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ABSTRACT

Purpose: Oak is the dominant tree species in Korea. Oak pollen has the highest sensitivity 
rate among all allergenic tree species in Korea. A deep neural network (DNN)-based 
estimation model was developed to determine the concentration of oak pollen and overcome 
the shortcomings of conventional regression models.
Methods: The DNN model proposed in this study utilized weather factors as the input and 
provided pollen concentrations as the output. Weather and pollen concentration data were 
used from 2007 to 2016 obtained from the Korea Meteorological Administration pollen 
observation network. Because it is difficult to prevent over-fitting and underestimation by 
using a DNN model alone, we developed a bootstrap aggregating-type ensemble model. Each 
of the 30 ensemble members was trained with random sampling at a fixed rate according 
to the pollen risk grade. To verify the effectiveness of the proposed model, we compared its 
performance with those of  models of regression and support vector regression (SVR) under 
the same conditions, with respect to the prediction of pollen concentrations, risk levels, and 
season length.
Results: The mean absolute percentage error in the estimated pollen concentrations was 
11.18%, 10.37%, and 5.04% for the regression, SVR and DNN models, respectively. The start 
of the pollen season was estimated to be 20, 22, and 6 days earlier than that predicted by 
the regression, SVR and DNN models, respectively. Similarly, the end of the pollen season 
was estimated to be 33, 20, and 9 days later that predicted by the regression, SVR and DNN 
models, respectively.
Conclusions: Overall, the DNN model performed better than the other models. However, the 
prediction of peak pollen concentrations needs improvement. Improved observation quality 
with optimization of the DNN model will resolve this issue.

Keywords: Pollen; pollen grains; deep learning; quercus; seasons; allergic rhinitis

INTRODUCTION

Pollen induces allergic diseases such as allergic rhinitis, allergic conjunctivitis, asthma, 
and skin allergies. Flowers can be classified as entomophilous, which are pollinated by 
insects, and anemophilous, which are pollinated by the wind. Of these, the airborne pollen 
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of anemophilous flowers is known to be the primary source of respiratory allergies. Korea 
has seen an increase in allergy cases, with the prevalence of allergic rhinitis in elementary 
school students increasing from 2.7% in 1995 to 28% in 2009 and the prevalence of allergic 
rhinitis in preschool children reaching 40.7% in 2009.1-4 These figures indicate an increase 
in the latent risk of pollen allergies and hospital visit. Skin prick tests of patients with allergy 
symptoms (asthma, rhinitis, and dermatitis) in Suwon, Korea during 1999-2008 showed 
that approximately 20.5% of the patients were sensitized with tree pollens including oak.5 
Oak is the dominant tree species in Korea, and its pollen has the highest sensitivity rate of 
all allergenic tree species in Korea.6 Therefore, oak pollen is a major factor influencing the 
number of daily hospital visits and medication use in Korea.

Beggs7 predicted that future increases in CO2 will lead to increased pollen output, longer 
pollen seasons, and greater human exposure to pollen, noting that the strength of both 
allergy inducement and risk will increase. D'Amato et al.8 also predicted that the pollen 
season will become longer as a result of global warming. Pollen allergy forecasting can be 
considered to be a response to this gradually increasing risk of pollen allergies, and Germany, 
Japan, Korea, England, the United States, and other countries now provide allergy forecasts 
for their respective primary pollens.

The Korea Meteorological Administration (KMA) has been providing pollen risk forecasts 
for pine and oak in the spring and Japanese hop and ragweed in the fall since 2008. The 
KMA pollen risk model predicts pollen concentrations from weather factors and is based 
on an initial model developed by Kim et al.,9 which used independent multiple regression 
models for 7 South Korean cities. To expand on this scope, Kim et al.4 then developed a 
model that could make prediction covering all of South Korea through the use of a single 
model employing robust multiple regression based on a Weibull probability distribution. 
However, the expanded and unified model still underestimated pollen concentrations and 
could not predict high concentrations well. In addition, the pollen seasons predicted by this 
model were longer actually than observed. We believe that the main causes of these problems 
are that the training data contain more low than high concentrations and the regression 
model cannot properly model the nonlinear relationship between weather factors and 
pollen concentrations. To address this, we used a machine learning method called a deep 
neural network (DNN) model in this study to improve on the existing method by modeling 
nonlinear relationship between weather factors and pollen concentrations. In addition, a 
bootstrap aggregating-type ensemble model was incorporated to prevent over-fitting and 
underestimation of the DNN model.

A DNN is an artificial neural network (ANN) with 3 or more hidden layers and is also known 
as multilayer perceptron. Previous studies applied ANNs in pollen concentration prediction 
models, including Grinn-Gofroń and Strzelczak,10 who studied Alternaria, Puc,11 who studied 
Betula, Iglesias-Otero et al.,12 who studied Plantago, and Astray et al.13 who studied Castanea. 
These efforts employed models with a single hidden layer in which the networks were 
limited in that they were constructed with the data obtained from a single site as the target. 
Therefore, these models could make predictions pertaining only to that site. In addition, 
many of these ANN models such as the one proposed by Astray et al.,13 utilized pollen 
concentration data observed on the previous day, which are generally not available for daily 
operational forecast.
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The goal of the present study is to develop a DNN-based estimation model for oak pollen 
concentration that can overcome the shortcomings of regression models but maintain the 
capability of daily operational forecast. We compared the performance of proposed model 
with those of a conventional regression model and a support vector regression (SVR) model 
under the same conditions with respect to in the prediction of daily pollen concentrations 
and risk levels, as well as the length of yearly pollen season, to verify the effectiveness of the 
proposed model.

MATERIALS AND METHODS

Pollen observational network in Korea
In Korea, allergy-inducing pollen is observed using 7-day recording volumetric spore 
samplers (Burkard Scientific Ltd., Uxbridge, UK) installed in 12 locations (Guri, Busan, 
Jeonju, Daegu, Daejeon, Jeju, Gwangju, Gangneung, Pocheon, Pohang, Seoul and 
Seoul [KMA]). The Korean Academy of Pediatric Allergy and Respiratory Disease began 
observation in 1997 at 7 locations around the country, including Seoul, Busan, Daegu, 
Gwangju, Gangneung, Jeju and Guri, In 2006, they upgraded their observation network to 
12 stations around the country in a joint research effort with the KMA.14 Collection drums 
containing Melinex tape are gathered at 7-day intervals and the tape is divided into one-day 
recording intervals at the analysis center in Guri. The tape is dyed with Calberla's fuchsin (10 
mL glycerin, 20 mL 95% alcohol, 30 mL distilled water, and 0.2 mL basic fuchsin), placed 
under an optical microscope (200× magnification), and the pollen grains are counted. The 
pollen count is converted into a daily pollen concentration (grains m−3) based on the daily 
total amount of air intake (10L min−1), the intake area (14 mm × 2 mm), the collection tape's 
daily impact area (14 mm × 48 mm), and the observed area under the microscope.

The major allergy-inducing pollen species vary slightly by region and are classified into 9 
types of weeds, 19 types of trees, and 1 type of grass.14 The risk grade of oak tree is set at 1 of 
4 levels (mild: 0-49, moderate: 50-99, severe: 100-199, extreme: ≥ 200 and unit: grains m−3) 
based on the daily pollen concentration and daily allergic reaction reported by sensitized 
allergy patients.4

Weather data
As weather input for the pollen risk model, daily data were taken from KMA weather stations 
near the pollen observation network sites. Referencing the data of Kim et al.,4 the weather 
variables used in our analysis were daily maximum temperature, daily minimum temperature, 
growing degree day (GDD: accumulated mean temperature above 0°C from January 1st), 
difference of GDD (dGDD: difference in GDD between current and the previous day), daily 
mean relative humidity, daily mean wind speed, and daily precipitation. To describe the 
nonlinear relationship between the weather conditions and the pollen concentration, Kim et 
al.4 fit the input variables to a Weibull probability density function (PDF); here, we fit the GDD 
to a Weibull PDF. The input variables ultimately used in the study are shown in Table 1.

Oak pollen data
Korea's pollen activity of trees is mainly observed in April and May; pollen concentrations 
during this time having an uneven distribution, with 80% of the concentrations being 
below 10 (grains m−3). The risk grades are also distributed, with mild, moderate, severe, 
and extreme occurring with frequencies of 92.7%, 3.5%, 2.2%, and 1.6%, respectively. 

151https://e-aair.org https://doi.org/10.4168/aair.2020.12.1.149

Concentration Model for Oak Pollen Allergy Warning



Using the data, in which the distribution tends toward low concentrations, leads to a 
model that underestimates concentrations and cannot predict high concentrations, which 
in turn degrades the model's performance in producing pollen risk warnings. To reduce 
underestimation, we varied the sampling size according to risk grade and used the results for 
model training.

Training and test data
For model training and verification, we used pollen and corresponding weather data from 
2007 to 2016 from Busan, Daejeon, Daegu, Gangneung, Guri, Gwangju, Jeonju, Pohang, and 
Seoul (KMA), which were among the KMA's 12 pollen network stations with sufficient data 
and few missing values. Using the data from 2007 to 2014 as the training set, the DNN model 
structure was selected through k-fold cross validation (k = 10). The entire training set was 
used for model training. The data from 2015 and 2016 were used as the test set to evaluate the 
model's performance.

DNN-based concentration model for oak pollen
The pollen concentration data did not show a linear relationship with the weather variables 
and had a low correlation, with a correlation coefficient of below 0.3. Accordingly, we used a 
DNN to model the nonlinear relationship between the pollen concentration and the weather 
variables, applying analysis program R 3.3.3 and DNN package “H2o.”

Because the pollen concentrations trended low, the model was made to underestimate. As 
DNN is a model with a high possibility of training data over-fitting, we applied a bootstrap 
to sample the risk grade at a fixed rate to the DNN and an ensemble method on the DNN 
prediction values for each sub sample set. This method, in which a sample set is extracted 
from the entire sample and an ensemble method is used on the model prediction values 
for each sub-sample set, is called bootstrap aggregating, or bagging.15 Bootstrapping is a 
resampling technique that usually has the effect of reducing result uncertainty.16,17 Normally, 
bootstrapping is based on random sampling with replacement, but in this case random 
sampling without replacement was used as the fixed total amount of pollen created by trees 
is assumed. In cases where many mild risk grade samples are extracted, the model will 
underestimate; likewise, if there are few samples, the model will overestimate. Optimizing 
the sample extraction ratio for each risk grade is difficult because many combinations must 
be optimized with the DNN structure; accordingly, we extracted training sets with ratios fixed 
at 7% (mild), 80% (moderate), 90%(severe), and 100% (extreme) so that the ratios of the 
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Table 1. Input variables utilized in the development of the oak pollen model
Variable name Unit Description
GDD °C Degree-days (accumulated average temperature above 0°C from 1 January)
WGDD °C GDD fit to Weibull probability density function

 𝑓𝑓𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)  =  𝑐𝑐𝑐𝑐
𝜎𝜎𝜎𝜎
�𝑐𝑐𝑐𝑐 − 𝜃𝜃𝜃𝜃

𝜎𝜎𝜎𝜎
�
𝑐𝑐𝑐𝑐 − 1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝜃𝜃𝜃𝜃
𝜎𝜎𝜎𝜎

�
𝑐𝑐𝑐𝑐
� , 𝜃𝜃𝜃𝜃 =  480, 𝜎𝜎𝜎𝜎 =  200, 𝑐𝑐𝑐𝑐 =  2 

dGDD °C Difference between current and previous day's GDD
dGDDt = GDDt − GDDt−1

Tmax °C Daily maximum air temperature
Tmin °C Daily minimum air temperature
WS ms−1 Daily mean wind speed
PR mm Daily total precipitation
RH % Daily mean relative humidity
Jday Day Julian day (number of days from 1 January)



training sets for the mild and non-mild risk grades would be similar. In this case, the former 
and latter grades accounted for 54% and 46%, respectively.

The DNN's structure is determined by the number of hidden layers, the number of neurons 
in each layer, and the activation function. Among activation functions such as sigmoid, 
hyper tangent, and rectified linear unit, we used the hyper tangent function as it produces 
reliable results. Because it is difficult to test the structure of all combinations in optimizing 
the DNN structure, a structure was selected using heuristic methods. In this study, there 
were generally many cases in which the prediction value became very large or very small as 
the number of hidden layers increased, and there were many cases in which underestimation 
occurred as the number of hidden layers decreased. Furthermore, performance was good 
when the number of neurons in the first hidden layer was larger than that in the input layer 
and when the number of neurons in the first hidden layer was larger than in each succeeding 
layer. Accordingly, the number of hidden layers was set at 5 and the first hidden layer's neuron 
number was set to a maximum of 150. The number of neurons in each layer was decreased in 
units of 10 and a k-fold cross validation (k = 10) test was performed to set the DNN structure. 
The ultimately selected DNN structure was 8:8-150-100-100-100-100-1:1, with 5 hidden layers. 
In addition, because a neural network model varies depending on the initial seed value, 
fine-tuning was performed after pre-training to set the initial values. In general, pre-training 
methods use either a restricted Boltzmann machine (RBM) or an auto-encoder (AE).18-22 For 
this study, we used an AE as its calculations are simpler than those of an RBM.

Our overall training process for the pollen concentration model involves extracting B bootstrap 
sample sets from the training set, training the DNN model through pre-training and fine 
tuning of the sample sets, creating final prediction values from each DNN model's predictive 
value mean, and finally classifying the risk according to the pollen risk grades (Fig. 1). Here, 
we used a truncated mean of the prediction values in which the top and bottom 5% of the 
values were removed to reduce the effect of outliers. We tested the sensitivity of B to the 
number of bootstrap sample sets and used this to set its value. We found that as B grew larger, 
the mean absolute error (MAE) and the root mean squared error (RMSE) both grew smaller, 
with convergence occurring at values of B above 30. Ultimately, a bootstrap DNN model with a 
B of 30 was used as the pollen concentration model.

Evaluation of the new model
To evaluate the performance of the model, we used a bagging technique for the same 
conditions, input variables, and training data as the DNN model and compared the results 
with those of a regression model (multiple linear regression) and a SVR model. We compared 
the actual and predicted values produced by each model of pollen concentration, daily 
pollen risk grade, and the pollen season using the 2015-2016 test data. For the daily pollen 
concentrations, we calculated the mean absolute percentage error (Equation. 1), MAE, 
and RMSE; for the daily pollen risk, we calculated the accuracy rate of each model with 
regard to the observed risk grades. For the pollen season, the first day at which the pollen 
concentration was observed (or predicted) to be 10 grains m−3 or higher was set as the 
season's starting date, while the last day in which the pollen concentration was observed (or 
predicted) to be 10 grains m−3 or lower was the season's ending date.
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
100
𝑛𝑛𝑛𝑛

� �
𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  −  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

�
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 = 1
, where 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖: predicted value,𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖: observed value (Equation. 1) 
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RESULTS

Pollen concentration and risk grade
Table 2 lists the MAPE results of the predicted pollen concentrations for each model in 9 
cities during the test period. Lower values of MAPE correspond to better performance. The 
mean MAPE for 2015 was lowest in the DNN model at 5.56% and highest in the regression 
model at 13.57%. The mean MAPE for 2016 was lowest in the DNN model at 4.51% and 
highest in the SVR model. The mean of the RMSE was 48.59, 37.57 and 36.72 grains m−3 in the 
regression, SVR and DNN models, respectively. The mean of the MAE was 23.26, 23.14, and 
17.25 grains m−3 in the regression, SVR and DNN models, respectively. In terms of the overall 
MAPE, RMSE and MAE, the DNN model exhibited the best performance and the regression 
model showed the worst performance.
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Fig. 1. Structure of DNN model for oak pollen concentration modeling. 
DNN, deep neural network; WGDD, growing degree day fit to Weibull probability density function; dGDD, difference of growing degree day; Tmax, daily maximum 
air temperature; Tmin, daily minimum air temperature; PR, daily total precipitation; RH, daily mean relative humidity; WS, daily mean wind speed; Jday, Julian 
day (number of days from 1 January).



A comparison between the observed and predicted daily pollen concentrations obtained 
using the regression, SVR and DNN models show that the regression model predicted pollen 
occurrences earlier than observed, with the difference being especially strong in Busan 
and Pohang (Fig. 2). Furthermore, although nearly no pollen was observed in March and 
June, the regression model predicted pollen outbreaks in these months. The SVR and DNN 
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Table 2. MAPEs of regression, SVR and DNN models for modeling pollen concentrations at the 9 evaluation sites in 2015 and 2016
Site 2015 2016

Regression SVR DNN Regression SVR DNN
Seoul 8.53 8.98 5.55 4.53 7.64 3.48
Busan 18.06 6.69 2.05 13.84 8.34 3.84
Gwangju 17.42 18.55 11.71 7.83 8.79 3.02
Daegu 17.90 10.85 4.33 5.98 7.38 2.81
Gangneung 19.54 13.89 8.80 18.29 21.42 15.39
Guri 7.06 8.58 4.37 4.42 8.14 3.20
Jeonju 13.09 13.34 7.37 5.17 8.04 2.45
Daejeon 5.11 8.01 2.89 4.15 8.15 2.83
Pohang 15.41 9.09 2.99 14.85 10.62 3.61
Average 13.57 10.89 5.56 8.78 9.84 4.51
MAPE, mean absolute percentage error; SVR, support vector regression; DNN, deep neural network.
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Fig. 2. Predicted and observed daily oak pollen concentrations during the evaluation period in 2015–2016 at the 9 sites in Korea. 
OBS, observation; SVR, support vector regression; DNN, deep neural network. (continued to the next page)



models showed patterns of pollen occurrence that were more similar to observed patterns. 
However, the SVR model had similar pollen occurrence distributions among regions and 
did not express regional characteristics well. Additionally, it showed earlier start and later 
ending of the pollen period than the observed. The DNN model had pollen distributions that 
were closer to the observed distributions than either the regression or SVR models, and it 
expressed the characteristics of each region well. In particular, its pollen starting and ending 
dates and its date of highest concentration were closer to the observed values than the other 
models. It should be noted that there are many missing values for Gwangju in 2015 and 
Gangneung in 2016 owing to equipment failures, resulting in many differences between the 
observations and predictions and higher MAPE values than in other regions.

Next, the accuracy rates of the models in predicting the pollen risk grades for the 9 
observation sites from 2015 to 2016 were compared. For the mild grade, the regression model 
had an accuracy of 89.1%, the SVR model had an accuracy of 75.6%, and the DNN model had 
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Fig. 2. (Continued) Predicted and observed daily oak pollen concentrations during the evaluation period in 2015–2016 at the 9 sites in Korea. 
OBS, observation; SVR, support vector regression; DNN, deep neural network.



an accuracy of 83.1%. For the moderate grade, the regression model had an accuracy of 6.9%, 
the SVR model had an accuracy of 70.1%, and the DNN model had an accuracy of 33.1%. 
For the severe grade, the regression model had an accuracy of 13.0%, the SVR model had an 
accuracy of 21.1%, and the DNN model had an accuracy of 56.5%. For the extreme grade, 
the regression model had an accuracy of 4.5%, the SVR model had an accuracy of 0.0%, and 
the DNN model had an accuracy of 9.1%, i.e., all 3 models had low accuracy. However, in 
underestimating the extreme grade by one grade as the severe grade, the DNN model showed 
the best performance at 54.6% (Table 3).

With the exception of the mild grade, the regression model was nearly incapable of predicting 
risk grades, while the SVR tended to predict severe and extreme grades as moderate grades. 
By contrast, the DNN model predicted the severe grade better than the other models. Overall, 
the regression model tended to underestimate the risk grade, the SVR model concentrated 
its risk grade predictions on the moderate grade, and the DNN model concentrated its risk 
grade predictions in the severe grade.

In terms of risk grade warning, the DNN model performed better than the other models in 
cases where the moderate and severe grades were estimated to be one grade higher and cases 
in which the extreme grade was estimated as the severe grade.

Pollen season
Fig. 3 shows the comparison results of the observed pollen seasons to the pollen seasons 
predicted by the models. The gray areas in Fig. 3 indicate the observed pollen seasons, with 
the lines showing pollen seasons predicted by the regression (orange), SVR (blue) and DNN 
(red) models. The regression model overestimated most pollen seasons and predicted longer 
pollen season than were observed. Particularly in Busan, its prediction diverged a great deal 
from the observed pollen season. The SVR model predicted shorter pollen seasons than 
the regression model but also overestimated by a fair amount. On the other hand, the DNN 
model overestimated to a lesser degree than the other models and predicted pollen seasons 
that were similar to the observed seasons. In 2015, the regression and SVR start dates were 
26 and 27 days earlier than the observed start date, respectively, while the DNN model was 
8 days early. In 2016, the regression and SVR models were on average 13 and 16 days early, 
respectively, while the DNN model was 4 days early. The regression and SVR models' pollen 
season end dates for 2015 were 36 and 21 days later than the observed end date, respectively, 
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Table 3. Frequencies (%) of observed and predicted pollen risk grade levels by the regression, SVR and DNN models at the 9 sites in Korea from 2015 to 2016
Observed risk grade Predicted risk grade

Model Mild (%) Moderate (%) Severe (%) Extreme (%) Total
Mild Regression 1,819 (89.1) 87 (4.3) 86 (4.2) 49 (2.4) 2,041

SVR 1,543 (75.6) 423 (20.7) 75 (3.7) 0 (0.0)
DNN 1,697 (83.1) 238 (11.7) 94 (4.6) 12 (0.6)

Moderate Regression 51 (58.6) 6 (6.9) 26 (29.9) 4 (4.6) 87
SVR 6 (6.9) 61 (70.1) 20 (23.0) 0 (0.0)
DNN 16 (18.4) 33 (37.9) 34 (39.1) 4 (4.6)

Severe Regression 30 (65.2) 6 (13.0) 6 (13.0) 4 (8.7) 46
SVR 3 (6.5) 33 (71.7) 10 (21.7) 0 (0.0)
DNN 6 (13.0) 12 (26.1) 26 (56.5) 2 (4.3)

Extreme Regression 8 (36.4) 5 (22.7) 8 (36.4) 1 (4.5) 22
SVR 4 (18.2) 12 (54.5) 6 (27.3) 0 (0.0)
DNN 4 (18.2) 6 (27.3) 10 (45.5) 2 (9.1)

SVR, support vector regression; DNN, deep neural network.



while the DNN model was 11 days late. In 2016 regression and SVR models were 29 and 18 
days later than the observed date, respectively, while the DNN model was 7 days late. Overall, 
the DNN model's pollen season predictions were best.
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Fig. 3. Comparison of observed (gray area) and predicted pollen seasons by the regression (yellow), SVR (blue) and DNN (red) models at the 9 sites in Korea 
from 2015 to 2016. 
OBS, observation; SVR, support vector regression; DNN, deep neural network.



DISCUSSION

The most widely used pollen observation system worldwide involves manual observation 
through the microscope of a tape gathered from a 7-day recording volumetric spore sampler; 
correspondingly, there is a minimum lapse of 1 day to 1 week following the observation date 
before the data can be obtained. This system has disadvantages in terms of the possibility 
of observer-induced observation error and missing values due to observation equipment 
failures. Because data cannot be collected in real time, managing the observation equipment 
is difficult. The pollen data used in our research had many missing data points, which limited 
our modeling and analysis. In particular, there were much missing data for Gwangju in 
2015 and Gangneung in 2016, making it difficult to verify the model. Although automatic 
observation systems can be used to overcome the limitations of manual observations, this 
can lead to other problems in the accuracy of identifying pollen species.

The automatic observation of pollen counts and concentrations primarily involves 
observation and analysis of data through optical equipment. Crouzy et al.23 used an ANN and 
support vector machine on data collected by laser beam and photo-detector to automatically 
observe 8 types of pollen. Oteros et al.24 automatically observed pollen by comparing the 
microscopic images of pollen samples collected from collection devices with 58 criteria 
based on an image library. Other research on automatic detection has been carried out by 
Kawashima et al.,25 O'Connor et al.,26 and Wagner and Macher.27

Although automatic observations can be problematic from the standpoint of pollen 
misclassification, they can make it possible to operate observation systems with real time 
monitoring. Data collected in real time can be used in prediction models. Astray et al.13 and 
Iglesias-Otero et al.12 used an ANN model that took the previous day's pollen concentration 
and weather data as input variables to improve pollen concentration prediction performance. 
In the present study, we tested a prototype model that uses the previous day's pollen 
concentration values, which were found to be very similar to observed pollen concentrations. 
Overall, automatic observation systems would be expected to improve the model's predictive 
power. However, the current set of input data without utilizing the observation data of the 
previous day is the best option for daily operational forecast of pollen.

The pollen concentration model in this study employs a bagging method that constructs 
an ensemble of DNN models for each sub-sample for which all the training data have been 
sampled at a fixed ratio for each risk grade. Generally, using bootstrapping or bagging in 
a neural network model can improve the model's performance and robustness, and the 
method is therefore used in a variety of deep learning models.28-33 In this study, all of the 
training data were used for a single model. When the regression, SVR and DNN models were 
trained, they underestimated when predicting the pollen concentrations and could not model 
grades moderate and above. Of all the models, the DNN model underestimated the least, 
but the results still showed that it could not properly simulate severe and extreme grades. 
This suggests that the model training method used in this study is useful for data distributed 
unevenly toward low or high values, as were the pollen concentration data. It is also noted 
that more reliable results are obtained when using multi-model ensemble methods to make 
ensembles of various machine learning methods.

The hardest part of using a DNN model can be determining the hidden layer structure. As 
there is no optimal method for determining it, we chose the model's structure using heuristic 
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methods, which require researchers to test a variety of structure combinations and therefore 
is time-consuming and inefficient. It is possible to use a harmony search (HS) algorithm 
as a more efficient method for determining DNN structures. HS is a heuristic optimization 
algorithm proposed by Geem34 that is often used for complex optimization problems. HS 
approaches optimization problems by using combinations of model parameters selected 
heuristically or randomly along with a harmony memory created from the loss function 
values of parameter combinations. Each parameter of the harmony memory is sampled 
randomly and loss values for new combinations are calculated to update the harmony 
memory with the goal of finding the parameter combination with the minimum loss value.34 
Research on applying HS to neural networks has been conducted by Kulluk et al.,35 Rosa et al.36 
and Papa et al.37 Using HS to optimize a DNN by using the number of hidden layers and the 
number of neurons in each layer as parameters is one approach to optimizing DNN structures 
that might be used to more efficiently determine DNN structures.

There are several limitations that should be considered while interpreting the results of 
this study. One is associated with the efficiency and uncertainty of pollen sampling. The 
pollen concentrations predicted by our pollen concentration model were classified into 
4 risk grades, with the grades predicted by the DNN model showing a tendency toward 
overestimation. Given that the results are to be used to prevent pollen allergies, and 
assuming an equipment's efficiency of 90%, overestimation can be considered preferable to 
underestimation. Including cases in which moderate and severe grades were predicted as one 
grade higher, as well as cases in which an extreme grade was predicted to be severe, the DNN 
model had an accuracy of 77.0% for the moderate grade, 60.8% for the severe grade, and 
54.6% for the extreme grade. This confirms that the pollen concentration model developed 
in this study can be used for pollen allergy prevention. Added to the fact that the DNN model 
performed best in predicting pollen seasons, these results suggest that its prediction results 
would be useful in effectively suppressing allergy symptoms by, for example, planning the 
timing of medicine use at the beginning of an allergy season.

The applicability of the DNN model is also limited by the environmental conditions of the 
modeling source data, as with other conventional models. For example, long-term changes 
in vegetation, regional and yearly variation in pollen production, and peak daily pollen 
concentration are not explicitly considered in the DNN model. We will have to continue 
monitoring daily and yearly changes in airborne pollen concentration and updating the DNN 
model for daily forecast.

In summary, 1) Korean oak pollen is produced in April and May, with the highest 
concentrations occurring at the end of April and the beginning of May. The pollen 
concentration distribution is uneven and has many low concentrations. Given such a 
distribution, there is a high possibility of pollen model underestimation. 2) A DNN model 
was used to map the nonlinear relationship between pollen concentrations and weather 
factors. To prevent the model from underestimating or over-fitting, an ensemble DNN model 
was constructed from 30 sub-samples of training data. To verify the model's performance, it 
was compared to a regression model and an SVR model trained under the same conditions. 
3) Examination of the pollen concentration prediction performance over a 2015-2016 
verification period revealed that the DNN had the best performance in terms of RMSE, MAE 
and MAPE. The DNN model's predicted pollen distributions were also the most similar to 
observed values. Looking at the pollen risk grade prediction performance, the regression 
model performed best for the mild grade while the SVR model was best for the moderate 
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grade. The DNN model was best for severe and extreme grades. Looking at pollen allergy risk 
warnings, the DNN model performed the best and the regression model performed worst. 4) 
The DNN model produced a pollen season timing that was closest to the observations. The 
DNN model's start and end dates were 6 and 9 days earlier and later, respectively, than the 
observed dates. The regression and SVR models' start and end dates had errors of around 
20 days or more with respect to the observed dates. 5) Overall, the DNN model showed the 
best prediction performance for pollen concentration, risk warning, and pollen season. 6) 
Starting in 2017, the DNN model developed in this study is used at the KMA during April and 
June. It provides oak pollen risk grades for each region in South Korea in the form of a digital 
map. Conventional regression models to predict the risk grades of pine and Japanese hop 
pollen grains can be upgraded using the DNN model in the future.
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