenarios presented.

Policy enforcement performance

First, we need to determine the time taken to evaluate a REFACTOR or BURST_ABOVE deci-

sion for a single service, when its cost constraint gets violated. To do this, we created a deploy-

ment with a single service, triggered a cost violation on that service, and recorded the time

required to evaluate the decision. The results were tabulated and the experiment was then

repeated. The tests were run for approximately 5000 iterations, after which we were able to

determine the average time to detect and respond to a cost constraint violation. This was

found to be approximately 0.9846ms. Fig 7 shows the results of this baseline test.

We then increased the number of services in our test application and ran the experiment

again, this time recording the time taken to evaluate the refactor actions for two service, three

services, and up to an application with ten service nodes. In these cases, we however reduced

the number of iterations that were run in an effort to obtain results in a timely manner. The

results of these extended tests were tabulated and a graph of the average detection time per

node was obtained. We were able to deduce that the time taken to evaluate a decision by our

policy manager was relatively constant regardless of the number of nodes present. These

results are given in Fig 8.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0228086

Fig 7. Baseline conversion times.

https://doi.org/10.1371/journal.pone.0228086.g007

Fig 8. Average resolution time per node.

https://doi.org/10.1371/journal.pone.0228086.g008

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0228086.g007
https://doi.org/10.1371/journal.pone.0228086.g008
https://doi.org/10.1371/journal.pone.0228086

Cost-awareness evaluation

To validate our cost-aware orchestration approach, we refer to the example application that

was presented in Fig 1 as a test microservice application. We decided to run live tests of this

application deployed across different provider clouds and using various scenarios. Before we

proceed, however, we will further explain the policy evaluation process used by our approach.

Within our TOSCA and CAMP platform, our policy engine is composed of various policy

managers, each capable of adequately resolving a policy violation based on the type of the policy

that was specified. For example, a policy of type of __ kr.ac.hanyang.oCamp.entities.policies.

CostControl can be efficiently handled by a Cost Control policy manager, while other policy

types are handled by their corresponding policy manager types. Each policy manager type is

therefore equipped with the algorithms allowing it to manage a specific scenario. For our

experiment, we subjected the system to different scenarios and then recorded the response

of the system for each. In our scenarios, we treat budgeted cost as a range allowing us

to manipulate the lower and upper bounds of the range. The scenarios explored are as

follows:

• Response to increase in upper bounds of Budget.

• Response to decrease in upper bounds of Budget.

• Response to increase in lower bounds of Budget.

• Response to decrease in lower bounds of Budget.

• Response to Increase in CPU utilization above Baseline.

Prior to beginning the tests, we configured the application with an initial cost control policy

which specifies that our application’s cost should be maintained between the range of $300

and $500. Once specified, we deployed the application components across the cloud providers.

The initial component distribution and configuration is given in Table 3. We then ran each

scenario and tabulated the results obtained from our system which we present in Table 4. We

can see that, in the first scenario, if the upper limit of the budget is increased to $600, then the

system responds with no change. In scenario two, the upper budget constraint is decreased to

$350, which caused the system to respond by refactoring comp 1 and comp 2. The refactor

actions resulted in the service being moved to VMs of the same flavours in the a different

region. When the lower budget was reduced, however, no refactoring was recorded. Also, no

refactoring was done for scenarios 1 and 4, as these scenarios would not result in a policy viola-

tion. Finally in the last scenario, when the cpu utilization was increased, rather than perform-

ing a refactor to another VM, the policy manager instead performed a burst action which

cause the budget to remain unchanged.

Table 3. Initial component distribution.

Initial

l I c m Rate

comp 1 AWS Tokyo t2.large 2 8 $0.128

comp 2 AWS Sydney t2.large 2 8 $0.128

comp 3 Rackspace HK General 1-4 2 3.75 $0.148

comp 4 Rackspace SYD General 1-4 2 3.75 $0.148

Projected Operating Cost $397.440

https://doi.org/10.1371/journal.pone.0228086.t003

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0228086.t003
https://doi.org/10.1371/journal.pone.0228086

Qualitative comparison of alternative techniques

The analysis and comparison of the cost of cloud computing is considered a fundamental func-

tion in order to mitigate some of the issues inherent in cloud computing, vendor lock-in being

among the more prevalent ones. There have been other approaches aiming to provide this

function to the consumers of cloud computing. With our approach being amongst them, it is

therefore fitting that we provide a qualitative comparison of the approaches in order to show

exactly where our approach fits into the landscape of cloud computing cost control.

In creating our comparison, we classified the ability of each solution to provide some key

features of cost control, as it pertains to cloud computing. These include:

• Cloud service monitoring—The ability of the solution to provide cost monitoring for solu-

tions deployed on a cloud platform.

• Cloud service cost optimization The ability of the solution to optimize the cost of solutions

deployed in the cloud as well as predict cost based on current utilization.

• Multi-cloud support—The ability of the solution to provide cost control for services

deployed across multiple clouds.

• Use of standards—Whether the solution makes use of cloud computing standards as part of

their solution.

Table 4. Response to budget constrain changes and CPU utilization.

Scenario Action Final

l i c m Rate

1. Upper Budget Increase No Action comp 1 AWS Tokyo t2.large 2 8 $0.13

$300.00 $600.00 No Action comp 2 AWS Sydney t2.large 2 8 $0.13

No Action comp 3 Rackspace HK General 1-4 4 4 $0.15

No Action comp 4 Rackspace SYD General 1-4 4 4 $0.15

Projected Operating Cost $397.44

2. Upper Budget decrease Refactor comp 1 AWS Virginia t2.large 2 8 0.094

$300.00 $350.00 Refactor comp 2 AWS Virginia t2.large 2 8 0.094

No Action comp 3 Rackspace HK General 1-4 4 4 0.148

No Action comp 4 Rackspace SYD General 1-4 4 4 0.148

Projected Operating Cost $348.48

3. Lower Budget Increase Refactor comp 1 AWS Tokyo m3.large 2 7.5 $0.19

$450.00 $500.00 Refactor comp 2 AWS Sydney m3.large 2 7.5 $0.19

No Action comp 3 Rackspace HK General 1-4 4 4 $0.15

No Action comp 4 Rackspace SYD General 1-4 4 4 $0.15

Projected Operating Cost $486.00

4. Lower Budget decrease No Action comp 1 AWS Tokyo t2.large 2 8 $0.13

$200.00 $500.00 No Action comp 2 AWS Sydney t2.large 2 8 $0.13

No Action comp 3 Rackspace HK General 1-4 4 4 $0.15

No Action comp 4 Rackspace SYD General 1-4 4 4 $0.15

Projected Operating Cost $397.44

5. Increase CPU utilization

15% 65% Burst_Above comp 1 AWS Tokyo t2.large 2 8 $0.13

15% 65% Burst_Above comp 2 AWS Sydney t2.large 2 8 $0.13

No Action comp 3 Rackspace HK General 1-4 4 4 $0.15

No Action comp 4 Rackspace SYD General 1-4 4 4 $0.15

Projected Operating Cost $397.44

https://doi.org/10.1371/journal.pone.0228086.t004

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0228086.t004
https://doi.org/10.1371/journal.pone.0228086

We present the results of our analysis within Table 5. Here we see that, with regards to

cloud service monitoring, each measured solution in question, while capable of providing per

service (component-aware) monitoring, remains unaware of the interconnection of the ser-

vices as an application. When it comes to optimization of cost, all are capable of reactive

reporting. However, some lack the ability to provide proactive optimization by forecasting.

Support for multiple cloud platforms is also provided by all of the measured solutions. How-

ever, cost consolidation across different providers as well as the ability for orchestration poli-

cies to span providers were not found in most. Finally, with regards to the use of standards, all

measured solutions were found to be proprietary except for our solution.

Related work

Cloud application orchestration is a fairly young area of distributed and cloud computing.

However, there has been a considerable amount of traction in the field [16–18], usually taking

on either a declarative or imperative approach [19–21]. With an imperative approach, an

application orchestration engineer is usually required to determine the conditions that should

trigger an orchestration event as well as provide scripts that should be able to handle those situ-

ations as well as unforeseen ones. With TOSCA v1.1 [6], declarative workflows and triggers

were added to the specification in order to provide alternatives to the imperative approach that

prevailed. The workflows define steps that may be carried out in parallel or sequentially in

Table 5. Qualitative comparison of cost control solutions.

Cloud Chekr Right Scale Cloud Health Technologies Our Solution

Cloud Service

Monitoring

Per service

monitoring

Provides per service

monitoring for

infrastructure service

deployed in supporting

provider platforms.

Provides per service

monitoring for infrastructure

service deployed in

supported provider platform

Provides per service

monitoring for Infrastructure

service deployed in

supporting provider

platforms.

Provides per service monitoring

for infrastructure service deployed

in supporting provider platforms.

Provide at the application level.

Application

monitoring

Infrastructure services are

not consolidated into

applications.

Infrastructure services are

not consolidated into

applications.

Infrastructure services are

not consolidated into

applications.

Infrastructure services are not

consolidated into applications.

Cloud Service

Cost

Optimization

Reactive Cost

Optimization

Provides usage reports of

service utilization per

provider. Reports can be

used to keep or discard

deployed service.

Provides usage reports of

service utilization per

provider. Reports can be

used to keep or discard

deployed services.

Provides usage reports of

service utilization per

provider. Reports can be

used to keep or discard

deployed services.

Can provide usage reports of

service utilization per provider.

Proactive Cost

Optimization

Provides proactive

recommendations based on

desired savings.

Provides proactive

recommendations based on

desired savings. Provides a

policy engine that provides

cost forecasting.

Provides proactive

recommendations based on

desired savings. Provides a

policy engine that provides

cost forecasting.

Can proactively determine

recommendations based on

budget. Provides a policy engine

that is capable of forecasting.

(Depends on the policy manager

and algorithm used)

Multi-cloud

support

Multiple Cloud

platforms support

Provides support for

different Cloud providers.

Provides support for

different cloud providers.

Provides support for

different cloud providers.

Provides support for different

Cloud providers.

Cost

consolidation

across multiple

providers

Allows generation of reports

of service deployed on

different providers.

Allows generation of reports

of service deployed on

different providers. Provides

scheduling and lifecycle.

Allows generation of reports

of service deployed one

different providers. Provides

scheduling and lifecycle.

Allows generation of reports of

service deployed on different

providers. Provides scheduling

and lifecycle.

Multi-cloud

orchestration of

application

components

Does not orchestrate cloud

optimization policies across

various providers.

Does not orchestrate cloud

optimization policies across

various providers.

Does not orchestrate cloud

optimization policies across

various providers.

Can orchestrate cloud

optimization policies across

various providers.

Use of

standards

Open standards

or proprietary

technology

Based on proprietary

technology.

Based on proprietary

technology.

Based on proprietary

technology.

Based on open technology TOSCA

and CAMP.

https://doi.org/10.1371/journal.pone.0228086.t005

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0228086.t005
https://doi.org/10.1371/journal.pone.0228086

response to an orchestration event. However, it should be noted that TOSCA does not make

considerations for cost control, so that its normative components do not contain properties

and attributes to hold cost information. The imperative approach with TOSCA will also

require imperative rules to be written for each possible situation that may arise. This may seem

infeasible, when considering the number of nodes in an application as well as the situations

that may trigger different orchestration responses.

Another alternative approach to providing cost control to cloud application involves the

use of external services that allow for tracking and, to an extent, controlling the cost of applica-

tions across cloud platforms. Services such as Cloud Health Technologies, RightScale, and

CloudCheckr [22–24] allow for customers to plan their cloud application deployment by pro-

viding detailed information about the services and best practices available from each providers

to benefit key decision makers. The typical process of these approaches involves first determin-

ing the services required as well as the cost of these services using the library provided by the

service providers. The application designer can then budget the application’s utilization and

ensure that the services required are within budget. Our work aims to extend further than

these approaches by providing an automated process, based on an emerging standard, for ana-

lyzing service cost and orchestrating application components across service providers.

In addition to the aforementioned approaches, there have been various work dedicated to

cost-aware scaling of cloud applications [25–28]. A cost-aware system, named Kingfisher solu-

tion was presented that considers other elasticity mechanisms such as replication and migra-

tion [25]. Another group made use of a linear regression model to predict the workload of an

application which can then be used to determine scaling [26]. By combining the workload pre-

diction model with a cost minimization approach, they minimized cost, while providing scal-

ing. On the other hand, it was shown that combining the use of a cost-aware scaling model

and a workload-adaptive scaling model provided effective scaling criteria for their scaling

approach [27]. These works take a cost-aware approach to cloud computing by focusing

mainly on auto-scaling rather than multi-cloud orchestration of each component of the appli-

cation, which is a primary concern in our case.

Finally, there have been considerable work done on the analysis of the performance of

application topologies as well as algorithms focused on cost constraint control [29, 30]. These

works show that it is not only important to consider the cost-related factor of a distributed

application, but also other factors should be considered as well, since application performance

plays an important part in determining the final deployment of an application in the cloud.

For instance, it was shown that it is possible and even necessary to determine the performance

of an deployed application [29]. Also, it was argued that for workflows described as directed

acyclic graphs, there are efficient methods for managing performance under cost constraints

[30]. We acknowledge the importance of these approaches and appreciate the possible applica-

tions within our study. However, for our approach, we decided that through the use of a cost

model defined as a tuple combining key differentiators, we can filter service offerings provided

via a service catalog. By combining this with our declarative policy model, our approach can

not only scale within a provider’s platform, but also orchestrate components across providers.

We see this as not just an incremental extension of the work done but also an adoption of a

new, novel approach to cost control orchestration through the addition of our policy manage-

ment capabilities which simplifies the process of determining and implementing cost control

measures. Our approach is found to be capable of matching the features of controlling cost on

a per-component basis. Furthermore, it is also capable of providing application-aware cost

control as opposed to other cost optimization schemes approaches that only incorporate com-

ponent-level scaling.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0228086

Conclusion

In this paper, we presented our approach to cost-aware application orchestration across het-

erogeneous platforms. For this, we proposed an approach that incorporated the use of the stan-

dards, TOSCA and CAMP for modeling and deploying the application in the cloud, coupled

with a cost model that is capable of capturing the factors that influence the cost of an applica-

tion component. We coupled these to our declarative policy specification which allows us to

orchestrate application components based on cost constraints. We demonstrated the ability to

analyze the cost data of each provider by aggregating the data through a service catalog and the

combined use of a cost control algorithm within our policy support mechanism. We were also

able to demonstrate through a proof of concept that our approach is capable of providing cost-

aware cloud orchestration of an application within a real-world situation. Our approach was

found to be capable of providing the advantages of application-aware cost control capabilities

as well as matching the component-level cost control features of other solutions.

Supporting information

S1 File. Raw-Results: The raw data from the evaluation of the proposed system. This file

contains the raw experimental results from the evaluation of the proposed system.

(XLSX)

S2 File. Code-Backup: The implementation of the proposed system. This zip file contains

the implementation of the proposed system and its related files.

(ZIP)

Author Contributions

Conceptualization: Kena Alexander, Muhammad Hanif, Choonhwa Lee, Sumi Helal.

Funding acquisition: Choonhwa Lee.

Investigation: Muhammad Hanif.

Methodology: Kena Alexander, Choonhwa Lee, Sumi Helal.

Software: Kena Alexander.

Supervision: Choonhwa Lee, Sumi Helal.

Validation: Kena Alexander, Choonhwa Lee, Eunsam Kim.

Visualization: Muhammad Hanif, Eunsam Kim.

Writing – original draft: Kena Alexander, Muhammad Hanif.

Writing – review & editing: Choonhwa Lee, Eunsam Kim.

References

1. Hogan M, Liu F, Sokol A, Jin T. NIST Cloud Computing Standards Roadmap. NIST Cloud Comput

Stand. 2013.

2. Stavrinides GL, Karatza HD. A Cost-Effective and QoS-Aware Approach to Scheduling Real-Time

Workflow Applications in PaaS and SaaS Clouds. Proceedings—2015 International Conference on

Future Internet of Things and Cloud, FiCloud 2015 and 2015 International Conference on Open and Big

Data, OBD 2015. 2015.

3. Martens B, Walterbusch M, Teuteberg F. Costing of Cloud Computing Services: A Total Cost of Owner-

ship approach. Proceedings of the Annual Hawaii International Conference on System Sciences. 2012.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228086.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228086.s002
https://doi.org/10.1371/journal.pone.0228086

4. Gonçalves R, Rolim T, Sampaio A, Mendonça NC. A multi-criteria approach for assessing cloud deploy-

ment options based on non-functional requirements. Proceedings of the ACM Symposium on Applied

Computing. 2015.

5. Chung L, Hill T, Legunsen O, Sun Z, Dsouza A, Supakkul S. A goal-oriented simulation approach for

obtaining good private cloud-based system architectures. J Syst Softw. 2013. https://doi.org/10.1016/j.

jss.2012.10.028

6. TOSCA Simple Profile in YAML Version 1.0, OASIS Standard. TOSCASimple-Profile-YAML-v1.0,

2016.

7. Alexander K, Lee C, Chai S. Declarative policy support for cloud application orchestration. Proceedings

of International Conference on Advanced Communications Technology. 2017.

8. Alexander K, Lee C, Kim E, Helal S. Enabling End-To-End Orchestration of Multi-Cloud Applications.

IEEE Access. 2017. https://doi.org/10.1109/ACCESS.2017.2738658

9. Azure Pricing, Microsoft Azure. [Online]. Available: https://azure.microsoft.com/en-us/pricing/,

Accessed on: 13-Jan-2018.

10. How AWS Pricing Works, Amazon Web Services, [Online]. Available:https://d1.awsstatic.com/

whitepapers/aws_pricing_overview.pdf, Accessed on: 13-Jan-2018.

11. Pahl C. Containerizatio and the PaaS cloud. IEEE Cloud Computing. 2015. https://doi.org/10.1109/

MCC.2015.51

12. Breitenbücher U, Binz T, Kopp O, Leymann F, Wieland M. Policy-aware provisioning of cloud applica-

tions. Proceeding of International Conference on Emerging Security Information, Systems and Tehnolo-

gies. 2013.

13. Brogi A, Carrasco J, Cubo J, Di Nitto E, Durán F, Fazzolari M, et al. Adaptive management of applica-

tions across multiple clouds: The SeaClouds Approach. CLEI Electron J. 2018. https://doi.org/10.

19153/cleiej.18.1.1

14. Bousselmi K, Brahmi Z, Gammoudi MM. Cloud services orchestration: A comparative study of existing

approaches. Proceedings—2014 IEEE 28th International Conference on Advanced Information Net-

working and Applications Workshops, IEEE WAINA 2014. 2014.

15. Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J. Cloud Orchestration Features:

Are Tools Fit for Purpose? Proceedings—2015 IEEE/ACM 8th International Conference on Utility and

Cloud Computing, UCC 2015. 2015.

16. Qasha R, Cala J, Watson P. Dynamic deployment of scientific workflows in the cloud using container

virtualization. Proceedings of the International Conference on Cloud Computing Technology and Sci-

ence, CloudCom. 2016.

17. Cloud Cost Management, Cloud Health Tech, [Online]. Available: https://www.cloudhealthtech.com/

solutions/improve-cloud-cost-management, Accessed on: 20-Jun-2018.

18. Cloud Cost Allocation and Reporting, RightScale, [Online]. Available: https://www.rightscale.com/

about-cloud-management/cloud-cost-optimization/cloud-cost-allocation-reporting, Accessed on: 13-

Jan-2018.

19. Cloud Cost and Expense Management, CloudCheckr, [Online]. Available: https://cloudcheckr.com/

platform-old/cost-expense-management, Accessed on: 13-Jan-2018.

20. Sharma U, Shenoy P, Sahu S, Shaikh A. A cost-aware elasticity provisioning system for the cloud. Pro-

ceedings—International Conference on Distributed Computing Systems. 2011.

21. Yang J, Liu C, Shang Y, Cheng B, Mao Z, Liu C, et al. A cost-aware auto-scaling approach using the

workload prediction in service clouds. Inf Syst Front. 2014. https://doi.org/10.1007/s10796-013-9459-0

22. Han R, Ghanem MM, Guo L, Guo Y, Osmond M. Enabling cost-aware and adaptive elasticity of multi-

tier cloud applications. Futur Gener Comput Syst. 2014. https://doi.org/10.1016/j.future.2012.05.018

23. Sampaio A, Rolim T, Mendonça NC, Cunha M. An approach for evaluating cloud application topologies

based on TOSCA. IEEE International Conference on Cloud Computing, CLOUD. 2017.

24. Malawski M, Juve G, Deelman E, Nabrzyski J. Algorithms for cost-and deadline-constrained provision-

ing for scientific workflow ensembles in IaaS clouds. Futur Gener Comput Syst. 2015. https://doi.org/10.

1016/j.future.2015.01.004

25. Baresi L, Guinea S, Quattrocchi G, Tamburri DA. MicroCloud: A Container-Based Solution for Efficient

Resource Management in the Cloud. Proceedings—2016 IEEE International Conference on Smart

Cloud, SmartCloud 2016. 2016.

26. Leitner P, Cito J, Stöckli E. Modelling and managing deployment costs of microservice-based cloud

applications. Proceedings—9th IEEE/ACM International Conference on Utility and Cloud Computing,

UCC 2016. 2016.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 20 / 21

https://doi.org/10.1016/j.jss.2012.10.028
https://doi.org/10.1016/j.jss.2012.10.028
https://doi.org/10.1109/ACCESS.2017.2738658
https://azure.microsoft.com/en-us/pricing/
https://d1.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://d1.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.19153/cleiej.18.1.1
https://doi.org/10.19153/cleiej.18.1.1
https://www.cloudhealthtech.com/solutions/improve-cloud-cost-management
https://www.cloudhealthtech.com/solutions/improve-cloud-cost-management
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-cost-allocation-reporting
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-cost-allocation-reporting
https://cloudcheckr.com/platform-old/cost-expense-management
https://cloudcheckr.com/platform-old/cost-expense-management
https://doi.org/10.1007/s10796-013-9459-0
https://doi.org/10.1016/j.future.2012.05.018
https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.1371/journal.pone.0228086

27. Ferry N, Song H, Rossini A, Chauvel F, Solberg A. Cloud MF: Applying MDE to tame the complexity of

managing multi-cloud applications. Proceedings—2014 IEEE/ACM 7th International Conference on

Utility and Cloud Computing, UCC 2014. 2014.

28. Carrasco J, Cubo J, Pimentel E, Durán F. Deployment over heterogeneous clouds with TOSCA and

CAMP. CLOSER 2016—Proceedings of the 6th International Conference on Cloud Computing and Ser-

vices Science. 2016.

29. Cloud Application Management for Platforms Version 1.1, OASIS CAMP TC Committee Specification

01, 2014.

30. Wang C, Urgaonkar B, Nasiriani N, Kesidis G. Using burstable instances in the public cloud: Why, when

and how? SIGMETRICS 2017 Abstracts—Proceedings of the 2017 ACM SIGMETRICS / International

Conference on Measurement and Modeling of Computer Systems. 2017.

Cost-aware orchestration of applications over heterogeneous clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0228086 February 18, 2020 21 / 21

https://doi.org/10.1371/journal.pone.0228086

