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Abstract

Proper functioning of the lymphatic system is required for normal immune responses, fluid balance, and lipid
reabsorption. Multiple regulatory mechanisms are employed to ensure the correct formation and function of
lymphatic vessels; however, the epigenetic modulators and mechanisms involved in this process are poorly
understood. Here, we assess the regulatory role of mouse Dot1l, a histone H3 lysine (K) 79 (H3K79) methyltransferase,
in lymphatic formation. Genetic ablation of Dot1/ in Tie2(4) endothelial cells (ECs), but not in Lyvel(+4) or Prox1(+)
lymphatic endothelial cells (LECs) or Vav1(4) definitive hematopoietic stem cells, leads to catastrophic lymphatic
anomalies, including skin edema, blood-lymphatic mixing, and underdeveloped lymphatic valves and vessels in
multiple organs. Remarkably, targeted Dot1l loss in Tie2(+) ECs leads to fully penetrant lymphatic aplasia, whereas
Dot1l overexpression in the same cells results in partially hyperplastic lymphatics in the mesentery. Genetic studies
reveal that Dotll functions in c-Kit(+) hemogenic ECs during mesenteric lymphatic formation. Mechanistically,
inactivation of Dot1l causes a reduction of both H3K79me?2 levels and the expression of genes important for LEC
development and function. Thus, our study establishes that Dot1l-mediated epigenetic priming and transcriptional
regulation in LEC progenitors safeguard the proper lymphatic development and functioning of lymphatic vessels.

Introduction

The lymphatic system plays an important role in
immune surveillance and the modulation of fluid balance
and lipid reabsorption"?. An important issue in lymphatic
biology that remains poorly addressed is the epigenetic
mechanisms that coordinate lymphatic endothelial cell
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(LEC) development and function. Although recent studies
suggest a distinct origin for organ-specific LECs®>™®, the
emergence of lineage-committed LECs is generally believed
to start with polarized Prox1 expression in a subset of
cardinal vein (CV) endothelial cells (ECs) on approximately
embryonic day 9.5 (E9.5) in the mouse”®, The development
of LECs is tightly controlled via multiple regulatory
mechanisms involving transcription factors, such as sex-
determining region Y (SRY)-box 18 (Sox18)'°, nuclear
receptor subfamily 2, group F, member 2 (Nr2f2, also
known as COUP-TFI)", and prospero homeobox 1
(Prox1)®'?, as well as the vascular endothelial growth factor
C (Vegfc)—vascular endothelial growth factor receptor 3
(Vegfr3) signaling pathway'®>™¢, Direct binding of Sox18 to
the Proxl promoter activates its expression’, whereas
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Nr2f2 physically interacts with Prox1 and modulates its
activity'”'®, The lymphangiogenic factor Vegfr3 has been
shown to be necessary for the maintenance of Proxl
expression in LEC progenitors via a positive Prox1-Vegfr3
feedback loop'?. Lineage-committed LECs bud off from the
CV and start migrating toward a high concentration of
Vegfc to form primitive lymphatic sacs. A partial or com-
plete blockage of the Vegfc—Vegfr3 axis in LECs causes
various lymphatic defects, including aplastic lymphatics in
the skin and mesentery, skin edema, and aberrant migra-
tion of Proxl(+) LEC progenitors'®', Improper
blood-lymph separation due to the malformation of lym-
phatic valves causes blood—lymphatic mixing. A number of
genes involving these processes have been identified,
including forkhead box C2 (Foxc2)’**!, GATA-binding
protein 2 (Gata2)**, ProxI*', gap junction protein, alpha 4
(Gja4)*"**, and integrin alpha 9 (Itga9)**. Studies have
demonstrated that genetic mutation or aberrant regulation
of the key lymphatic genes are involved in human lym-
phatic disorders®>2°,

Furthermore, emerging evidence has suggested that
lymphatic development and function may be also sub-
jected to epigenetic regulation®”*®, Brahma-related gene 1
(Brgl), an ATP-dependent chromatin remodeler, reg-
ulates Nr2f2 expression in developing veins. Another
chromatin remodeler, chromodomain helicase DNA-
binding protein 4 (Chd4), is essential for LEC integrity
by regulating urokinase plasminogen activator receptor
(uPAR) expression”’. In addition, histone deacetylase 3
(Hdac3) function is required for lymphatic valve forma-
tion by regulating Gata2 expression in response to shear
stress®’. Recently, histone acetyltransferase p300 was
shown to promote LEC specification through the activa-
tion of lymphatic genes that are critical to the process of
blood EC (BEC)-to-LEC differentiation®°. However, the
role of histone methylation in LEC development and
function is largely unknown.

Disruptor of telomeric silencing 1-like [Dotll, also
known as lysine methyltransferase 4 (KMT4)] is a histone
H3 lysine 79 (H3K79) methyltransferase that plays pivotal
roles in the homeostasis of various organs, including the
heart® and cartilage®®, hematopoiesis®> >, and cell
reprogramming®. Previous studies have shown that
mistargeting of human DOTI1L through its interaction
with leukemic fusion proteins is linked to leukemogen-
esis®’ ™%, and that constitutive DotI! knockout (KO) leads
to embryonic lethality due to defects in the formation of
the extraembryonic vascular network®>*’, However, little
is known about the cell type that causes this vascular
phenotype, and whether Dotl1l is functionally involved in
the formation of other vessel types, including embryonic
blood vessels and lymphatic vessels. Here, we demon-
strated that epigenetic priming of LEC progenitors by
Dotll confers their precise development and function by
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controlling the expression of genes important for LEC
development and valve formation in the mouse. There-
fore, our study established another regulatory mechanism
involved in LEC development and function.

Results
Dot1l loss in Tie2(+) cells leads to catastrophic lymphatic
anomalies

Previous studies demonstrated that a Dotll deficiency
caused mid-gestational embryonic lethality, with under-
development of yolk-sac vessels and cardiac hyper-
trophy®>"*°. To gain insight into the function of Dotll in
ECs, embryonic vessel development was assessed in a
compound mouse strain carrying Dot1l~'~;Tie2-Cre;R26R
(Supplementary Fig. Sla, d). Consistent with a previous
report, less branched and more disorganized and dilated
vessels, as shown by the LacZ reporter, were evident in
the mutant brains at E9.5 and 10.5 (Supplementary Fig.
Sla, b)*. This observation was further confirmed by
whole-mount immunostaining of CD31 and quantification
of vessel-branching points (Supplementary Fig. Slc, d). To
investigate the basis for impaired vessel development, we
examined the BEC-autonomous effects of Dotll function
by breeding mice carrying a conditional DotI! allele with a
Tg(Tie2-Cre) strain, which yielded Dot1/**“ mice. Unex-
pectedly, Dot1I** embryos showed normal development
by E12.5, without discernible defects in blood vessel for-
mation (Supplementary Fig. Sle—g), suggesting that the
blood vessel phenotype observed in E9.5/10.5 Dotll™'~
embryos was most likely caused by BEC-independent
Dotll activity. Nevertheless, from E13.5 onward, the
Dot1/*F€ animals exhibited lethality, with severe edema
and hemorrhage-like spots on the skin, especially on the
neck (Fig. 1a). These phenotypes became more severe at
later stages, and surviving DotI[**“ newborns exhibited
chylous ascites (Fig. 1b); none of them survived beyond
3 weeks of age (Supplementary Table S1). Immunohis-
tochemistry and whole-mount immunostaining using anti-
Emcn, anti-Terl19, and anti-Lyvel antibodies revealed
that Dot1I°*“ led to skin edema and blood-filled hypo-
plastic lymphatics in multiple organs, including the heart,
diaphragm, and mesentery, at E15.5 and E17.5 (Fig. 1c;
Supplementary Fig. 2a—f). Notably, lymphatic aplasia (no
or <50% Lyvel(+) lymphatic vessels in 7 and 4 out of 11
embryos, respectively) was observed in the mesentery from
the jejunum to the ileum in mutant mice (Fig. 1e, f). The
lymphatics in the mesenteric sac of mutant mice were also
hypoplastic compared with those in control mice (Fig. 1e).
The lymphatic phenotype in the mesentery was recon-
firmed by whole-mount immunofluorescent stainings with
other LEC markers including PROX-1, NRP2 and
VEGFR3 (data not shown). However, a loss of Dotll had
little effects on skin lymphatic vessel formation (Supple-
mentary Fig. S2g, h). Together, these data suggest that a
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Fig. 1 Dot1l depletion in Tie2(+) cells causes lymphatic defects. a, b Representative images of Dot7* and littermate control embryos at
E13.5-15.5 and newborns. Scale bar = 2 mm. P1: postnatal day 1. ¢ Immunohistochemistry analysis of E15.5 embryos. Images of Emcn (brown) and Lyvel
(red) in control and Dot1FE“ mice. White rectangles represent enlarged images on right panels. Scale bar = 500 pum. Scale bar of the enlarged image =
100 pm. Arrow: skin edema. d Whole-mount confocal images stained with antibodies against Ter119 and Lyvel in E15.5 sternum. Scale bar = 100 um.
e Representative whole-mount confocal images of E17.5 embryos stained with anti-Lyve1 and anti-Emcn antibodies. Lyvel-positive dots: macrophages.
Scale bar = 200 pm. f Quantification of Lyvel(4) coverage in the mesenteries of E17.5 Dot1*¥< (n = 11) and littermate control (n = 15) embryos.
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loss of Dotll in cells that historically express Tie2 causes
defects in lymphatic vessels rather than blood vessels.

Dot1/*E€ impairs the formation of lymphatic valves

Given that aberrant lymphatic valve formation can
cause blood-lymphatic mixing, we next sought to
determine the function of Dotll in lymphatic valve for-
mation in a strain other than the Dot1/**“ mice as the
formation of lymphatics in multiple organs is impaired in
the mice. Therefore, Dotll was temporally abolished by
using a robust inducible Cre driver, ROSA26-CreER, in
Dot1I™° mice, and the mesenteric lymphatics were
examined. Since constitutive KO of Dot1/ affects embryo
viability, we first determined the doses of tamoxifen (TM)
that had minimal effects on embryonic survival; the
optimal doses were 0.5mg/25g for E9.5 embryos and
1.25 mg/25 g for E10.5-13.5, since injection of the higher
dose (1.25 mg/25 g) on E9.5 caused complete embryonic
lethality by E14.5-15.5. Nearly half of the E17.5 mutant
embryos displayed hypoplastic mesenteric lymphatics
after a single injection of the low dose (0.5 mg/25g) at
E9.5 (in three out of seven embryos with 250% coverage),
whereas at the higher TM dose, severe and frequent
lymphatic hypoplasia was detected in the mesentery at
E10.5 (in six out of eight embryos with <50% coverage
and in two out of eight embryos with >50% coverage).
The phenotype was alleviated when this dose of TM was
injected at later stages (in seven out of ten embryos at
E11.5, one out of three embryos at E12.5, and none at
E13.5) (Fig. 2a, b). Then, to facilitate the assessment of
Tie2(+) cells, in which Dot1l regulates lymphatic valve
formation, E17.5 mesenteries were harvested from the
E11.5 TM-injected Dot1/™° mice and analyzed by
immunofluorescence with anti-Prox1 and anti-Lyvel
antibodies followed by morphometric analysis. As
shown in Fig. 2¢, d, a significantly reduced number of
lymphatic valves was detected in the Dot1/"™° mesenteric
lymphatics.

Dot1l priming in LEC progenitors is required for proper
LEC development

Since Tie2(+) cells can develop into LECs, HSCs, and
BECs, we next determined whether the lymphatic
abnormality observed in the Dot1/°F“ mice was caused by
a Dotll deficiency in LECs or HSCs. To this end, mice
carrying a conditional Dot/ allele were crossed with an
LEC-specific Cre driver, Lyvel"S"*/™, to generate a
Dot1I*™*€ strain (Fig. 3a). Interestingly, Lyvel®GF"/< .
mediated Dotll depletion caused neither embryonic
lethality nor the lymphatic phenotypes observed in the
Dot 11** mice (Fig. 3b). Dot1I*"**© mice were born at the
expected Mendelian ratio and appeared healthy during
the postnatal period. The absence of a lymphatic phe-
notype in DotI[*'F is not due to an inefficient Cre
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recombinase, as Lyvel=S"?/™ displays the expected Cre
activity in a subset of E10.5 CV BECs and adjacent LECs,
and E17.5 mesenteric lymphatics (Supplementary
Fig. S3a, b). To confirm this observation, mice carrying
the Dotli! conditional allele were bred with another LEC-
specific inducible Cre driver, Tg(Proxl -CreER™?), to
generate the Dot1/'*"*C strain. None of E17.5 Dotl[““E¢
embryos displayed the lymphatic defects observed in the
Dot1I**C mice after 4-hydroxytamoxifen (4-OHT)
administration for two consecutive days on E9.5/E10.5 or
E10.5/E11.5 (Fig. 3¢, d).

Given that Vavl(+) dHSCs contribute to the develop-
ment of cardiac lymphatics®, we next examined the effect
of Dot1l depletion in dHSCs on LEC development using a
Tg(Vavi-iCre) strain (Dot 11*M5C). None of the mutant
embryos exhibited defects in the skin or mesenteric
lymphatics (Fig. 3e, f), which is consistent with a previous
report showing that an independent Dot1/*5C strain
was viable but showed impaired hematopoiesis®”. These
results support the notion that a loss of function in BECs/
LEC progenitors, but not in the LECs or dHSCs, mediates
the observed lymphatic defects.

Dot1l function in c-Kit(+) hemogenic ECs is required for
mesenteric LEC development

A recent study revealed that the formation of mesen-
teric lymphatics is mediated by both lymphangiogenesis
of preexisting lymphatics from CV BECs and lymphvas-
culogenesis of c-Kit(+) HEs, which presumably originate
from both the yolk sac and aorta—gonad—mesonephros
(AGM)*. Evidence also suggests that cardiac LECs partly
originate from yolksac-derived HEs>. Moreover, the most
severe lymphatic phenotype was observed when Dotll
was abolished at the time when HEs are actively formed
in the mesentery of Dot1™° mice (Fig. 2a, b). Thus, to
directly evaluate the requirement of Dotll in c-Kit(+)
HEs for the regulation of mesenteric LEC differentiation,
we examined the mesentery in E17.5 Dot12V*%cKit“ERT2
(Dot11*"F) embryos after 4-OHT injection for two con-
secutive days on E9.5/E10.5, E11.5/E12.5, or E12.5/E13.5.
Incomplete formation of the mesenteric lymphatics was
observed in a subset of E17.5 Dot1/*""* embryos (7 out of
16 injected on E9.5/E10.5 and 4 out of 6 injected on
E11.5/E12.5), whereas milder lymphatic defects were
detected following injection on E12.5/E13.5 (2 out of 7
embryos) (Fig. 4a, b). Taken together, these results
strongly suggest that epigenetic priming by Dotll in LEC
progenitors, including both Tie2(+) and c-Kit(+) cells,
during LEC differentiation is essential for the formation of
mesenteric lymphatics. Moreover, given that HEs from
the yolk sac are Lyvel positive, whereas HEs from AGM
are Lyvel negative®', our findings also imply that Dotll
function in yolk-sac-derived HEs may have little effect on
mesenteric LEC differentiation.
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Fig. 2 Dot1l loss impairs lymphatic valve formation. a Gross overview of E17.5 embryos (upper panel, scale bar =2 mm) and their whole-mount
immunofluorescent staining with anti-Lyve1 and anti-Emcn antibodies in the respective mesenteries (lower panel) after a single TM injection (0.5 mg
for £9.5 and 1.25 mg for E10.5 embryos). Scale bar =200 um. b Quantification of Lyvel(+) lymphatic coverage in TM-injected E17.5 Dot
mesenteries (n = 3-16 embryos/group). ¢, d Representative immunofluorescence images and morphometric analysis of lymphatic valves in E17.5
Dot1/*© mesenteries after TM injection at E11.5. Green: Lyvel. Red: Prox1. Data are presented as mean + s.em. *p-value < 0.05.

Control Dot1° (E11.5)
(n=6) (n=6)

HiKO

Dot1l depletion alters the lymphatic transcription program

To understand the mechanism underlying Dotll-
mediated regulation of LEC development, RNA
sequencing (RNA-Seq) of LECs isolated from E15.5
Dot1I*F¢ skin was performed. The results indicated
that 971 and 1241 genes were downregulated and
upregulated in Dot1I*F¢ LECs, respectively (Fig. 5a).
Importantly, many genes known to be critical for
lymphatic development and valve formation were
downregulated in KO LECs, including Sox18”'°,
Vegfr312'14'15, Rzzmp242, and Foxc2?%%! (Fig. 5a), which
was further confirmed by qRT-PCR (Fig. 5b). Gene
Ontology (GO) and Gene Set Enrichment Analysis
(GSEA) analyses of the genes repressed by Dotll con-
ditional knockout (cKO) revealed marked enrichment
of genes involved in both blood and lymphatic vessel
development (Fig. 5c, d). Interestingly, groups of genes
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related to immunity were significantly upregulated in
Dot1I*F¢ LECs (Fig. 5¢).

Dot1l inactivation reduces H3K79me2 enrichment at
lymphatic genes

To determine the direct target genes of Dotll,
H3K79me2 ChIP-Seq was performed in LECs exposed to
the DOTI1L inhibitor EPZ5676. Our analysis revealed
that inactivation of Dot1l caused a significant reduction
in H3K79me2 levels at cluster 1 (promoter+genebody,
1088 genes), cluster 2 (genebody™®", 2503 genes), and
cluster 3 (genebody'", 2873 genes) (Fig. 6a). Impor-
tantly, 242 genes (19 in cluster 1, 121 in cluster 2, 94 in
cluster 3, and 8 in cluster 1+ 2 + 3) involved in angio-
genesis, lymph vessel development, and vasculogenesis
showed downregulated H3K79me2 levels and gene
expression (Fig. 6b, c). Notably, a reduction in genebody
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H3K79me2 was observed for most of the commonly
repressed genes (Fig. 6b). Representative genes that are
important for LEC differentiation, migration, and valve
formation were visualized in the IGV genome browser
(Fig. 6d). These genes include Sox18, Vegfr3, Ramp?2,
Foxc2, Efnb2, and Ephb4. Ingenuity pathway analysis
(IPA) revealed that a subset of the genes commonly
repressed by Dotll inactivation were associated with
edema and aberrant lymphangiogenesis (Fig. 6e). Taken
together, Dotll-mediated H3K79 methylation in LECs
contributes to the proper expression of genes that are
important for lymphatic vessel formation and function
during LEC development.
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Dot1l overexpression in Tie2(+) or Lyve1(+) cells leads to
aberrant lymphatic formation

To complement the loss-of-function studies, we created
a novel knock-in (KI) mouse strain in which mouse Dot1/
c¢DNA-IRES-EGFP with a floxed 3 x poly(A) was inserted
into the ROSA26 locus (Supplementary Fig. S4a, b). These
KI mice were crossed with the Tg(7ie2-Cre) line to
obtain a compound strain overexpressing Dotll in ECs
(Dot1IF°F). Cre-mediated excision of the poly(A) signal
followed by transgene expression in ECs was validated by
evaluating EGFP expression in E17.5 Dot1["“°F mesen-
teric vessels (Supplementary Fig. S4c). Mesenteric lym-
phatic vessel enlargement, especially in the ileal
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mesentery, was evident in 10 out of 12 E17.5 mDot1[=“°F

embryos (Fig. 7a—c). Intriguingly, 2 out of 12 embryos and
1 out of 12 embryos displayed hypoplastic mesenteric
lymphatics and the blood-lymphatic mixing phenotype in
the skin, respectively (Fig. 7a, b). Next, to address which
EC type was responsible for the phenotype observed in
mDot1I“°F mice, an mDot1/**“°F strain was generated
using the Lyvel"SF?/“" line, Unlike in mDot1/"“°F mice,
discontinuous and hypoplastic lymphatics were observed
in the mesentery of E17.5 mDot1/**“°F mice (Fig. 7d, e).
These data indicate that Dotll plays a distinct role
depending on cell type (i.e., before or after LEC differ-
entiation). Finally, we sought to determine whether
increased Dotll expression in BECs could enhance the
repression of lymphatic genes upon Dotll loss. To that
end, we took advantage of catalytically dead Cas9 (dCas9)
to activate endogenous DotIl expression in mouse pri-
mary skin BECs (Supplementary Fig. S4d). As shown in
Fig. 7f, forced Dotll overexpression led to moderate
enhancement of key lymphatic genes, such as Foxc2,
Sox17, Tiel, Sox18, Vegfr3, and Ramp2 on day 7 post
transduction. Collectively, our analysis revealed that
meticulously regulated Dotll function in BECs or lym-
phatic progenitors is critical for normal LEC differentia-
tion and lymphatic development.

Discussion

The formation and maintenance of functional lymphatic
circulation are key for mammalian physiology. In this
study, epigenetic priming by Dotll in LEC progenitors
was found to play an essential role in lymphatic vessel
development and valve formation. Dotll is the only
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known H3K79 methyltransferase that does not contain a
canonical histone methyltransferase domain, referred to
as the Su(var)3-9, Enhancer of Zeste and Trithorax (SET)
domain'®***, Studies showed that Dotll is enriched at
actively transcribed genes through its interaction with
phosphorylated C-terminal domain of RNA polymerase II
(PollI). Thus, enrichment of di- and trimethylated H3K79
(H3K79me2/3) in genebodies is positively correlated with
Polll elongation and transcription efficiency®~*’. Con-
sistently, our genome-wide analysis indicated that Dotll
directly binds to critical lymphatic genes that coordinate
lymphatic development and function. The most promi-
nent phenotypes observed in Dotll cKO animals are
lymphatic hypoplasia, edema, and underdevelopment of
lymphatic valves. The phenotypes described in this study
are consistent with previous KO studies. It was previously
shown that KO of Sox18 and Foxc2 perturbs LEC dif-
ferentiation from BECs, leading to aplastic lymphatics
and lymphatic valve formation, respectively””**!. Accu-
mulating evidence suggests that DOTI1L has context-
dependent beneficial or adverse effects on human disease.
For example, DOT1L promotes the progression of neu-
roblastoma, whereas it protects against the development
of UV-induced melanoma®®*, Nguyen et al. demon-
strated that Dotll function is essential for the normal
maintenance of cardiovascular homeostasis, as a loss of
Dotll function in cardiomyocytes led to dilated cardio-
myopathy, with repressed dystrophin expression®’.

The genes showing repressed H3K79me2 occupancy
and expression following Dotll inactivation included
several transcription factors (Sox18, Sox17, and Foxc2)
that are critical for LEC differentiation and valve
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formation, and a signaling molecule (Vegfr3) that is
critical for LEC proliferation and migration
is associated with

Mutation of human SOX18

9,10,16,20,21

hypotrichosis—lymphedema-—telangiectasia (OMIM 607823), are linked to rare
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which is characterized by lower-limb lymphedema, cuta-
neous telangiectasia, and dilatation of superficial ves-
sels®®°L. In addition, mutations in VEGFR3 and FOXC2
lymphatic  disorders called
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(see figure on previous page)

Fig. 6 Dot1l directly regulates expression of key genes associated with LEC development and function. a Mean tag density plots showing k-
means clustering of H3K79me2 enrichment in DMSO- or EPZ5676-treated mouse primary dermal LECs (n = 3, 3: pooled biological replicates per ChIP-
Seq library). Based on the pattern of H3K79me2 enrichments, peaks are subcategorized into cluster 1 (promoter + genebody, 1088 genes), cluster 2
(genebody™", 2503 genes), and cluster 3 (genebody'®", 2873 genes). H3K79me2 peaks in the region from =5 to 45 kb around the transcription start
site (TSS) are shown. b Venn diagram and pie chart showing the number of genes commonly downregulated in both expression and H3K79me2
levels in each gene cluster. € GO term analysis of the common 242 genes. The number of genes in each term is indicated in parenthesis. —log;o(p-
value) was used for the bargraph. d Genome browser view of downregulated Dot1l target genes (Sox18, Vegfr3, Ramp2, Foxc2, Efnb2, and Eph4)
crucial for LEC development. e Ingenuity Pathway Analysis (IPA) of the genes identified as reduced by both expression and H3K79me2 ChIP-Seq
analyses. Note that the genes associated with aberrant lymphangiogenesis and edema in mouse and human were significantly downregulated by
Dot1l loss. Each shape and line color in the legend represents protein function and functional interaction, respectively.

Nonne-Milroy lymphedema (OMIM 153100) and
lymphedema-—distichiasis ~ syndrome (LDS, OMIM
153400), respectively’>~>°. Patients with Nonne—Milroy
lymphedema or LDS also display severe lymphedema,
especially in the lower limbs. Consistent with the patho-
logical characteristics of these disorders, Dot1I*“¥° mice
exhibit severe skin edema with impaired lymphatic valve
formation. It is generally thought that the MAPK signal
initiates venous EC-to-LEC transdifferentiation via tran-
scriptional activation of Sox18, which subsequently
induces Proxl expression®®*’. Then, Proxl can form a
heterodimeric complex with Nr2f2 to modulate the
expression of multiple lymphatic genes, including Vegfr3
and Pdpn'”'®, Vegfc/Vegfr3 signaling was shown to be
indistinguishable for centrifugal lymphangiogenesis by
promoting LEC proliferation, migration, and survival'®.
However, the epigenetic regulation of the core tran-
scription factors involved in the development and func-
tioning of lymphatics is poorly understood. To the best of
our knowledge, ours is the first study to show that histone
methylation is a critical contributor to LEC development
through direct regulation of transcription factors and
signal transduction. Similarly, a recent study demon-
strated that histone acetylation plays critical roles in LEC
development and function. Regulation of histone acet-
ylation by elevated fatty acid p-oxidation (FAO) in
lineage-committed LEC progenitors ensures proper gene
expression for LEC differentiation and function®®. FAO
enhancement is mediated by Proxl-targeted Cptla
expression and leads to the production of mitochondrial
acetyl-CoA, which can function as a cofactor of p300-
mediated histone acetylation. Loss of function of mouse
Hdac3 reduced lymphatic valve formation and
blood-lymphatic mixing, with aberrant gene transcrip-
tion”, Therefore, our data and others suggest that tran-
scriptional control by epigenetic mechanisms is essential
for lymph vessel formation and function.

Recent evidence has suggested the possibility that
organ-type-specific LECs may not be of a single origin,
and instead may be diverse in origin®>~°. In particular, at
least a portion of the heart and mesenteric LECs are
derived from the yolk sac and/or the AGM HEs™. Our

Official journal of the Cell Death Differentiation Association

finding further supports that Tie2(+)/c-Kit(+)/Vavl(-)
HEs likely give rise to mesenteric LECs, as a lymphatic
defect was evident in both Dot1I*“*° and Dot1/*"* mice.
It is interesting to note that the hypoplastic lymphatic
phenotype in the Dot1l*“*® embryos is not due to
apoptosis in LECs, as we failed to detect an increase in
cleaved caspase-3-positive LECs (data not shown). How-
ever, it is unclear why and how a loss of Dot1] has little or
no effect on BEC development and function in Dot1/5“<C
mice. There are several possible explanations. First,
although Dotll is broadly expressed, our RNA-Seq ana-
lysis with public data showed that Dotll is more abun-
dantly expressed in AGM c-Kit(+)/CD31(+) cells than in
c-Kit(—)/CD31(+) cells, suggesting a critical role for Dot1l
in HEs (data not shown). Second, although no other
H3K79 demethylase has been identified, it is also feasible
that H3K79 methylation and demethylation are much
more dynamic in BECs than in LECs, due to the activity of
a yet unknown H3K79 demethylase. Indeed, H3K79
methylation seems to be actively reversible. Alternatively,
an unknown H3K79 demethylase may be highly expressed
in BECs compared with LECs. Lastly, previous studies
showed that Dotll can interact with various binding
partners to form a protein complex. These proteins
include MLL fusion partners (AF4, AF9, AF10, and ENL)
and P-TEFb, which is a kinase of RNA Polll’®*°, AF17
was shown to modulate Dotll-mediated placement of
H3K79me2 and interfere with Dotll trafficking into the
nucleus by competing for AF9 binding, respectively.
Therefore, it is also possible that unidentified Dotll-
interacting proteins are differentially expressed in either
cell type to modulate Dotll activity or the accessibility of
target chromatins.

Our Dotll overexpression study revealed that Dotll-
mediated epigenetic regulation has distinct cell-type- and
time-dependent effects; Dot1l overexpression before/dur-
ing LEC differentiation exhibited hyperplastic lymphatics
in the mesentery, whereas Dot1] overexpression after LEC
differentiation exhibited hypoplastic lymphatics.

In summary, our demonstration that Dotll controls
transcriptional circuits in the lymphatic system, provides a
basis for developing better therapeutic strategies to treat
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Emcn antibodies in Dot1/F°¢

in Dot1/-F°¢

Fig. 7 Targeted Dot1/ overexpression in Tie2(+) or Lyve1(+) cells causes aberrant lymphatic formation. a Gross overview of E17.5 embryos
(scale bar = 2 mm). Enlarged image shows lymphatic-blood mixing in Dot 1/
mesenteries. Scale bar = 200 um. ¢ Morphometric analysis of mesenteric lymphatics in E17.5 Dot1F““F (n = 10) and
littermate control embryos (n = 10). Error bars show mean + s.e.m. d Representative immunofluorescence with anti-Lyvel and anti-Emcn antibodies
mesenteries. @ Morphometric analysis of Lyvel(+) coverage of mesenteric lymphatics in E17.5 Dot1/""“°F (n = 5) and littermate control
embryos (n = 3). f gRT-PCR analysis of lymphatic genes in BECs overexpressing Dot1l. n = 2.

ECOE

skin. b Whole-mount immunofluorescence with anti-Lyve and anti-

DOT1L-related leukemic patients, especially those with
pregnancy. Furthermore, our results suggest DOTIL as a
candidate biomarker for genetic screening to identify the
cause of idiopathic lymphatic disorders including chylous
ascites and lymphedema.

Materials and methods
Mice

All animal studies were reviewed and approved by
Institute of Animal Care and Use Committee (IACUC) of
Gachon University (IACUC#LCDI-2014-0045), CHA
University (IACUC#180001), and Konkuk University
(IACUC#KU18027). Generation of Dotl1l KO and condi-
tional allele mice was described in a previous study’. Tg
(Tie2-Cre) (stock # 004128), Tg(Vavl-iCre) (stock #
008610), Lyvel*S*F/“"® (stock # 012601), ROSA26°"R
(stock # 004847), and R26R (stock # 003474) mice were
purchased from Jackson Laboratory (Bar Harbor, USA).
Generation of Tg(ProxI-CreER™)® and cKit“FR"?
mice® was described in previous studies. To obtain
Dot1I**, Dot1I*"EC, Dot1I“EC, Dot11*™5C, Dot11™°,
and Dot1/AME embryos, female Dotl P72 mice were
crossed with male Dot1/*% *:Cre(+) or Dot 1% 12ﬂ;CreER
(+) mice; littermate Dot1?"*%Cre(-) or CreER(-)
embryos were used as control and Dot1*"*%,Cre(+) or
CreER(+) embryos were used as the experimental group.
For timed mating, vaginal plug was examined at noon and
embryos were harvested at designated embryonic days.

To generate the Dotll overexpression allele, 4.6 kb of
full-length mouse Dotll c¢DNA was cloned into
pBSApBpACAGftIGn vector® at the Sfil sites, and Pacl—
Ascl fragment from the pBSApBpACAG(ftIGn vector was
subcloned into pROSA26PAS® vector containing CAGG
promoter and IRES-EGFP. After electroporation and
puromycin selection, genomic DNA was extracted from
embryonic stem cells, digested with EcoRI, and analyzed
by Southern blotting; the expected sizes of EcoRI diges-
tion fragments for the knock-in (KI) and wild-type alleles
were 6.8 and 15.6 kb, respectively. A standard protocol
was used for generation of Dot1l KI chimeric mice®*. To
obtain mDot1/"*“°F and mDot1IF“F strain, the KI female
mice were crossed with male Lyvel*S**/“* and Tg(Tie2-
Cre) lines, respectively.

For genotyping, yolk sacs of embryos or tail tips from
embryos/animals were lysed in 25 mM NaOH for 2h at
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95°C. After neutralization with 1 M Tris-Cl, the lysates
were centrifuged at the maximum speed, and super-
natants containing genomic DNA were used as templates
for PCR. Amplification was carried out under the fol-
lowing conditions: denaturation for 5min at 95°C fol-
lowed by 35 cycles of denaturation for 30s at 95°C,
annealing for 30 s at 58 °C, and extension for 30 s at 72 °C.
Sequences of PCR primers used for genotyping are shown
in Table EV2.

To induce Cre activity, tamoxifen (T5648, Sigma) dis-
solved in corn oil (0.5mg/25g or 1.25mg/25g) or 4-
hydroxytamoxifen (H6278, Sigma) dissolved in DMSO
(2 mg/25 g) were injected intraperitoneally into pregnant
females, and embryonic organs were harvested at the
designated days.

Whole-mount staining, imaging, and quantification

Harvested embryos/organs were fixed in 2% paraf-
ormaldehyde at 4°C for appropriate times depending on
sample size, washed with PBS, dehydrated in methanol
series (25, 50, 75, and 100%) for 15 min/each step at room
temperature (RT) with rotating, and incubated in Dent
bleach solution (1:2=distilled water:15% DMSO in
methanol) overnight (O/N) at RT. After bleaching, samples
were serially rehydrated in 50 and 25% methanol and PBS
for 15 min each at RT with rotating and washed in 0.1%
PBST x 100 (0.1% Triton X-100 in PBS) for 2 h at RT. Then,
samples were incubated in blocking solution (0.1% PBST x
100 with 3% milk/5% normal serum) and in primary anti-
bodies against CD31 (550274, BD Pharmingen), Lyvel (11-
034, AngioBio), Endomucin (Emcn, sc-65495, Santa Cruz
Biotechnology), Ter119 (550565, BD Pharmingen), and
Nrp2 (AF567, R&D Systems) O/N at 4 °C. After washing,
samples were incubated with secondary antibodies O/N at
4°C, washed in PBST, fixed in 4% paraformaldehyde, and
analyzed under a confocal laser microscope (LSM700, Carl
Zeiss). The maximum intensity projection of embryo and
organ images was obtained using z-stack function. Alter-
natively, after the reaction with primary antibodies, samples
were washed and incubated with biotin-conjugated sec-
ondary antibodies O/N at 4 °C, washed, incubated with the
avidin-biotin complex (ABC, PK-6100, Vector Labora-
tories) solution O/N at 4°C, and treated with 3,3’-diami-
nobenzidine (DAB) solution (SK-4100, Vector Laboratories)
until brown color was developed.
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For X-gal staining, embryos were incubated in fixative
solution (1% formaldehyde, 0.2% glutaraldehyde, 2 mM
MgCl,, 5mM EGTA, and 0.02% NP-40 in PBS) for
10 min at RT, washed thoroughly with PBS, and stained
in X-gal solution (5mM KsFe(CN)s, 5mM KsFe
(CN)-3H,0, 2mM MgCl,, 0.01% Na-deoxycholate,
0.02% NP-40, and 0.75 mg/ml X-gal in 100 mM phos-
phate buffer) O/N at 37 °C. Images of DAB- or X-gal-
stained embryos/tissues were acquired using an Olympus
stereo microscope.

Whole small intestine (from jejunum to ileum) was used
to measure Lyvel(+) lymphatic coverage in Dotl[“F€,
Dot1I*™C, Dot1I*MC, Dot11*"5C, Dot11™°, Dot11*MF,
mDot1I**“F, and mDot1IF“°F mesenteries. Then, the
measurement of Lyvel(+) coverage of collecting lym-
phatics running parallel to Emcn(+) blood vessels was
categorized into absent (no lymphatics), 250% (animals
with more than half of lymphatics throughout mesenteries
examined), <50% (animals with less than half of lympha-
tics throughout mesenteries examined), and complete
(continuous lymphatics) as described in a study®. For
vessel morphometric analyses in embryonic heads, dia-
phragm, heart, and skin, anatomically matched areas from
experimental and control groups were chosen, and Lyvel
(+) or CD31(+) vessel-branching points or lengths were
measured using Zen (Carl Zeiss) and Image] software. To
quantify Lyvel(+) areas of mDot1/*“°F and mDot1/"F°F
mesenteries, pixel values of Lyvel(+) collecting lympha-
tics were measured as instructed by image quantification
protocol of Image] software.

Immunohistochemistry

Harvested embryos were fixed in 2% PFA solution O/N
at 4 °C, washed with PBS, serially dehydrated in 50, 70, 95,
and 100% ethanol for 30 min/each step at RT, incubated
in xylene for 30 min, embedded in paraffin block, and cut
into 7-um sections. The sections were deparaffinized in
xylene for 10 min, serially rehydrated in 100, 95, 70%
ethanol, and PBS for 10 min/each step, and incubated
with anti-Lyvel and anti-Emcn antibodies (1:200 each) for
1h at RT. After washing with PBS, slides were incubated
with secondary antibodies for 1h at RT, and colors
(brown for Emcn and red for Lyvel) were developed using
Polink DS-RRt-Hu/Ms A kit (DS211A-18, GBI Lab).

Quantitative RT-PCR (qRT-PCR)

Total RNAs were extracted from cultured BECs or
embryonic LECs using RNeasy Plus Mini Kit (74104,
Qiagen), and cDNA was synthesized using SMARTer Pico
PCR cDNA synthesis kit (634928, Takara) along with
Advantage 2 PCR Kit (639206, Takara) according to the
manufacturer’s instruction. qRT-PCR was performed in a
StepOnePlus™ Systems (Applied Biosystems) using Fast
SYBR® Green Master Mix (4385616, Applied Biosystems).
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Cell culture and magnetic-activated cell sorting (MACS)

Primary mouse dermal LECs derived from C57BL/6
embryos were obtained and maintained in complete
mouse endothelial cell media with supplements (C57-
6064L & M1168, Cell Biologics). All the in vitro cell
culture experiments were performed within passage 5. For
Dotll inactivation, LECs were grown in the LEC culture
media containing 2uM EPZ5676 (reconstituted in
DMSO, A12735, Adooq) for 7 days. The EPZ5676-treated
LECs were subjected to ChIP-Seq analysis. Isolation of
LECs from embryonic skin was described in a previous
study®. Briefly, E15.5 embryonic skin was removed and
enzymatically dissociated with media containing type II
and IV collagenase, and DNasel (LS004176, LS004188,
and LS006344, respectively; Worthington Biochemical
Corp.) for 20 min at 37 °C. After filtration through a 40-
pum cell strainer, dissociated cells were incubated in both
F4/80 and CD45 antibodies (13-4801 and 13-0451,
respectively; eBioscience) for 1h at RT to deplete mac-
rophage and collected using goat anti-rat IgG-coated
microbeads (130-048-101, Miltenyi Biotec). The F4/80
(-)/CD45(-) cells were incubated with Lyvel antibody
(13-0443, eBioscience) and secondary antibodies. The
Lyvel(+) LECs were collected and analyzed by RNA-Seq
and qRT-PCR analyses.

Lentivirus production and cell transduction

Catalytically dead Cas9 (dCas9) with guide RNAs
(gRNAs) was used to overexpress Dotll in BECs. Pre-
dicted gRNA sequences targeting Dot1/ promoter or 5’
Dotll upstream were obtained using CRISPR-ERA and
Quilt tools. The designed gRNA sequences are as
follows: Dot1l-OEl; 5'-TTGTTTGGCGTAAGTGCGTG
CGTCGGT-3', 5'-AAACACCGACGCACGCACTTACG
CCAA-3', Dot1l-OE2; 5'-CACCGTTTCCCCGGGTCCC
CGCTTC-3, 5-AAACGAAGCGGGGACCCGGGGAA
AC-3', Dotll-OE3; 5'-TCCCAGATTTGAACTTGACC
CCGCC-3', 5-AAACGGCGGGGTCAAGTTCAAATC
T-3', Dotll-OE4; 5-CCTCGCGGAGGAGGGCGAGT
CCAAG-3, 5-AAACCTTGGACTCGCCCTCCTCCG
C-3'. After synthesis of gRNAs containing BbslI sites, four
candidate gRNAs were cloned into BbsI-digested gRNA
cloning vectors (Addgene # 53186, 53187, 53188, and
53189), and subjected to sequencing. Then, the four
gRNAs and their promoters were subcloned into dCas9-
containing lentivirus vector (Addgene # 59791) using
golden gate method. Lenti-Dot1/°F viruses were produced
as described previously®. Briefly, HEK293T cells were
grown in DMEM supplemented with 10% FBS and 1%
Pen/Strep. Once cells reached ~85% confluency, lenti-
Dot1I°F and packaging vectors [psPAX2 (Addgene #
12260) and pMD2.G (Addgene # 12259) vectors] were
transfected using Superfect reagent (Qiagen), and cells
were maintained in Freestyle 293T media. Supernatant
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containing viral particle was harvested at 26, 38, and 50 h
post transfection, and concentrated using Amicon Ultracell
100K column (Amicon). The concentrated lentiviruses
were transduced into BECs. Briefly, the cells were main-
tained in endothelial cell media, and transduced when cells
reached ~50% confluency by using polybrene (10 pg/ml).
After viral transduction, cells were fed with endothelial cell
media supplemented with VEGF-C (100 ng/ml). Lenti-
empty viruses were used as control. At 7 days post trans-
duction, EGFP(+) cells were sorted using FACSAria (BD
Biosciences) and used for gqRT-PCR analysis.

RNA-Seq and analysis

RNA-Seq experiments with pooled RNA samples
extracted from 2 to 3 biological replicates were per-
formed. Total RNA was extracted from control and
Dot11“F€ skin LECs using RNeasy Plus Mini Kit (74134,
Qiagen), and its amount and quality of the total RNA
were evaluated using Bioanalyzer (Agilent). RNA samples
with >7.0 RNA Integrity Number (RIN) value were used
for RNA-Seq library preparation with the ScriptSeq v2 kit
(lumina) according to the manufacturer’s instruction.
Paired-end sequencing was performed on a MiSeq (Illu-
mina), and reads were mapped to mm9 mouse genome
using STAR tool (v2.5.2b, https://github.com/alexdobin/
STAR)®”. After mapping, fragments per kilobase million
(FPKM) were calculated by Cufflinks (v2.2.1)°® tool using
the following strand-specific Cuffnorm option: —library-
type = fr-second strand. Functional annotation of differ-
entially expressed genes (DEGs) and enrichment analyses
were performed using DAVID (v6.8) and Gene Set
Enrichment Analysis (GSEA, v2.2.4)69, respectively, and
genes were considered differentially expressed at the fold
change >3 and FPKM >5. R (v3.3.2) package was used for
statistical analyses and scatter plot generation, and RNA-
Seq results were visualized using Integrative Genomics
Viewer (IGV)”°.

ChIP-Seq and analysis

ChIP-Seq experiments with pooled three biological
replicates/group were performed. DMSO or EPZ5676-
treated LECs were cross-linked with 1% formaldehyde
(F8775, Sigma) for 10 min and neutralized with 0.125 M
glycine (1610718, Bio-Rad). After washing with ice-cold
PBS, cells were collected in a 1.5-ml tube and incubated in
lysis buffer (5 mM PIPES, pH 8.0, 85 mM KCl, 1% NP-40,
1mM PMSF, and 1x Protease inhibitor cocktail
[11836153001, Roche]) for 15min at 4°C. After cen-
trifugation, cell pellets were resuspended in 400 pl of
nuclei lysis buffer (50 mM Tris-Cl, pH 8.0, 10 mM EDTA,
pH 8.0, 1% SDS, 1 mM PMSF, and 1x Protease inhibitor
cocktail) and incubated for 30 min at 4 °C. Nuclei were
sonicated (Q500, Qsonica) for 20 cycles (30s on/30s off
at 40% amplitude) at 4 °C to shear DNA into 300-400-bp
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fragments. After centrifugation, 2 ml of ice-cold IP dilu-
tion buffer (50 mM Tris-Cl, pH 7.5, 150 mM NacCl, 0.25%
sodium deoxycholate, 1 mM EDTA, pH 8.0, 1% NP-40,
1 mM PMSF, and 1x Protease inhibitor cocktail) was
added to the supernatant, and the sheared chromatin was
incubated with the complex of H3K79me2 antibodies
(ab3594, Abcam) and Dynabead-conjugated secondary
antibodies (10004D, Life Technologies) O/N at 4°C; a
portion of non-immunoprecipitated chromatin was saved
for input control. After washing, the immunoprecipitated
DNA was treated with proteinase K (P2308, Sigma),
extracted with phenol/chloroform, and precipitated with
ethanol. DNA was dissolved in elution buffer (10 mM
Tris-Cl, 5mM EDTA, 300 mM NaCl, 0.5% SDS, and
2.5 ug/ml DNase-free RNase (11119915001, Roche)), and
its amount and quality were evaluated using Bioanalyzer.
ChIP-Seq libraries were produced using Truseq ChIP
Sample kit (Illumina) according to the manufacturer’s
instruction, and raw reads were aligned to mouse mm9
genome using Bowtie2 (v2.2.9); then, SAMtools (v1.2)"*
was used for the data arrangement. ChIP-Seq peaks were
called using the following MACS2 (v2.1.0)”* parameters:
-B --nomodel -f BAM -g mm --broad -p le-5. NGS plot
(v2.61) and seqMINER (v1.3.3e)”® were used for plotting
read mean density and constructing a heat map, respec-
tively. ChIP-Seq reads were visualized using the IGV.
Disease-related genes, which showed downregulation of
both gene expression and H3K79me2 enrichment by
Dotl1l inactivation, were identified using Ingenuity Path-
way Analysis (IPA®, Qiagen).

Statistical analysis

The data were analyzed by normality (Shapiro—Wilk
test) and equal variance tests. Statistically significant dif-
ferences in the continuous data of Lyvel(+) areas, vessel-
branching points, and length of lymphatic vessels between
groups were determined by a two-tailed ¢ test using
GraphPad Prism 5 (v5.01, GraphPad Software). The
results were expressed as the mean + s.e.m., and p-values
less than 0.05 were considered significant.
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