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Abstract: In this paper, we introduce and solve the following additive-additive (s, t)-functional
inequality

‖g (x + y) − g(x) − g(y)‖ +
∥∥∥∥∥2h

( x + y
2

)
− h(x) − h(y)

∥∥∥∥∥ (0.1)

≤

∥∥∥∥∥s
(
2g

( x + y
2

)
− g(x) − g(y)

)∥∥∥∥∥ + ‖t(h(x + y) − h(x) − h(y))‖,

where s and t are fixed nonzero complex numbers with |s| < 1 and |t| < 1. Furthermore, we investigate
homomorphisms and derivations in complex Banach algebras and unital C∗-algebras, associated to the
additive-additive (s, t)-functional inequality (0.1) under some extra condition.
Moreover, we introduce and solve the following additive-additive (s, t)-functional inequality

‖g (x + y + z) − g(x) − g(y) − g(z)‖ +
∥∥∥∥∥3h

( x + y + z
3

)
+ h(x − 2y + z) + h(x + y − 2z) − 3h(x)

∥∥∥∥∥
≤

∥∥∥∥∥s
(
3g

( x + y + z
3

)
− g(x) − g(y) − g(z)

)∥∥∥∥∥ (0.2)

+ ‖t (h(x + y + z) + h(x − 2y + z) + h(x + y − 2z) − 3h(x))‖ ,

where s and t are fixed nonzero complex numbers with |s| < 1 and |t| < 1. Furthermore, we
investigate C∗-ternary derivations and C∗-ternary homomorphisms in C∗-ternary algebras, associated
to the additive-additive (s, t)-functional inequality (0.2) under some extra condition.
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1. Introduction and preliminaries

Let A be a complex Banach algebra. A C-linear mapping g : A → A is a derivation if g : A → A
satisfies

g(xy) = g(x)y + xg(y),

for all x, y ∈ A, and a C-linear mapping h : A→ A is a homomorphism if h : A→ A satisfies

h(xy) = h(x)h(y),

for all x, y ∈ A,
A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product

(x, y, z) 7→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear in the
middle variable, and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] = [[x, y, z],w, v], and
satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [18]).

Let A be a C∗-ternary algebra. AC-linear mapping g : A→ A is a C∗-ternary derivation if g : A→ A
satisfies

g([x, y, z]) = [g(x), y, z] + [x, g(y), z] + [x, y, g(z)],

for all x, y, z ∈ A, and a C-linear mapping h : A → A is a C∗-ternary homomorphism if h : A → A
satisfies

h([x, y, z]) = [h(x), h(y), h(z)],

for all x, y, z ∈ A.
In 1940, Ulam [16] raised a question the stability problem for functional equations, and Hyers [8],

Aoki [1], Rassias [14] and Găvruta [7] have given positive answers for additive additive functional
equations in Banach spaces. Park [11, 12] introduced new additive functional inequalities and proved
the Hyers-Ulam stability of the additive functional inequalities in Banach spaces and non-Archimedean
Banach spaces. The stability problems of various functional equations in various spaces have been
extensively investigated by a number of authors (see [2–6, 13, 15, 17]).

This paper is organized as follows: In Sections 2 and 3, we solve the additive-additive
(s, t)-functional inequality (0.1). Furthermore, we investigate homomorphisms and derivations on
compex Banach algebras and unital C∗-algebras associated to the additive-additive (s, t)-functional
inequality (0.1) and the following functional inequality

‖g(xy) − g(x)y − xg(y)‖ + ‖h(xy) − h(x)h(y)‖ ≤ ϕ(x, y). (1.1)

In Section 4, we solve the additive-additive (s, t)-functional inequality (0.2). Furthermore, we
investigate C∗-ternary homomorphisms and C∗-ternary derivations on C∗-ternary algebras associated
to the additive-additive (s, t)-functional inequality (0.2) and the following functional inequality

‖g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)]‖ (1.2)
+‖h([x, y, z]) − [h(x), h(y), h(z)]‖ ≤ ϕ(x, y, z).

Throughout this paper, assume that A is a complex Banach algebra and that B is a C∗-ternary algebra
and that s and t are fixed nonzero complex numbers with |s| < 1 and |t| < 1.
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2. Additive-additive (s, t)-functional inequality (0.1) in Banach algebras

In this section, we solve and investigate the additive-additive (s, t)-functional inequality (0.1) in
complex Banach algebras.

Lemma 2.1. If mappings g, h : A→ A satisfy g(0) = h(0) = 0 and

‖g (x + y) − g(x) − g(y)‖ +
∥∥∥∥∥2h

( x + y
2

)
− h(x) − h(y)

∥∥∥∥∥ (2.1)

≤

∥∥∥∥∥s
(
2g

( x + y
2

)
− g(x) − g(y)

)∥∥∥∥∥ + ‖t(h(x + y) − h(x) − h(y))‖,

for all x, y ∈ A, then the mappings g, h : A→ A are additive.

Proof. Letting x = y in (2.1), we get

‖g(2x) − 2g(x)‖ ≤ ‖t(h(2x) − 2h(x))‖,

for all x ∈ A.
Letting y = 0 in (2.1), we get∥∥∥∥∥2h

( x
2

)
− h(x)

∥∥∥∥∥ ≤ ∥∥∥∥∥s
(
2g

( x
2

)
− g(x)

)∥∥∥∥∥
and so

‖2h(x) − h(2x)‖ ≤ ‖s(2g(x) − g(2x))‖,

for all x ∈ A. Thus

‖g(2x) − 2g(x)‖ ≤ ‖st(2g(x) − g(2x))‖,

‖2h(x) − h(2x)‖ ≤ ‖st(h(2x) − 2h(x))‖,

for all x ∈ A. So h(2x) = 2h(x) and g(2x) = 2g(x) for all x ∈ A, since |st| < 1. It follows from (2.1) that

‖g (x + y) − g(x) − g(y)‖ + ‖h (x + y) − h(x) − h(y)‖
≤ ‖s (g (x + y) − g(x) − g(y))‖ + ‖t(h(x + y) − h(x) − h(y))‖,

for all x, y ∈ A. Thus g (x + y) − g(x) − g(y) = 0 and h (x + y) − h(x) − h(y) = 0 for all x ∈ A, since
|s| < 1 and |t| < 1. So the mappings g, h : A→ A are additive. �

Lemma 2.2. [10, Theorem 2.1] Let f : A→ A be a mapping such that

f (λ(a + b)) = λ f (a) + λ f (b),

for all λ ∈ T1 := {ξ ∈ C : |ξ| = 1} and all a, b ∈ A. Then the mapping f : A→ A is C-linear.

Now, we investigate homomorphisms and derivations in complex Banach algebras associated to the
additive-additive (s, t)-functional inequality (2.1).
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Theorem 2.3. Let ϕ : A2 → [0,∞) be a function such that

∞∑
j=1

4 jϕ
( x
2 j ,

y
2 j

)
< ∞, (2.2)

for all x, y ∈ A. Let g, h : A→ A be mappings satisfying g(0) = h(0) = 0 and

‖g (λ(x + y)) − λg(x) − λg(y)‖ +
∥∥∥∥∥2h

(
λ

x + y
2

)
− λh(x) − λh(y)

∥∥∥∥∥ (2.3)

≤

∥∥∥∥∥s
(
2g

(
λ

x + y
2

)
− λg(x) − λg(y)

)∥∥∥∥∥ + ‖t(h(λ(x + y)) − λh(x) − λh(y))‖,

for all λ ∈ T1 and all x, y ∈ A. If g, h : A→ A satisfy

‖g(xy) − g(x)y − xg(y)‖ + ‖h(xy) − h(x)h(y)‖ ≤ ϕ(x, y), (2.4)

for all x, y ∈ A, then the mapping g : A → A is a derivation and the mapping h : A → A is a
homomorphism.

Proof. Let λ = 1 in (2.3). By Lemma 2.1, the mappings g, h : A→ A are additive.
It follows from (2.3) that

‖g (λ(x + y)) − λg(x) − λg(y)‖ + ‖h (λ(x + y)) − λh(x) − λh(y)‖
≤ ‖s (g (λ(x + y)) − λg(x) − λg(y))‖ + ‖t(h (λ(x + y)) − λh(x) − λh(y))‖,

for all λ ∈ T1 and all x, y ∈ A. Since |s| < 1 and |t| < 1,

g (λ(x + y)) − λg(x) − λg(y) = 0,
h (λ(x + y)) − λh(x) − λh(y) = 0,

for all λ ∈ T1 and all x, y ∈ A. Thus by Lemma 2.2, the mappings g, h : A→ A are C-linear.
It follows from (2.4) and the additivity of g, h that

‖g(xy) − g(x)y − xg(y)‖ + ‖h(xy) − h(x)h(y)‖

= 4n
∥∥∥∥∥g

( xy
4n

)
− g

( x
2n

) y
2n −

x
2n g

( y
2n

)∥∥∥∥∥ + 4n
∥∥∥∥∥h

( xy
4n

)
− h

( x
2n

)
h
( y
2n

)∥∥∥∥∥
≤ 4nϕ

( x
2n ,

y
2n

)
,

which tends to zero as n→ ∞, by (2.2). So

g(xy) − g(x)y − xg(y) = 0,
h(xy) − h(x)h(y) = 0,

for all x, y ∈ A. Hence the mapping g : A → A is a derivation and the mapping h : A → A is a
homomorphism. �
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Theorem 2.4. Let ϕ : A2 → [0,∞) be a function and g, h : A → A be mappings satisfying g(0) =
h(0) = 0, (2.3), (2.4) and

∞∑
j=1

1
4 jϕ(2 jx, 2 jy) < ∞, (2.5)

for all x, y ∈ A. Then the mapping g : A → A is a derivation and the mapping h : A → A is a
homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.3, one can show that the mappings g, h :
A→ A are C-linear.

It follows from (2.4) and the additivity of g, h that

‖g(xy) − g(x)y − xg(y)‖ + ‖h(xy) − h(x)h(y)‖

=
1
4n ‖g (4nxy) − g (2nx) (2ny) − (2nx)g (2ny)‖ +

1
4n ‖h (4nxy) − h (2nx) h (2ny)‖

≤
1
4nϕ (2nx, 2ny) ,

which tends to zero as n→ ∞, by (2.5). So

g(xy) − g(x)y − xg(y) = 0,
h(xy) − h(x)h(y) = 0,

for all x, y ∈ A. Hence the mapping g : A → A is a derivation and the mapping h : A → A is a
homomorphism. �

Next, we investigate homomorphisms and derivations in complex Banach algebras associated to
the additive-additive (s, t)-functional inequality (2.1) by using a similar method to the fixed point
alternative.

Theorem 2.5. Let ϕ : A2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
( x
2
,

y
2

)
≤

L
4
ϕ (x, y) , (2.6)

for all x, y ∈ A. Let g, h : A → A be mappings satisfying g(0) = h(0) = 0, (2.3) and (2.4). Then the
mapping g : A→ A is a derivation and the mapping h : A→ A is a homomorphism.

Proof. It follows from (2.6) that

∞∑
j=1

4 jϕ
( x
2 j ,

y
2 j

)
≤

∞∑
j=1

4 j L
j

4 j ϕ(x, y) =
L

1 − L
ϕ(x, y) < ∞,

for all x, y ∈ A. By Theorem 2.3, the mapping g : A→ A is a derivation and the mapping h : A→ A is
a homomorphism. �
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Theorem 2.6. Let ϕ : A2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ
( x
2
,

y
2

)
, (2.7)

for all x, y ∈ A. Let g, h : A → A be mappings satisfying g(0) = h(0) = 0, (2.3) and (2.4). Then the
mapping g : A→ A is a derivation and the mapping h : A→ A is a homomorphism.

Proof. It follows from (2.7) that

∞∑
j=1

1
4 jϕ

(
2 jx, 2 jy

)
≤

∞∑
j=1

1
4 j (4L) jϕ(x, y) =

L
1 − L

ϕ(x, y) < ∞,

for all x, y ∈ A. By Theorem 2.4, the mapping g : A→ A is a derivation and the mapping h : A→ A is
a homomorphism. �

Remark 2.7. In (2.4), the pair (g, h) of a derivation g and a homomorphism h can be replaced by the
pair of a derivation and a derivation or the pair of a homomorphism and a homomorphism.

3. Additive-additive (s, t)-functional inequality (0.1) in C∗-algebras

In this section, we study homorphisms and derivations in unital C∗-algebras associated to the
additive-additive (s, t)-functional inequality (2.1) by using a similar method to the fixed point
alternative. Throughout this scetion, assume that A is a unital C∗-algebra with unitary group U(A).

Theorem 3.1. Let ϕ : A2 → [0,∞) be a function satisfying (2.2). Let g, h : A → A be mappings
satisfying g(0) = h(0) = 0 and (2.3). If g, h : A→ A satisfy

‖g(uv) − g(u)v − ug(v)‖ + ‖h(uv) − h(u)h(v)‖ ≤ ϕ(u, v), (3.1)

for all u, v ∈ U(A), then the mapping g : A → A is a derivation and the mapping h : A → A is a
homomorphism.

Proof. Let λ = 1 in (2.3). By Lemma 2.1, the mappings g, h : A→ A are additive.
It follows from (2.3) that

‖g (λ(x + y)) − λg(x) − λg(y)‖ + ‖h (λ(x + y)) − λh(x) − λh(y)‖
≤ ‖s (g (λ(x + y)) − λg(x) − λg(y))‖ + ‖t(h (λ(x + y)) − λh(x) − λh(y))‖,

for all λ ∈ T1 and all x, y ∈ A. Since |s| < 1 and |t| < 1,

g (λ(x + y)) − λg(x) − λg(y) = 0,
h (λ(x + y)) − λh(x) − λh(y) = 0,

for all λ ∈ T1 and all x, y ∈ A. Thus by Lemma 2.2, the mappings g, h : A→ A are C-linear.
Since D is C-linear in the first variable and each y ∈ A is a finite linear combination of unitary

elements (see [9]), i.e., y =
∑k

i=1 λivi (λi ∈ C, vi ∈ U(A)).
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g(uy) = g(u
k∑

i=1

λivi) =
k∑

i=1

λig(uvi) =
k∑

i=1

λi(g(u)vi + ug(vi))

= (
k∑

i=1

λi)g(u)vi + (
k∑

i=1

λiu)g(vi) = g(u)y + ug(y),

for all x, y ∈ A.
Similarly, let x =

∑m
j=1 λ ju j (λ j ∈ C, u j ∈ U(A)). Then

g(xy) = g(
m∑

j=1

λ ju jy) =
m∑

j=1

λ jg(u jy) =
m∑

j=1

λ j(g(u j)y + u jg(y))

= (
m∑

j=1

λ j)g(u j)y + (
m∑

j=1

λ ju j)g(y) = g(x)y + xg(y),

for all x, y ∈ A. So

g(xy) − g(x)y − xg(y) = 0,

for all x, y ∈ A. Hence the C-linear mapping g : A→ A is a derivation.
Since D is C-linear in the first variable and each y ∈ A is a finite linear combination of unitary

elements (see [9]), y =
∑k

i=1 λivi (λi ∈ C, vi ∈ U(A)),

h(uy) = h(uλ
k∑

i=1

vi) =
k∑

i=1

λih(uvi) =
k∑

i=1

λi(h(u)h(vi)) = h(u)h(y),

for all x, y ∈ A.
Similarly, let x =

∑m
j=1 λ ju j (λ j ∈ C, u j ∈ U(A)). Then

h(xy) = h(λ
m∑

i=1

u jy) =
m∑

j=1

λ jh(u jy) =
m∑

j=1

λ j(h(u j)h(y)) = h(x)h(y),

for all x, y ∈ A. So

h(xy) − h(x)h(y) = 0

for all x, y ∈ A. Hence the C-linear mapping g : A→ A is a homomorphism. �

Theorem 3.2. Let ϕ : A2 → [0,∞) be a function and g, h : A → A be mappings satisfying g(0) =
h(0) = 0, (2.3), (3.1) and (2.5). Then the mapping g : A → A is a derivation and the mapping
h : A→ A is a homomorphism.

Proof. The proof is similar to the proofs of Theorems 2.4 and 3.1. �

Remark 3.3. Using the fixed point method given in Theorems 2.5 and 2.6, one can obtain the same
results as in Theorems 3.1 and 3.2.
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4. Additive-additive (s, t)-functional inequality (0.2) in C∗-ternary algebras

In this section, we solve and investigate the additive-additive (s, t)-functional inequality (0.2) in
C∗-ternary algebras.

Lemma 4.1. If mappings g, h : B→ B satisfy g(0) = h(0) = 0 and

‖g (x + y + z) − g(x) − g(y) − g(z)‖

+‖3h
( x + y + z

3

)
+ h(x − 2y + z) + h(x + y − 2z) − 3h(x)‖ (4.1)

≤

∥∥∥∥∥s
(
3g

( x + y + z
3

)
− g(x) − g(y) − g(z)

)∥∥∥∥∥
+ ‖t (h(x + y + z) + h(x − 2y + z) + h(x + y − 2z) − 3h(x))‖ ,

for all x, y, z ∈ B, then the mappings g, h : B→ B are additive.

Proof. Letting x = y = z in (4.1), we get

‖g(3x) − 3g(x)‖ ≤ ‖t(h(3x) − 3h(x))‖,

for all x ∈ B.
Letting y = z = 0 in (4.1), we get∥∥∥∥∥3h

( x
3

)
− h(x)

∥∥∥∥∥ ≤ ∥∥∥∥∥s
(
3g

( x
3

)
− g(x)

)∥∥∥∥∥
and so

‖3h(x) − h(3x)‖ ≤ ‖s(3g(x) − g(3x))‖,

for all x ∈ B. Thus

‖g(3x) − 3g(x)‖ ≤ ‖st(3g(x) − g(3x))‖,

‖3h(x) − h(3x)‖ ≤ ‖st(h(3x) − 3h(x))‖,

for all x ∈ B. So h(3x) = 3h(x) and g(3x) = 3g(x) for all x ∈ B, since |st| < 1. It follows from (4.1) that

‖g (x + y + z) − g(x) − g(y) − g(z)‖
+‖h (x + y + z) + h(x − 2y + z) + h(x + y − 2z) − 3h(x)‖
≤ ‖s (g (x + y + z) − g(x) − g(y) − g(z))‖
+ ‖t (h(x + y + z) + h(x − 2y + z) + h(x + y − 2z) − 3h(x))‖ ,

for all x, y, z ∈ B. Thus
g (x + y + z) − g(x) − g(y) − g(z) = 0,

h (x + y + z) + h(x − 2y + z) + h(x + y − 2z) − 3h(x) = 0,

for all x, y, z ∈ A, since |s| < 1 and |t| < 1. So the mappings g, h : B→ B are additive. �
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Now, we investigate C∗-ternary homomorphisms and C∗-ternary derivations in C∗-ternary algebras
associated to the additive-additive (s, t)-functional inequality (4.1).

Theorem 4.2. Let ϕ : B3 → [0,∞) be a function such that

∞∑
j=1

8 jϕ
( x
2 j ,

y
2 j ,

z
2 j

)
< ∞, (4.2)

for all x, y, z ∈ B. Let g, h : B→ B be mappings satisfying g(0) = h(0) = 0 and

‖g (λ(x + y + z)) − λ(g(x) + g(y) + g(z))‖

+‖3h
(
λ

x + y + z
3

)
+ λ(h(x − 2y + z) + h(x + y − 2z) − 3h(x))‖ (4.3)

≤

∥∥∥∥∥s
(
3g

(
λ

x + y + z
3

)
− λ(g(x) + g(y) + g(z))

)∥∥∥∥∥
+ ‖t (h(λ(x + y + z)) + λ(h(x − 2y + z) + h(x + y − 2z) − 3h(x)))‖ ,

for all λ ∈ T1 and all x, y, z ∈ B. If g, h : B→ B satisfy

‖g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)]‖ (4.4)
+‖h([x, y, z]) − [h(x), h(y), h(z)]‖ ≤ ϕ(x, y, z),

for all x, y, z ∈ B, then the mapping g : B → B is a C∗-ternary derivation and the mapping h : B → B
is a C∗-ternary homomorphism.

Proof. Let λ = 1 in (4.3). By Lemma 4.1, the mappings g, h : B→ B are additive.
It follows from (4.3) that

‖g (λ(x + y + z)) − λ(g(x) + g(y) + g(z))‖
+‖h (λ(x + y + z)) + λ(h(x − 2y + z) + h(x + y − 2z) − 3h(x))‖
≤ ‖s (g (λ(x + y + z)) − λ(g(x) + g(y) + g(z)))‖
+ ‖t (h(λ(x + y + z)) + λ(h(x − 2y + z) + h(x + y − 2z) − 3h(x)))‖ ,

for all λ ∈ T1 and all x, y, z ∈ B. Since |s| < 1 and |t| < 1,

g (λ(x + y + z)) − λ(g(x) + g(y) + g(z)) = 0,
h (λ(x + y + z)) + λ(h(x − 2y + z) + h(x + y − 2z) − 3h(x)) = 0,

for all λ ∈ T1 and all x, y, z ∈ B. Thus by Lemma 2.2, the mappings g, h : B→ B are C-linear.
It follows from (4.4) and the additivity of g, h that

‖g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)]‖
+‖h([x, y, z]) − [h(x), h(y), h(z)]‖

= 8n

∥∥∥∥∥∥g
(
[x, y, z]

8n

)
−

[
g
( x
2n

)
,

y
2n ,

z
2n

]
−

[ x
2n , g

( y
2n

)
,

z
2n

]
−

[ x
2n ,

y
2n , g

( z
2n

)]∥∥∥∥∥∥
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+8n

∥∥∥∥∥∥h
(
[x, y, z]

8n

)
−

[
h
( x
2n

)
, h

( y
2n

)
, h

( z
2n

)]∥∥∥∥∥∥
≤ 8nϕ

( x
2n ,

y
2n ,

z
2n

)
,

which tends to zero as n→ ∞, by (4.2). So

g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)] = 0,
h([x, y, z]) − [h(x), h(y), h(z)] = 0,

for all x, y, z ∈ B. Hence the mapping g : B→ B is a C∗-ternary derivation and the mapping h : B→ B
is a C∗-ternary homomorphism. �

Theorem 4.3. Let ϕ : B3 → [0,∞) be a function and g, h : B → B be mappings satisfying g(0) =
h(0) = 0, (4.3), (4.4) and

∞∑
j=1

1
8 jϕ(2 jx, 2 jy, 2 jz) < ∞, (4.5)

for all x, y, z ∈ B. Then the mapping g : B→ B is a C∗-ternary derivation and the mapping h : B→ B
is a C∗-ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, one can show that the mappings g, h :
B→ B are C-linear.

It follows from (4.4) and the additivity of g, h that

‖g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)]‖
+‖h([x, y, z]) − [h(x), h(y), h(z)]‖

=
1
8n ‖g (8n[x, y, z]) − [g (2nx) , 2ny, 2nz] − [2nx, g (2ny) , 2nz] − [2nx, 2ny, g(2nz)]‖

+
1
8n ‖h (8n[x, y, z]) − [h (2nx) , h (2ny) , h(2nz)]‖

≤
1
8nϕ (2nx, 2ny, 2nz) ,

which tends to zero as n→ ∞, by (4.5). So

g([x, y, z]) − [g(x), y, z] − [x, g(y), z] − [x, y, g(z)] = 0,
h([x, y, z]) − [h(x), h(y), h(z)] = 0,

for all x, y, z ∈ B. Hence the mapping g : B→ B is a C∗-ternary derivation and the mapping h : B→ B
is a C∗-ternary homomorphism. �

Next, we investigate C∗-ternary homomorphisms and C∗-ternary derivations in C∗-ternary algebras
associated to the additive-additive (s, t)-functional inequality (4.1) by using a similar method to the
fixed point alternative.
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Theorem 4.4. Let ϕ : B3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
( x
2
,

y
2
,

z
2

)
≤

L
8
ϕ (x, y, z) , (4.6)

for all x, y, z ∈ B. Let g, h : B → B be mappings satisfying g(0) = h(0) = 0, (4.3) and (4.4). Then
the mapping g : B → B is a C∗-ternary derivation and the mapping h : B → B is a C∗-ternary
homomorphism.

Proof. It follows from (4.6) that

∞∑
j=1

8 jϕ
( x
2 j ,

y
2 j ,

z
2 j

)
≤

∞∑
j=1

8 j L
j

8 j ϕ(x, y, z) =
L

1 − L
ϕ(x, y, z) < ∞,

for all x, y, z ∈ B. By Theorem 4.2, the mapping g : B→ B is a C∗-ternary derivation and the mapping
h : B→ B is a C∗-ternary homomorphism. �

Theorem 4.5. Let ϕ : B3 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y, z) ≤ 8Lϕ
( x
2
,

y
2
,

z
2

)
, (4.7)

for all x, y, z ∈ B. Let g, h : B → B be mappings satisfying g(0) = h(0) = 0, (4.3) and (4.4). Then
the mapping g : B → B is a C∗-ternary derivation and the mapping h : B → B is a C∗-ternary
homomorphism.

Proof. It follows from (4.7) that

∞∑
j=1

1
8 jϕ

(
2 jx, 2 jy, 2 jz

)
≤

∞∑
j=1

1
8 j (8L) jϕ(x, y, z) =

L
1 − L

ϕ(x, y, z) < ∞,

for all x, y, z ∈ B. By Theorem 4.3, the mapping g : B→ B is a C∗-ternary derivation and the mapping
h : B→ B is a C∗-ternary homomorphism. �

Remark 4.6. In (4.4), the pair (g, h) of a C∗-ternary derivation g and a C∗-ternary homomorphism h can
be replaced by the pair of a C∗-ternary derivation and a C∗-ternary derivation or the pair of a C∗-ternary
homomorphism and a C∗-ternary homomorphism.

5. Conclusions

We have introduced the following additive-additive (s, t)-functional inequality (0.1) and have
investigated homomorphisms and derivations in complex Banach algebras and unital C∗-algebra,
associated to the additive-additive (s, t)-functional inequality (0.1) and the functional inequality (1.1).
Moreover, we have introduced the following additive-additive (s, t)-functional inequality (0.2) and
have investigated C∗-ternary derivations and C∗-ternary homomorphisms in C∗-ternary algebras,
associated to the additive-additive (s, t)-functional inequality (0.2) and the functional inequality (1.2).
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