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1. Introduction

A classical question in the theory of functional equation is the following: “When is it true that a
function which approximately satisfies a functional equation g must be close to an exact solution of
g?” If the problem accepts a solution, we say that the equation g is stable.

The Hyers-Ulam stability problem was introduced by S. M. Ulam [27] in 1940. He motivated the
study of stability problems for various functional equations. He gave a wide range of talk before a
Mathematical Colloquium at the University of Wisconsin in which he presented a list of unsolved
problems. Among those was the following question concerning the stability of homomorphisms.

Theorem 1.1. [27] Let G1 be a group and G2 be a group endowed with a metric ρ. Given ε > 0, does
there exist a δ > 0 such that if f : G1 → G2 satisfies ρ( f (xy), f (x) f (y)) < δ, for all x, y ∈ G, then we
can find a homomorphism h : G1 → G2 satisfying ρ( f (x), h(x)) < ε for all x ∈ G1?

If the answer is affirmative, we say that the functional equation for homomorphisms is stable. In
1941, Hyers [6] was the first Mathematician to present the result concerning the stability of functional
equations. He brilliantly answered the question of Ulam for the case of approximately additive
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mappings, when G1 and G2 are assumed to be Banach spaces. The result of Hyers is stated in the
following celebrated theorem.

Theorem 1.2. [6] Assume that G1 and G2 are Banach spaces. If a mapping f : G1 → G2 satisfies the
inequality ‖ f (x + y) − f (x) − f (y)‖ ≤ ε for some ε > 0 and for all x, y ∈ G1, then the limit

A(x) = lim
n→∞

2−n f (2n x)

exists for each x ∈ G1 and A : G1 → G2 is the unique additive mapping such that

‖ f (x) − A(x)‖ ≤ ε (1.1)

for all x ∈ G1.

Taking the above fact into account, the additive functional equation

f (x + y) = f (x) + f (y)

is said to have Hyers-Ulam stability on (G1,G2). In the above theorem, an additive mapping A
satisfying the inequality (1.1) is constructed directly from the given mapping f and it is the most
powerful tool to study the stability of several functional equations. In course of time, the theorem
formulated by Hyers was generalized by Aoki [4] for additive mappings.

There is no reason for the Cauchy difference f (x+y)− f (x)− f (y) to be bounded as in the expression
of (1.1). Towards this point, in the year 1978, Rassias [24] tried to weaken the condition for the
Cauchy difference and succeeded in proving what is now known to be the Hyers-Ulam-stability for the
additive Cauchy equation. This terminology is justified because the theorem of Rassias has strongly
influenced Mathematicians studying stability problems of functional equation. In fact, Rassias proved
the following theorem.

Theorem 1.3. [24] Let X and Y be Banach spaces. Let θ ∈ (0, ∞) and p ∈ [0, 1). If a mapping
f : X → Y satisfies

‖ f (x + y) − f (x) − f (y)‖ ≤ θ (‖x‖p + ‖y‖p)

for all x, y ∈ X, then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x)‖ ≤
2θ

2 − 2p ‖x‖
p

for all x ∈ X. Moreover, if f (tx) is continuous in t ∈ R for each fixed x ∈ X, then A is R-linear.

See [9] for more information on functional equations and their stability.
A generalization of Ulam’s problem was recently proposed by replacing functional equations with

differential equations: The differential equation

φ
(

f , x, x′, x′′, · · · , x(n)
)

= 0

has the Hyers-Ulam stability if for a given ε > 0 and a function x such that∣∣∣∣φ (
f , x, x′, x′′, · · · , x(n)

)∣∣∣∣ ≤ ε,
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there exists a solution xa of the differential equation such that |x(t) − xa(t)| ≤ K(ε) and

lim
ε→0

K(ε) = 0.

If the preceeding statement is also true when we replace ε and K(ε) by φ(t) and ϕ(t), where φ, ϕ

are appropriate functions not depending on x and xa explicitly, then we say that the corresponding
differential equation has the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

Obloza seems to be the first author who has investigated the Hyers-Ulam stability of linear
differential equations [20, 21]. Thereafter, In 1998, Alsina and Ger [3] were the first authors who
investigated the Hyers-Ulam stability of differential equations. They proved the following theorem.

Theorem 1.4. [3] Assume that a differentiable function f : I → R is a solution of the differential
inequality ‖x′(t) − x(t)‖ ≤ ε, where I is an open sub interval of R. Then there exists a solution g : I → R
of the differential equation x′(t) = x(t) such that for any t ∈ I, we have ‖ f (t) − g(t)‖ ≤ 3ε.

This result of Alsina and Ger [3] has been generalized by Takahasi [26]. He proved in [26] that the
Hyers-Ulam stability holds true for the Banach space valued differential equation y′(t) = λy(t). Indeed,
the Hyers-Ulam stability has been proved for the first order linear differential equations in more general
settings [7, 8, 10, 11, 17].

In 2006, Jung [12] investigated the Hyers-Ulam stability of a system of first order linear
differential equations with constant coefficients by using matrix method. In 2007, Wang, Zhou and
Sun [28] studied the Hyers-Ulam stability of a class of first-order linear differential equations.
Rus [25] discussed four types of Ulam stability: Hyers-Ulam stability, generalized Hyers-Ulam
stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability of the ordinary
differential equation

u′(t) = A(u(t)) + f (t, u(t)), t ∈ [a, b].

In 2014, Alqifiary and Jung [1] proved the Hyers-Ulam stability of linear differential equation of the
form

x(n)(t) +

n−1∑
k=0

αk x(k)(t) = f (t)

by using the Laplace transform method, where αk are scalars and x and f are n times continuously
differentiable function and of the exponential order, respectively.

Recently, Liu et al. [16] established the Hyers-Ulam stability of linear Caputo-Fabrizio fractional
differential equation using the Laplace transform method, derived a generalized Hyers-Ulam stability
result via the Gronwall inequality and established the existence and uniqueness of solutions for
nonlinear Caputo-Fabrizio fractional differential equations using the generalized Banach fixed point
theorem and Schaefer’s fixed point theorem.

In 2019, Onitsuka [22] studied the Hyers-Ulam stability of the linear differential equation of the
form x′ = ax + f (t) without the assumption of continuity of f (t). He also obtained the Best constant
in Hyers-Ulam stability of the first-order homogeneous linear differential equations with a periodic
coefficient in [5]. That is, he concerned with the Hyers-Ulam stability of the first-order homogeneous
linear differential equation x′ − a(t)x = 0 on R, a : R→ R is a continuous periodic function. However,
sufficient conditions for Hyers-Ulam stability are presented in spite of a(t) has infinitely many zeros
and changes sign. Furthermore, the best constant in Hyers-Ulam stability is clarified.
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These days, the Hyers-Ulam stability of differential equations has been investigated in a series of
papers [2, 13–15, 18, 19, 23, 29–34] and the investigation is ongoing.

Motivated and connected by the above facts, in this paper, by applying Fourier transform method,
we prove the Hyers-Ulam stability and the generalized Hyers-Ulam stability of the nth order
homogeneous linear differential equation of the form

x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) = 0 (1.2)

and the non-homogeneous linear differential equation

x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) = r(t), (1.3)

where x(t) is an n times continuously differentiable function, ai’s are scalars and r(t) is a continuously
differentiable function.

2. Preliminaries

In this section, we introduce some standard notations, definitions and theorems, which are very
useful to prove our main results.

Throughout this paper, F denotes the real field R or the complex field C. A function f : (0,∞)→ F
of exponential order if there exist constants A, B ∈ R such that | f (t)| ≤ AetB for all t > 0.

For each function f : (0,∞)→ F of exponential order, let g denote the Fourier transform of f so that

g(s) =

∞∫
−∞

f (t) e−its ds.

Then, at points of continuity of f , we have

f (t) =
1

2π

∞∫
−∞

g(s) e−its ds,

which is called the inverse Fourier transform. The Fourier transform of f is denoted by F (ξ). We also
introduce the convolution of two functions.

Definition 2.1. (Convolution). Given two functions f and g, both Lebesgue integrable on (−∞,+∞).
Let S denote the set of x for which the Lebesgue integral

h(t) =

∞∫
−∞

f (s) g(t − s) ds

exists. This integral defines a function h on S called the convolution of f and g. We also write h = f ∗g
to denote this function.
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Theorem 2.2. The Fourier transform of the convolution of f (t) and g(t) is the product of the Fourier
transform of f (t) and g(t). That is,

F { f (t) ∗ g(t)} = F { f (t)} F {g(t)} = F(s) G(s)

or

F


∞∫

−∞

f (s) g(t − s) ds

 = F(s) G(s),

where F(s) and G(s) are the Fourier transforms of f (t) and g(t), respectively.

Now, we give the definitions of Hyers-Ulam stability and generalized Hyers-Ulam stability of the
differential equations (1.2) and (1.3).

Definition 2.3. The homogeneous linear differential equation (1.2) is said to have the Hyers-Ulam
stability if there exists a constant K > 0 with the following property: For every ε > 0 and an n times
continuously differentiable function x(t) satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

∣∣∣ ≤ ε,
there exists some y : (0,∞) → F satisfying the differential equation (1.2) such that |x(t) − y(t)| ≤ Kε
for all t > 0. We call such K as the Hyers-Ulam stability constant for the differential equation (1.2).

Definition 2.4. We say that the non-homogeneous linear differential equation (1.3) has the Hyers-Ulam
stability if there exists a positive constant K satisfying the following condition: For every ε > 0 and an
n times continuously differentiable function x(t) satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

∣∣∣ ≤ ε,
there exists a solution y : (0,∞)→ F satisfying the differential equation (1.3) such that |x(t)−y(t)| ≤ Kε
for all t > 0. We call such K as the Hyers-Ulam stability constant for the differential equation (1.3).

Definition 2.5. We say that the homogeneous linear differential equation (1.2) has the generalized
Hyers-Ulam stability, if there exists a constant K > 0 satisfying the following property: For every
ε > 0, an n times continuously differentiable function x(t) and a function φ : (0,∞)→ (0,∞) satisfying
the inequality ∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

∣∣∣ ≤ φ(t)ε,

there exists some y : (0,∞)→ F satisfying the differential equation (1.2) such that |x(t)−y(t)| ≤ K φ(t)ε
for all t > 0. We call such K as the generalized Hyers-Ulam stability constant for differential equation
(1.2).

Definition 2.6. The linear differential equation (1.3) is said to have the generalized Hyers-Ulam
stability if there exists a positive constant K satisfying the following condition: For every ε > 0, an n
times continuously differentiable function x(t) and a function φ : (0,∞) → (0,∞) satisfying the
inequality ∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

∣∣∣ ≤ φ(t)ε,

there exists a solution y : (0,∞) → F satisfying the differential equation (1.3) such that |x(t) − y(t)| ≤
K φ(t)ε for all t > 0. We call such K as the generalized Hyers-Ulam stability constant for the differential
equation (1.3).
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3. Hyers-Ulam stability

In the following theorems, we prove the Hyers-Ulam stability of the homogeneous and
non-homogeneous linear differential equations (1.2) and (1.3). First of all, we establish the
Hyers-Ulam stability of the differential equation (1.2).

Theorem 3.1. Let ai ∈ F. Assume that for every ε > 0 there exists a positive constant K such that
x : (0,∞)→ F which is n times continuously differentiable function satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

∣∣∣ ≤ ε (3.1)

for all t > 0. Then there exists a solution y : (0,∞) → F of the differential equation (1.2) such that
|x(t) − y(t)| ≤ Kε for all t > 0.

Proof. Assume that x(t) is n times continuously differentiable function satisfying the inequality (3.1).
Let us define a function p : (0,∞)→ F such that

p(t) =: x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

for each t > 0. In view of (3.1), we have |p(t)| ≤ ε. Now, taking the Fourier transform to p(t), we have

F {p(t)} = F
{
x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

}
,

P(ξ) =
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
X(ξ),

X(ξ) =
P(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
.

Let ν1, ν2, ν3, · · · , νn be the distinct roots of the characteristic equation

νn + a1ν
n−1 + · · · + an−1ν + an = 0.

Since a′i s are constants in F such that there exist ν1, ν2, ν3, · · · , νn ∈ F with

the sum of the roots = ν1 + ν2 + ν3 + · · · + νn =

n∑
j=1

ν` = −a1,

the sum of the roots at 2 time = ν1ν2 + ν1ν3 + · · · + νn−1νn =

n∑
j<k

νiν j = a2,

the sum of the roots at 3 time = ν1ν2ν3 + · · · + νn−2νn−1νn =

n∑
j<k<l

νiν jνl = −a3

· · ·

the product of the roots = ν1 ν2 ν3 · · · νn =

n∏
j=1

ν j = (−1)n an,

we have

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an = (iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn).
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Thus

F {x(t)} = X(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
. (3.2)

Taking Q(ξ) =
1

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
, we have

q(t) = F −1
{

1
(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)

}
.

Now, let us define

y(t) =

n∑
j=1

ν je−ν jt

and taking the Fourier transform to y(t), we obtain

F {y(t)} = Y(ξ) =

∞∫
−∞

n∑
j=1

ν je−ν jt eist dt = 0. (3.3)

Now, F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)}

=
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
Y(ξ).

Then by using (3.3), we have

F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)} = 0.

Since F is one-to-one, y(n)(t) + a1y(n−1) + · · ·+ an−1y′(t) + an y(t) = 0. Hence y(t) satisfies the differential
equation (1.2) and thus y(t) is a solution of (1.2). Then by using (3.2) and (3.3) we can obtain

F {x(t)} − F{y(t)} = X(ξ) − Y(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
= P(ξ) Q(ξ) = F {p(t)} F {q(t)},

which implies
F {x(t) − y(t)} = F {p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, x(t) − y(t) = p(t) ∗ q(t). Taking modulus on both sides,
we have

|x(t) − y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣∣∣
∞∫

−∞

p(s) q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ |p(t)|

∣∣∣∣∣∣∣∣
∞∫

−∞

q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ Kε,

where K =

∣∣∣∣∣∣ ∞∫
−∞

q(t − s) ds

∣∣∣∣∣∣ and the integral exists for each value of t. Then by the virtue of Definition

2.3, the homogeneous linear differential equation (1.2) has the Hyers-Ulam stability. �
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Now, we prove the Hyers-Ulam stability of the non-homogeneous linear differential equation (1.3)
by using the Fourier transform method.

Theorem 3.2. Let ai ∈ F. Assume that for every ε > 0 there exists a positive constant K such that
x : (0,∞)→ F is an n times continuously differentiable function satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

∣∣∣ ≤ ε (3.4)

for all t > 0. Then there exists a solution y : (0,∞) → F of the differential equation (1.3) such that
|x(t) − y(t)| ≤ Kε for all t > 0.

Proof. Assume that x(t) is n times continuously differentiable function satisfying the inequality (3.1).
Let us define a function p : (0,∞)→ F such that

p(t) =: x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

for each t > 0. In view of (3.4), we have |p(t)| ≤ ε. Now, taking the Fourier transform to p(t), we have

F {p(t)} = F
{
x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

}
,

P(ξ) =
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
X(ξ) − R(ξ),

X(ξ) =
P(ξ) + R(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
.

Let ν1, ν2, ν3, · · · , νn be the distinct roots of the characteristic equation

νn + a1ν
n−1 + · · · + an−1ν + an = 0.

Since a′i s are constants in F such that there exist ν1, ν2, ν3, · · · , νn ∈ F with

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an = (iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn),

F {x(t)} = X(ξ) =
P(ξ) + R(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
. (3.5)

Taking Q(ξ) =
1

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
, we have

q(t) = F −1
{

1
(iξ − ν1) (iξ − ν2) (iξ − ν3) ... (iξ − νn)

}
.

Now, let us define

y(t) =

n∑
j=1

ν je−ν jt + (r(t) ∗ q(t))

and taking the Fourier transform to y(t), we obtain

F {y(t)} = Y(ξ) =

∞∫
−∞

n∑
j=1

ν je−ν jt eist dt + R(ξ) Q(ξ)
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=
R(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
. (3.6)

Now, F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)}

=
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
Y(ξ) = R(ξ).

Then by using (3.6), we have

F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)} = F {r(t)}.

Since F is one-to-one, y(n)(t)+a1y(n−1)+· · ·+an−1y′(t)+an y(t) = r(t). Hence y(t) satisfies the differential
equation (1.3) and thus y(t) is a solution of (1.3). Then by using (3.5) and (3.6) we can have

F {x(t)} − F{y(t)} = X(ξ) − Y(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
= P(ξ) Q(ξ) = F {p(t)} F {q(t)} = F {p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, x(t) − y(t) = p(t) ∗ q(t). Taking modulus on both
sides, we have

|x(t) − y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣∣∣
∞∫

−∞

p(s) q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ |p(t)|

∣∣∣∣∣∣∣∣
∞∫

−∞

q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ Kε,

where K =

∣∣∣∣∣∣ ∞∫
−∞

q(t − s) ds

∣∣∣∣∣∣ and the integral exists for each value of t. Then by the virtue of Definition

2.4, the non-homogeneous linear differential equation (1.3) has the Hyers-Ulam stability. �

4. Generalized Hyers-Ulam stability

In the following theorems, we are going to study the generalized Hyers-Ulam stability of the
differential equations (1.2) and (1.3). First, we investigate the generalized Hyers-Ulam stability of the
differential equation (1.2).

Theorem 4.1. Let ai ∈ F. Assume that for every ε > 0 there exists a positive constant K such that
x : (0,∞) → F is an n times continuously differentiable function and φ : (0,∞) → (0,∞) is an
integrable function satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

∣∣∣ ≤ φ(t)ε (4.1)

for all t > 0. Then there exists a solution y : (0,∞) → F of the differential equation (1.2) such that
|x(t) − y(t)| ≤ Kφ(t)ε for all t > 0.

Proof. Assume that x(t) is n times continuously differentiable function and φ : (0,∞) → (0,∞) is an
integrable function satisfying the inequality (4.1). Let us define a function p : (0,∞)→ F such that

p(t) =: x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)
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for each t > 0. In view of (4.1), we have |p(t)| ≤ φ(t)ε. Now, taking the Fourier transform to p(t), we
have

F {p(t)} = F
{
x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t)

}
,

P(ξ) =
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
X(ξ),

X(ξ) =
P(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
.

Let ν1, ν2, ν3, · · · , νn be the distinct roots of the characteristic equation

νn + a1ν
n−1 + · · · + an−1ν + an = 0.

Since a′i s are constants in F such that there exist ν1, ν2, ν3, · · · , νn ∈ F with

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an = (iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn),

F {x(t)} = X(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
. (4.2)

Taking Q(ξ) =
1

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
, we have

q(t) = F −1
{

1
(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)

}
.

Now, let us define

y(t) =

n∑
j=1

ν je−ν jt

and taking the Fourier transform to y(t), we obtain

F {y(t)} = Y(ξ) =

∞∫
−∞

n∑
j=1

ν je−ν jt eist dt = 0. (4.3)

Now, F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)}

=
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
Y(ξ).

Then by using (4.3), we have

F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)} = 0.

Since F is one-to-one, y(n)(t) + a1y(n−1) + · · ·+ an−1y′(t) + an y(t) = 0. Hence y(t) satisfies the differential
equation (1.2) and thus y(t) is a solution of (1.2). Then by using (4.2) and (4.3) we can obtain

F {x(t) − y(t)} = X(ξ) − Y(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
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= P(ξ) Q(ξ) = F {p(t)} F {q(t)} = F {p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, x(t) − y(t) = p(t) ∗ q(t). Taking modulus on both sides,
we have

|x(t) − y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣∣∣
∞∫

−∞

p(s) q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ |p(t)|

∣∣∣∣∣∣∣∣
∞∫

−∞

q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ Kφ(t)ε,

where K =

∣∣∣∣∣∣ ∞∫
−∞

q(t − s) ds

∣∣∣∣∣∣ and the integral exists for each value of t and φ(t) is an integrable function.

Then by the virtue of Definition 2.5, the differential equation (1.2) has the generalized Hyers-Ulam
stability. �

Finally, we prove the Hyers-Ulam stability of the non-homogeneous linear differential equation
(1.3) by using the Fourier transform method.

Theorem 4.2. Let ai ∈ F. Assume that for every ε > 0 there exists a positive constant K such that
x : (0,∞) → F which is n times continuously differentiable function and φ : (0,∞) → (0,∞) is an
integrable function satisfying the inequality∣∣∣x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

∣∣∣ ≤ φ(t)ε (4.4)

for all t > 0. Then there exists a solution y : (0,∞) → F of the differential equation (1.3) such that
|x(t) − y(t)| ≤ Kφ(t)ε for all t > 0.

Proof. Assume that x(t) is n times continuously differentiable function and φ : (0,∞) → (0,∞) is an
integrable function satisfying the inequality (4.4). Let us define a function p : (0,∞)→ F such that

p(t) =: x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

for each t > 0. In view of (4.4), we have |p(t)| ≤ φ(t)ε. Now, taking the Fourier transform to p(t), we
have

F {p(t)} = F
{
x(n)(t) + a1x(n−1) + · · · + an−1x′(t) + an x(t) − r(t)

}
,

P(ξ) =
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
X(ξ) − R(ξ),

X(ξ) =
P(ξ) + R(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
.

Let ν1, ν2, ν3, · · · , νn be the distinct roots of the characteristic equation

νn + a1ν
n−1 + · · · + an−1ν + an = 0.

Since a′i s are constants in F such that there exist ν1, ν2, ν3, · · · , νn ∈ F with

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an = (iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn),
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F {x(t)} = X(ξ) =
P(ξ) + R(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
. (4.5)

Taking Q(ξ) =
1

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
, we have

q(t) = F −1
{

1
(iξ − ν1) (iξ − ν2) (iξ − ν3) ... (iξ − νn)

}
.

Now, let us define

y(t) =

n∑
j=1

ν je−ν jt + (r(t) ∗ q(t))

and taking the Fourier transform to y(t), we obtain

F {y(t)} = Y(ξ) =

∞∫
−∞

n∑
j=1

ν je−ν jt eist dt + R(ξ) Q(ξ)

=
R(ξ)

(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an
. (4.6)

Now, F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)}

=
{
(−iξ)n + a1(−iξ)n−1 + · · · + an−1(−iξ) + an

}
Y(ξ) = R(ξ).

Then by using (4.6), we have

F {y(n)(t) + a1y(n−1) + · · · + an−1y′(t) + an y(t)} = F {r(t)}.

Since F is one-to-one, y(n)(t)+a1y(n−1)+· · ·+an−1y′(t)+an y(t) = r(t). Hence y(t) satisfies the differential
equation (1.3) and thus y(t) is a solution of (1.3). Then by using (4.5) and (4.6), we can have

F {x(t)} − F{y(t)} = X(ξ) − Y(ξ) =
P(ξ)

(iξ − ν1) (iξ − ν2) (iξ − ν3) · · · (iξ − νn)
= P(ξ) Q(ξ) = F {p(t)} F {q(t)} = F {p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, then we have x(t) − y(t) = p(t) ∗ q(t). Taking modulus
on both sides, we have

|x(t) − y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣∣∣
∞∫

−∞

p(s) q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ |p(t)|

∣∣∣∣∣∣∣∣
∞∫

−∞

q(t − s) ds

∣∣∣∣∣∣∣∣ ≤ K φ(t)ε,

where K =

∣∣∣∣∣∣ ∞∫
−∞

q(t − s) ds

∣∣∣∣∣∣ and the integral exists for each value of t and φ(t) is an integrable function.

Hence by the virtue of Definition 2.6, the differential equation (1.3) has the generalized Hyers-Ulam
stability. �
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5. Conclusion

In this paper, we have proved the Hyers-Ulam stability and the generalized Hyers-Ulam stability of
the linear differential equations of nth order with constant coefficients using the Fourier transform
method. That is, we have established the sufficient criteria for the Hyers-Ulam stability and the
generalized Hyers-Ulam stability of the linear differential equation of nth order with constant
coefficients by using the Fourier transform method. Additionally, this paper also provided another
method to study the Hyers-Ulam stability of differential equations. Furthermore, we have showed that
the Fourier transform method is more convenient to study the Hyers-Ulam stability and the
generalized Hyers-Ulam stability of the linear differential equation with constant coefficients.
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