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Abstract
This paper studies the analytical, semi-analytical, and numerical solutions of the
Cahn–Allen equation, which plays a vital role in describing the structure of the
dynamics for phase separation in Fe–Cr–X (X =Mo,Cu) ternary alloys. The modified
Khater method, the Adomian decomposition method, and the quintic B-spline
scheme are implemented on our suggested model to get distinct kinds of solutions.
These solutions describe the dynamics of the phase separation in iron alloys and are
also used in solidification and nucleation problems. The applications of this model
arise in many various fields such as plasma physics, quantummechanics,
mathematical biology, and fluid dynamics. The comparison between the obtained
solutions is represented by using figures and tables to explain the value of the error
between exact and numerical solutions. All solutions are verified by using
Mathematica software.
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1 Introduction
The nonlinear partial differential equation (NLPDE) have been considered a fundamen-
tal icon in many research ideas. It has been used to formulate many natural, engineering,
mechanical, and physical phenomena; this happens because it contains beforehand un-
known multi-variable functions and its derivatives. During the last decade, many aspects
have been formulated in NLPDE form. Study and investigation of the solitary wave for
these models are considered as one of the basic interests of many researchers. The ob-
tained solutions are used to motivate the semi-analytical and numerical schemes to be
more accurate. Moreover, the solitary wave is a kind of wave which propagates without any
time evolution in shape or size. Many analytical, semi-analytical and numerical schemes
have been derived from investigating the physical dynamics of these models such as the
Adomian decomposition method, the simplest equation method, modified tanh-function
method, B-spline method, iterative method [1–14].

In this context, many nonlinear evolutions equations which represent many impor-
tant phenomena have been studied and one investigated its properties and dynamical
behavior such as by the Benjamin–Bona–Mahony equation, Bateman–Burgers equation,
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Benjamin–Ono equation, Boomeron equation, Calabi flow equation, Cauchy momentum
equation, complex Monge–Ampère equation, Davey–Stewartson equation [15–30].

This research paper focuses on studying the Cahn–Allen equation which is considered
as one of the essential models in the plasma physics, quantum mechanics, mathematical
biology, and fluid dynamics and describes the dynamics of the phase separation in iron
alloys. Moreover, it is also used in solidification and nucleation problems. The Allen–Cahn
equation was derived to describe the process of phase separation in multicomponent alloy
systems, including order–disorder transitions where it is a reaction–diffusion equation of
mathematical physics. This model is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ξt = ΥΞ [div(ε2
n � Ξ ) – f ′(Ξ )] on Ω × Γ ,

Ξ = Θ on ∂ΞΩ × Γ ,

–(ε2
n � Ξ ) · m = q on ∂qΩ × Γ ,

Ξ = Ξ0 on Ω × {0},

(1)

where ΥΞ , f , Θ , q, Ξ0, m represent the mobility, the free energy density, the control on the
state variable at the portion of the boundary ∂ΞΩ , the source control at ∂qΩ , the initial
condition, and the outward normal to ∂Ω , respectively. This model is also the L2 gradi-
ent flow of the Ginzburg–Landau–Wilson free energy functional and close to the Cahn–
Hilliard equation.

The Cahn–Allen equation (a.k.a. as Allen–Cahn equation or the Nagumo equation) is
given by

Ξt = 	Ξ – f (Ξ ), x ∈ RN , t > 0, (2)

where

f (Ξ ) =
(
Ξ 2 – 1

)
(Ξ – a). (3)

According to the interfaces that travel upwards in the vertical y direction with a constant
speed c, we can rewrite Eq. (2) as

Ξt =
∞∑

i=0

∂2
xi
Ξ + Ξyy + aΞ 2 + Ξ – Ξ 3 – a. (4)

According to the De Giorgi conjecture, the natural extension of Eq. (4) has the following
form:

Ξt = Ξyy – Ξ – Ξ 3 + 	′Ξ . (5)

Thus, it is given in the simple form of

Ξt – Ξxx + Ξ 3 – Ξ = 0. (6)

The strategy of this paper is summarized as follows: In Sect. 2, we apply the modified
Khater method, Adomian decomposition method, and B-spline schemes [31–35] to the
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Cahn–Allen model [36–39]. In Sect. 3, we study our obtained solutions, showing a novel
comparison between our solutions and the other existing results in the available literature.
In Sect. 4, we draw a conclusion of all major results.

2 Application
In this section, the analytical, semi-analytical and numerical schemes are applied to our
suggested model. Using the wave transformation Ξ = Ξ (x, t) = Ξ (�), � = kx+ωt on Eq. (6)
yields

ωΞ ′ – k2Ξ ′′ + Ξ 3 – Ξ = 0. (7)

Using the balance homogeneous rule between the highest order derivatives and nonlinear
terms leads to n = 1.

2.1 Analytical solution
Applying the modified Khater method on Eq. (7) leads to formulating the general solution
form of the Cahn–Allen equation,

Ξ (�) =
n∑

i=1

aiKif (�) +
n∑

i=1

biK–if (�) + a0 = a0 + a1Kf (�) +
b1

Kf (�) , (8)

where K is arbitrary constant and f (�) is a solution function of the following auxiliary
equation:

f ′(�) =
β + αk–f (�) + σkf (�)

ln(K)
, (9)

where β , α, σ are arbitrary constants, which will be determined. Substituting Eq. (8) along
with (9) into Eq. (7) and collecting all coefficients of the same power of kf (�) gives an alge-
braic equation system. Solving the obtained system yields

Family I
[

a0 →
√

(β2 – 4ασ )2 – β
√

β2 – 4ασ

2(β2 – 4ασ )
, a1 → –

σ
√

β2 – 4ασ
, b1 → 0,

ω → 3
√

(β2 – 4ασ )2

2(β2 – 4ασ )3/2 , k → –
1√

2
√

β2 – 4ασ

]

,

Family II
[

a0 →
√

(β2 – 4ασ )2 – β
√

β2 – 4ασ

2(β2 – 4ασ )
, a1 → 0, b1 → –

α
√

β2 – 4ασ
,

ω → –
3
√

(β2 – 4ασ )2

2(β2 – 4ασ )3/2 , k → –
1√

2
√

β2 – 4ασ

]

.

Thus, the solitary wave solutions of the Cahn–Allen equation according to Family I are
given as follows.

When β2 – 4ασ < 0 and σ 	= 0

Ξ1(x, t) =
1

2(β2 – 4ασ )3/2

[
√

β2 – 4ασ

√
(
β2 – 4ασ

)2 +
(
4ασ – β2)3/2

× tan

(√
4ασ – β2(3t

√
(β2 – 4ασ )2 –

√
2x(β2 – 4ασ ))

4(β2 – 4ασ )3/2

)]

, (10)
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Ξ2(x, t) =
1

2(β2 – 4ασ )3/2

[
√

β2 – 4ασ

√
(
β2 – 4ασ

)2 +
(
4ασ – β2)3/2

× cot

(√
4ασ – β2(3t

√
(β2 – 4ασ )2 –

√
2x(β2 – 4ασ ))

4(β2 – 4ασ )3/2

)]

. (11)

When β2 – 4ασ > 0 and σ 	= 0

Ξ3(x, t) =
1
2

(
β2 – 4ασ

√
(β2 – 4ασ )2

+ tanh

(
1
4

(
3t(β2 – 4ασ )
√

(β2 – 4ασ )2
–

√
2x

)))

, (12)

Ξ4(x, t) =
1
2

(
β2 – 4ασ

√
(β2 – 4ασ )2

+ coth

(
1
4

(
3t(β2 – 4ασ )
√

(β2 – 4ασ )2
–

√
2x

)))

. (13)

When ασ < 0 and σ 	= 0 and α 	= 0 and β = 0

Ξ5(x, t) = –

√
α2σ 2 + ασ tanh( 1

4 ( 3ασ t√
α2σ 2 +

√
2x))

2ασ
, (14)

Ξ6(x, t) = –

√
α2σ 2 + ασ coth( 1

4 ( 3ασ t√
α2σ 2 +

√
2x))

2ασ
. (15)

When ασ > 0 and σ 	= 0 and α 	= 0 and β = 0

Ξ7(x, t) = –

√
α2σ 2 + ασ tanh( 1

4 ( 3ασ t√
α2σ 2 +

√
2x))

2ασ
, (16)

Ξ8(x, t) = –

√
α2σ 2 + ασ coth( 1

4 ( 3ασ t√
α2σ 2 +

√
2x))

2ασ
. (17)

When β = 0 and α = –σ

Ξ9(x, t) =
1
2

(

coth

(
1
4

(
3t
α2 –

√
2x

))

+ 1
)

. (18)

When α = 0 and β 	= 0 and σ 	= 0

Ξ10(x, t) =
1
2
β

(
β

√
β4

+

2σ

σ–2e
β(

√
2β2x–3

√
β4t)

2(β2)3/2

– 1

√
β2

)

. (19)

When β = 0 and α = σ

Ξ11(x, t) =
α
√

–α2 tan(C + α(3
√

α4t+
√

2α2x)
4(–α2)3/2 ) –

√
α4

2α2 . (20)

Meanwhile, the solitary wave solutions of the Cahn–Allen equation according to Family
II are given as follows.

When β2 – 4ασ < 0 and σ 	= 0

Ξ12(x, t)

=
1
2

[

–
β

√
β2 – 4ασ

+
β2 – 4ασ

√
(β2 – 4ασ )2
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+
4ασ

√
β2 – 4ασ (β +

√
4ασ – β2 tan(

√
4ασ–β2(3t

√
(β2–4ασ )2+

√
2x(β2–4ασ ))

4(β2–4ασ )3/2 ))

]

, (21)

Ξ13(x, t)

=
1
2

[

–
β

√
β2 – 4ασ

+
β2 – 4ασ

√
(β2 – 4ασ )2

+
4ασ

√
β2 – 4ασ (β +

√
4ασ – β2 cot(

√
4ασ–β2(3t

√
(β2–4ασ )2+

√
2x(β2–4ασ ))

4(β2–4ασ )3/2 ))

]

. (22)

When β2 – 4ασ > 0 and σ 	= 0

Ξ14(x, t) =
1
2

[

–
β

√
β2 – 4ασ

+
β2 – 4ασ

√
(β2 – 4ασ )2

+
4ασ

√
β2 – 4ασ (β –

√
β2 – 4ασ tanh( 1

4 ( 3t(β2–4ασ )√
(β2–4ασ )2

+
√

2x)))

]

, (23)

Ξ15(x, t) =
1
2

[

–
β

√
β2 – 4ασ

+
β2 – 4ασ

√
(β2 – 4ασ )2

+
4ασ

√
β2 – 4ασ (β –

√
β2 – 4ασ coth( 1

4 ( 3t(β2–4ασ )√
(β2–4ασ )2

+
√

2x)))

]

. (24)

When ασ < 0 and σ 	= 0 and α 	= 0 and β = 0

Ξ16(x, t) =
1
2

(

coth

(
1
4

(√
2x –

3ασ t√
α2σ 2

))

–
ασ√
α2σ 2

)

, (25)

Ξ17(x, t) =
1
2

(

tanh

(
1
4

(√
2x –

3ασ t√
α2σ 2

))

–
ασ√
α2σ 2

)

. (26)

When β = 0 and α = –σ

Ξ18(x, t) =
1
2

(√
α4

α2 + tanh

(
1
4

(
3
√

α4t
α2 +

√
2x

)))

. (27)

When β = α
2 = κ and σ = 0

Ξ19(x, t) =

√
κ4 + κ

√
κ2( 1

e
κ(3

√
κ4t+

√
2κ2x)

2(κ2)3/2 – 1
2

+ 1)

2κ2 . (28)

When β = 0 and α = σ

Ξ20(x, t) =
α
√

–α2 cot(C + α(
√

2α2x–3
√

α4t)
4(–α2)3/2 ) –

√
α4

2α2 . (29)
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When σ = 0 and β 	= 0 and α 	= 0

Ξ21 =
1
2
β

(
β

√
β4

+

1 – 2β

β–αe
β(3

√
β4t+

√
2β2x)

2(β2)3/2
√

β2

)

. (30)

2.2 Semi-analytical solution
Applying the Adomian decomposition method on Eq. (7) allows rewriting it as

LΞ (�) + RΞ (�) + NΞ (�) = 0, (31)

where L, R, N represent a differential operator, a linear operator and nonlinear term, re-
spectively. Using the inverse operator L–1 on (31), yields

∞∑

i=0

Ξi(�) = Ξ (0) + Ξ ′(0)Ξ +
ω

k2 L–1

( ∞∑

i=0

(Ξi)′
)

–
1
k2 L–1

( ∞∑

i=0

Ξi

)

+
1
k2 L–1

( ∞∑

i=0

Ai

)

. (32)

Under the condition [α = –1,β = 0,σ = 4,ω = – 3
8 , k = – 1

4
√

2 ] on Eq. (14), we get

Ξexact =
1
2
(
tanh(2Ξ ) + 1

)
. (33)

So we obtain

Ξ0 = � +
1
2

, (34)

Ξ1 =
8�5

5
+ 4�4 –

4�3

3
– 12�2 +

�
2

+
1

20
, (35)

Ξ2 =
128�10

75
+

128�9

15
+

352�8

35
–

544�7

21
–

976�6

15
–

3572�5

75
+

138�4

5
+

704�3

15

–
7�2

2
. (36)

According to Eqs. (34)–(36), we get the semi-analytical solution of Eq. (6),

ΞSemi-Analytical =
1024�16

375
+

8192�15

375
+

91,648�14

1575
–

2048�13

225
–

534,272�12

1575

–
4,564,384�11

7875
+

374,768�10

7875
+

85,928�9

75
+

268,132�8

225

–
146,998�7

1575
–

860,104�6

1125

–
155,033�5

750
+

1701�4

50
+

37�3

300
–

7�2

80
+ · · · . (37)
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2.3 Numerical solution
This part discusses the numerical solution of the Cahn–Allen equation by using the quin-
tic B-spline. Based on the quintic B-spline, the suggested solution of the ordinary differ-
ential of the Cahn–Allen equation is given as

ϕ(�) =
n+1∑

i=–1

ciBi, (38)

where ci, Bi meet the conditions

Lϕ(�) = f
(�i,ϕ(�i)

)
where (i = 0, 1, . . . , n) (39)

and

Bi(�) =
1
h5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� – �i–3)5, � ∈ [�i–3,�i–2],

(� – �i–3)5 – 6(� – �i–2)5, � ∈ [�i–2,�i–1],

(� – �i–3)5 – 6(� – �i–2)5 + 15(� – �i–1)5, � ∈ [�i–1,�i],

(�i+3 – �)5 – 6(�i+2 – �)5 + 15(�i+1 – �)5, � ∈ [�i,�i+1],

(�i+3 – �)5 – 6(�i+2 – �)5, � ∈ [�i+1,�i+2],

(�i+3 – �)5, � ∈ [�i+2,�i+3],

0, otherwise,

(40)

where i ∈ [–2, n + 2]. Thus, the approximate solution is given as

Ξi(�) = ci–2 + 26ci–1 + 66ci + 26ci+1 + ci+2. (41)

Substituting Eq. (41) and its derivatives into Eq. (6) yields a system of equations. Solving
this system gives the value of ci. Substituting the values of ci, Bi into Eq. (38), one obtains

3 Results and discussion
This section discusses and studies the solutions obtained in (2.1), (2.2), (2.3) to show the
novel aspects of our obtained solutions. This study is organized as follows:

1. In Sect. 2.1, the modified Khater method is applied to the Cahn–Allen to get the
analytical wave solutions of this equation to study the structure of the dynamics for
phase separation in Fe–Cr–X (X = Mo, Cu) ternary alloys. We compare our
obtained solutions with that obtained in [37].

In that paper, Hosseini, Bekir, and Ansari have used the modified Kudryashov
method to get the analytical wave solutions of the Cahn–Allen equation, and by
focusing on their solutions, we find Eq. (30) is similar to u1,2(x, t) when
[–α = d,β = 1, e = a]. On the other side, all other obtained solutions in our paper are
considered as a different form of solutions of that obtained in [37]. Also, we can see
that the modified Khater method gives many different forms of solutions, not like
the modified Kudryashov method, and that is considered as a good advantage of the
method itself. Moreover, we sketch some results in Figs. 1–6 of our solutions to
show more physical properties of the phase separation in Fe–Cr–X (X = Mo, Cu)
ternary alloys.
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Figure 1 Solitary wave of the Cahn–Allen equation by using Eq. (12) in three- (a), two- (c) dimensional and
contour plot (b), when [σ = 1,α = 2,β = 3], which shows the structure of the dynamics for phase separation
in Fe–Cr–X (X =Mo,Cu) ternary alloys

Figure 2 Solitary wave of the Cahn–Allen equation by using Eq. (13) in three- (a), two- (c) dimensional and
contour plot (b), when [σ = 1,α = 2,β = 3], which shows the structure of the dynamics for phase separation
in Fe–Cr–X (X =Mo,Cu) ternary alloys

Figure 3 Solitary wave of the Cahn–Allen equation by using Eq. (19) in three- (a), two- (c) dimensional and
contour plot (b), when [σ = 1,α = 0,β = 3], which shows the structure of the dynamics for phase separation
in Fe–Cr–X (X =Mo,Cu) ternary alloys

2. In Sect. 2.2, the Adomian decomposition method is applied to get the
semi-analytical solutions, and by using one of the obtained analytical solution we
explain the comparison between these solutions in Table 1.

3. In Sect. 2.3, we apply the quintic B-spline to get the numerical solution of the
Cahn–Allen equation. We explain the comparison between these solutions in
Table 2.
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Figure 4 Semi-analytical wave solution of the Cahn–Allen equation by using Eq. (37) in combined, separated,
and radar plots

Figure 5 Semi-analytical wave solution of the Cahn–Allen equation by using Eq. (37) in three- (d), two- (f)
dimensional, and contour (e) plots when x ∈ [–10, 10], t ∈ [–10, 10]

Figure 6 Numerical wave solution of the Cahn–Allen equation in combined, separated, and radar plots

4. According to Tables 1 and 2, we can see the superiority of the Adomian
decomposition method on the quintic B-spline where the absolute error between
the analytical and semi-analytical solutions is smaller than that obtained between
analytical and numerical solutions.

4 Conclusion
In this paper, the modified auxiliary equation, the Adomian decomposition method, and
the B-spline scheme were successfully implemented on the Cahn–Allen equation to get
the analytical, semi-analytical, and numerical solutions that show the structure of the dy-
namics for phase separation in Fe–Cr–X (X = Mo, Cu) ternary alloys. Some solutions are
sketched to represent and explain the physical properties of them. Moreover, the com-
parison between these distinct solutions is given in the tables to show the absolute error
between exact, semi-analytical, and numerical solutions. These tables show the superi-
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Table 1 Comparison between analytical and semi-analytical solutions of the Cahn–Allen equation to
calculate the values of absolute error, which explains the accuracy of both kinds of solutions

Value of � Value of exact solution Value of semi-analytical solution Value of absolute error

0.001 0.5010000000 0.5010000000 2.661339773964523×10–9

0.002 0.5020000000 0.5020000000 2.1248204400363×10–8

0.003 0.5030000000 0.5030000000 7.15695510822817×10–8

0.004 0.5040000000 0.5040000000 1.6930786361275573×10–7

0.005 0.5050000000 0.5050000000 3.3001991137803534×10–7

0.006 0.5060000000 0.5060000000 5.691375020145864×10–7

0.007 0.5070000000 0.5070000000 9.019682321171425×10–7

0.008 0.5079990000 0.5080000000 1.3436962324583925×10–6

0.009 0.5089990000 0.5090000000 1.9093829096897144×10–6

0.010 0.5099990000 0.5100000000 2.6139676849378895×10–6

Table 2 Comparison between analytical and numerical solutions of the Cahn–Allen equation to
discuss the absolute error between both of them that explains the convergence between these
solutions

Value of � Value of exact solution Value of numerical solution Value of absolute error

0.00 0.5000000000 0.5000000000 2.220446049250313×10–16

0.10 0.5986876601 0.2413803205 0.3573073396
0.20 0.6899744811 0.1579706676 0.5320038135
0.30 0.7685247835 0.1843970897 0.5841276938
0.40 0.8320183851 0.2211480497 0.6108703354
0.50 0.8807970780 0.2798141133 0.6009829646
0.60 0.9168273035 0.3541465854 0.5626807182
0.70 0.9426758241 0.4561599710 0.4865158531
0.80 0.9608342772 0.5854048335 0.3754294438
0.90 0.9734030064 0.8229630569 0.1504399495
1.00 0.9820137900 0.9820137900 1.1102230246251565×10–16

ority of the Adomian decomposition method on the quintic B-spline, since the absolute
error obtained by the first method is smaller than that obtained by the second method. The
solutions were represented, allowing a physical interpretation and better interpretation of
their properties. In summary, this paper studied the Cahn–Allen equation and found rel-
evant solutions that provide new explanations of real-world industrial phenomena. As we
see in our paper, some numerical schemes can also be applied to this equation, such as in
[23–25], and studying and using these methods to our model will be our future work.
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