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1. Introduction

Reidemeister torsion is a topological invariant and was introduced by Reidemeister in 1935. Up to
PL equivalence, he classified the lens spaces S®/T", where T is a finite cyclic group of fixed point free
orthogonal transformations [20]. In [11], Franz extended the Reidemeister torsion and classified the
higher dimensional lens spaces S*"*!/T", where T is a cyclic group acting freely and isometrically on
the sphere S?*+1.

In 1964, the results of Reidemeister and Franz were extended by de Rham to spaces of constant
curvature +1 [10]. Kirby and Siebenmann proved the topological invariance of the Reidemeister
torsion for manifolds in 1969 [14]. Chapman proved for arbitrary simplicial complexes [7, 8]. Hence,
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the classification of lens spaces of Reidemeister and Franz was actually topological (i.e., up to
homeomorphism).

Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. He constructed two
homeomorphic but combinatorially distinct finite simplicial complexes. He identified in 1962 the
Reidemeister torsion with Alexander polynomial which plays an important role in knot theory and
links [16, 18].

In [21], S6zen explained the claim mentioned in [27, p. 187] about the relation between a symplectic
chain complex with w—compatible bases and the Reidemeister torsion of it. Moreover, he applied the
main theorem to the chain-complex

0 - C2(Z:Ad,) 5 €12 Ady) "3 Co(,: Ad,) — 0,

where X, is a compact Riemann surface of genus g > 1, where 0 is the usual boundary operator, and
where o : m1(2;) — PSL,(R) is a discrete and faithful representation of the fundamental group 7;(Z,)
of X, [21]. Now we will give his description of Reidemesister torsion and explain why it is not unique
by a result of Milnor in [17].

Let H,(C.) = Z,(C.)/B,(C.) denote the homologies of the chain complex (C.,d.) = (C, &

Ciog —» -+ > (O i Co — 0) of finite dimensional vector spaces over field C or R, where
B, =Im{d,+1 : Cps1 — C,}, Zp =ker{d, : C, — C,_}, respectively.

Consider the short-exact sequences:

0 - Z,=C,»8,.,—>0 (1.1)
0 - B8,—>Z,»H,—0, (1.2)

where (1.1) is a result of 1*-Isomorphism Theorem and (1.2) follows simply from the definition of
‘H,. Note that if b, is a basis for 8, I, is a basis for H,,, and ¢, : H, —» Z, and s, : B,.; — C, are
sections, then we obtain a basis for C,,. Namely, b, ® €,(b,,) & s,(b,_1).

If, for p = 0,--- ,n, ¢,, b,, and b, are bases for C,, B, and H), respectively, then the alternating
product

n

Tor(C.. ep¥r 0pVag) = | | [0r @ 6,0, @ 5,(0,0),

p=0

_1\(p+D)
]( Y (1.3)

is called the Reidemeister torsion of the complex C,. with respect to bases {cp}’;zo, {bp}gzo,

where [b,,@fp(bp)@sp(b,,_l), c,,] denotes the determinant of the change-base matrix from ¢, to
b, ®,(H,) ® s,(by_1).

Milnor [17] proved that torsion does not depend on neither the bases b,, nor the sections s, {,.
Moreover, if ¢, b/, are other bases respectively for C, and H,,, then there is the change-base-formula:

o, c,]
Tor(C... {¢,}}—0: D}, })o0) = l_l ([bf) bp]
s Yp

p=0

=P
) “Tor(Cu (¢,)—o» (,)20). (1.4)
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Let M be a smooth n—manifold, K be a cell-decomposition of M with for each p = 0,--- ,n,
¢ = {e’,--- ,eﬁ,p}, called the geometric basis for the p—cells C,(K;Z). Hence, we have the chain-
complex associated to M

0= CK) 3 Ci(K) = - — Ci(K) 2 Cy(K) — 0, (1.5)

where 0, denotes the boundary operator. Then Tor(C.(K), {c,,};l,zo, {bp}zzo) is called the Reidemeister
torsion of M, where b, is a basis for H,(K).

In [23], oriented closed connected 2m—manifolds (m > 1) are considered and he proved the
following formula for computing the Reidemeister torsion of them. Namely,

Theorem 1.1. Let M be an oriented closed connected 2m—manifold (m > 1). For p =0, ...,2m, leth,
be a basis of H,(M). Then the Reidemeister torsion of M satisfies the following formula:

m—1

|T(M, {hp}é’”)| = l_[ |det Hp,2m_p(M)|(_l)p |det Hm,m(M)| -1

p=0

where det H, 5, ,(M) is the determinant of the matrix of the intersection pairing (-, *)pom-p : H,(M) X
Hyy_p,(M) — R in bases hy, hy,,_,.

It is well known that Riemann surfaces and Grasmannians have many applications in a wide range
of mathematics such as topology, differential geometry, algebraic geometry, symplectic geometry, and
theoretical physics (see [2, 3,5, 6, 12, 13,22, 24-26] and the references therein). They also applied
Theorem 1.1 to Riemann surfaces and Grasmannians.

In this work we calculate Reidemeister torsion of compact flag manifold K/7 for K = SU,,,;, where
K is a compact simply connected semi-simple Lie group and 7" is maximal torus [28].

The content of the paper is as follows. In Section 2 we give all details of cup product formula in the
cohomology ring of flag manifolds which is called Schubert calculus [15, 19]. In the last section we
calculate the Reidemesiter torsion of flag manifold SU,,/T for n > 3.

The results of this paper were obtained during M.Sc studies of Habib Basbaydar at Abant Izzet
Baysal University and are also contained in his thesis [1].

2. Schubert calculus and cohomology of flag manifold

Now, we will give the important formula equivalent to the cup product formula in the cohomology
of G/B where G is a Ka¢-Moody group. The fundamental references for this section are [15, 19].
To do this we will give a relation between the complex nil Hecke ring and H*(K/T,C). Also we
introduce a multiplication formula and the actions of reflections and Berstein-Gelfand-Gelfand type
BGG operators A; on the basis elements in the nil Hecke ring.

£-&= ) pig,

U,y<w

Proposition 2.1.

where py is a homogeneous polynomial of degree {(u) + €(v) — {(w).
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Proposition 2.2.

& ifriw>w,
ri&" = —(wla)Em + & — Z a;(y")E”  otherwise.
oW
Theorem 2.3. Let u,v € W. We write w™! = r; -~ r; as a reduced expression.

Piv= ), Awerodi ooy oo Ao

where m = €(v) and the notation A; means that the operator A; is replaced by the Weyl group action r;.

Let Cy = S/S* be the S-module where S is the augmentation ideal of S. It is 1-dimensional as
C-vector space. Since A is a S-module, we can define Cy ®¢ A. It is an algebra and the action of R on
A gives an action of R on Cy ®s A. The elements 0¥ = 1 ®&" € Cy®s A is a C-basis form of Cy ®g A.

Proposition 2.4. Cy ®s A is a graded algebra associated with the filtration of length of the element of
the Weyl group W.

Proposition 2.5. The complex linear map f : Co®s A — Gr C{W} is a graded algebra homomorphism.

Theorem 2.6. Let K be the standard real form of the group G associated to a symmetrizable Kac-
Moody Lie algebra g and let T denote the maximal torus of K. Then the map

0 : H*(K/T,C) i Co s A
defined by (") = 0" for any w € W is a graded algebra isomorphism. Moreover, the action of w € W
and A" on H*(K|T, C) corresponds respectively to that 6,, and x,, € R on Cy Qg A.
Corollary 2.7. The operators A' on H*(K/T, C) generate the nil-Hecke algebra.

Corollary 2.8. We can use Proposition 2.1 and Theorem 2.3 to determine the cup product "&" in terms
of the Schubert basis {€"},,ew of H* (K| T, Z).

3. The Reidemeister torsion of compact flag manifold K/7T for K = SU,,,

This section includes our calculations about Reidemeister torsion of flag manifolds using Theorem
1.1 and Proposition 2.1 because x(S U,+1/T) = |W| = n! is always an even number.

We know that the Weyl group W of K acts on the Lie algebra of the maximal torus 7. It is a finite
group of isometries of the Lie algebra t of the maximal torus 7. It preserves the coweight lattice 7. For
each simple root @, the Weyl group W contains an element r,, of order two represented by e(*/2(¢ate-o))
in N(T). Since the roots @ can be considered as the linear functionals on the Lie algebra t of the
maximal torus 7', the action of r, on t is given by

ro(§) =& —a®h, for &et,

where A, is the coroot in t corresponding to simple root @.Also, we can give the action of r, on the
roots by
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reB) =B —alhpa for a,pet,

where t* is the dual vector space of t. The element r, is the reflection in the hyperplane H, of t whose
equation is a(¢) = 0. These reflections r, generate the Weyl group W.

Set ay, @y, ...,a, be roots of Weyl Group of SU,,;. Since the Cartan Matrix of Weyl Group of
S U}’H—l IS

2 i=j
My=1 -1 li-jl=1,
0 otherwise
—Q;, =]
re(aj) =% ai+aj;, li—jl=1
a;, otherwise.

Proposition 3.1. The Weyl group W of S U,.,; is isomorphic to Coxeter Group A, given by generators
S1,82,...,S8, and relations

(i) sl.2:1 i=1,2,...,n;

(1) 5iSiv180 = Siv1iSiv1 i=12,...,n-1;
(iil) §iSj = §;S; 1Sl<]—1<l’l
Proof. (i)
Yo, 0 To,(B) = 1o (B— < ;B> ;)

- <a,p>a—-<pB-<a,B>a,a >q;

B—<a,B>a—<B,a;>a+<a,B><aq;,q; > q;

,8—<cy,~,,8>ozl-—<a,~,,8>a,~+2<al~,,8>a,-

B.

(i)
Ta, O Ta,, OFe,(B) = 1y, 01,,,(b—<a.,B>a;)
= ro(B—<a,B>ai— <ap1,f- <ai,f>a; > ai)
= 1y, (B— <@, B> ai— < @is1, > Ay
+ < a1, < a,B>a; > aiy)
= ro,(B— <a,B > ai— < i1, > @iy
+ <@, >< i1, @ > jyy)
= rg(f—<a,B>a— <ai,B>ain— <a,B> i)
= - <a,f>a— <ai,B> i~ <@, > @iy
- <@,f-<a,f >~ <apy,B > i
- <@,B> i >

= B—<a,B>ai— <qu,B> a1~ <, B> aiy
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r(YHl o rﬂ’i ° rﬂ’iﬂ(ﬁ)

Hence r,,, © 7o, 0 14, (B) =

(i)

AIMS Mathematics

rfli o rﬁ’j(ﬁ)

Ta; © Ta,(B)

-<a,B>a+<q,B><aq,a; > q;
+ < @iy1,B >< @jy1,@; > @it < @, B >< @iy, @ > @
= B-<a,f>a— <au,B> - <, > ai
-<a,f>a;+2<a,p>a—-<ay,p>q
- <a,B>aq
= B-<a,f>a— <ai,B>a— <y, > iy
- < ;B> @i

= B-(<a;,B >+ <ap,B>)a; + ai).

= T ©To,(B— < @it1,B > @iy1)
= Taw (B~ < @1, > @ip1— < @, f— < @1, > @iy > @)
= Ta(B— < ai1,B>ai— <a,B>q;
+ < @1, B >< @, Ay > @)
= To, (B— < @1, B> aipi— < @, > ai— < @iy, > ;)
= = <ap,B> - <@,f>a— <aiy,B > q;
- <@u1,P- <aiyL,B> - <a,f>aq;
= <1, > @ > @iy
= B-<aipL.p>ai—<anp,B>a—<a,p>aq;
— < @iy, > Qi+t < @, B >< @iy, @ > Ay
+ < @1, B >< @iy, @ > iy
+ < @iy1,8 >< g1, Uy > Ay
= = <apL,B> - <@,f>a— <aiy,B > a;
—<auLB>ai +2 <ai,B > ain— <, > @i
- < @iy, B> @iy
= B-<apL,B>ai— <a,B>a— <ay,B>aq;
- <@, B> @iy

= B-(Kaiu1,B>+ <a,p>) a1 + ).

ra/i+1 © rai © r“i+1(ﬂ)'

Fop © (B— <, > ;)
p-<a;,pB>a-<a,B-<a,B>a;>q;
p-<aj,f>a-<a,B>a+<a;,B><a,a;>q;
p-<a;p>a-<a,B>a.

ro; © (B— < a,B>a;)

Volume 5, Issue 6, 7562-7581.
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= ,8—<0/,-,,8>a,-—<0/j,,8—<a/i,,8>cyi>aj
= ,8—<a/,~,,8>oz,~—<aj,,8>aj+<ai,,8><aj,ai>aj
= ,8—<a'i,ﬁ>ai—<aj,,8>aj.

Hence r,, © 74,(B) = ra; © ro,(B).

After this point s; will represent 7.
Let us define the word

8iSiy1 S l<_]
Sijj = Si 1=]
I i

Theorem 3.2. [4, Theorem 3.1] The reduced Grobner-Shirshov basis of the coxeter group A, consists
of relation

SijSi = Sit+jSij 1 Sl<]§l’l

together with defining relations of A,.
The following lemma is equivalent of [4, Lemma 3.2]. The only difference is the order of
generators 1 > §y > ... S, in our setting.

Lemma 3.3. Using elimination of leading words of relations, the reduced elements of A, are in the
form

SwtLjuet SmjuSn=tju  Sij Sy 1SiSji+l<n+ L

Notice that j,.1+1=n+1= j,.1 =nand sy, = 1.

Algorithm 3.1. (Finding Inverse) Let w = s, S,—1,j,_, - * - 51,j,- The inverse of w can be found using
following algorithm.
Invw = {};
Conw = Reverse(w);
Fork=1tok=n
Find maximum sequence in Conw;
list = {Si, Skx1s Ska2s -+ > Sk jbs
Invw = list U Invw;
End For.

Example 3.4. Let s46535525513. The inverse of its is S35, 55545352555453565554.
Invw = s14
S352S5S4S3S5S4S6S5
Invw = §2551,4
S3S5S4S5S6
Invw = 83,592,551 4
8586
Invw = SS,6S3,5S2’5S1’4.
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Lemma 3.5. Letw = (S’l,jn)(s”l—l,j;1—1) s (Si+1, ji+1)(si,ji) ..

siw = (8, 7)1, 57) (S, 57708, 7) -+ - (857), where
Jist = Ji+ L ji = jir if i < Jin

SW =9 Jivt = Jis Ji = Jis1 — 1 if  ji2 Jjim
Jk = Jk if k#i,i+1

Here if i = n, then we assume j,,1 = n.

Corollary 3.6. Let w = (5,,j,)(Sp-1,j,_,) * * * (Siz1,ji )(Si ) - -

Si-1 () = (5,30 (8,0177) = (S 7)(857)
Jwi = Jit L ji = jia+ L jion = Jin if
J/lﬂ_]l"'l Ji = Ji-1> J/z\l—]zﬂ_l if

—

- (s1,,) and

- (s1,j,) and

- (s JA) where

Ji < Jixt> Jio1 < Jisi
Ji < Jist> Jim1 = Jix1

sic1(siw) = ﬁﬂ = Ji» Ji = Jin1 +/1;ji—1 = Jimi =1 if  Ji 2 jirrs Jio1 < jir1—1
ji” = Jis Ji = Ji=1s Jic1 = Jix1 — 2 if  Ji= jivts Jio1 2 i1 — 1
Jk = Jk if k+i—-1,14, i+1.
Proof. Letw = s;w = (an )(s,,_ 17, 1) . (Si+1’jij)(si’;) e (31,71)- Then
Jz—le+1 Jtl—.]t lf E<£
sioi(w) = ]' = Jits Jimt = Ji— 1 if  Jjio12Ji
]k—]k lf k¢i—1,i.
@ ji < JZLI:>E = ji+l’\;_: Jis1 SO jii < Ji = it < Jists Jin1 = Ji1 = Ji+ 1,
Ji=Jjia+t1l1=jioi+1, jioi = ji = jinr.
@) ji < ji1 = o = Ji+ L Ji = jir SO Jii 2 i = jit 2 juts Jwl = jiw = i+ L,
Ji = Ji-1 = Ji-t» Jisi = Jji—= 1= jiu — L.
(iii) Jz 2_1 = Jz+1 = ,]1 ; ,]z = jim—1 So ]1_—1 < E:‘ Ji-t < Jixls Jix1 = JzT = ji+1,
Ji = Jio1 = Jiots Ji1 = Ji— 1= jin — L
@¥) ji 2 jit = jiet = Jio Ji = Jn =1 S0 jiu 2 ji = jin 2 jin = L i = i = i
Ji = Jio1 = Ji-ts Jio1 = Ji—= 1= Jiy — 2.
O
Corollary 3.7. Letw = (Sn jn)(sn_l’jn—l) s (SH_] jz+1)(si jz) s (Sl jl) and
s,+1(SW)—(S,,j,1)( et o) (S,+1,+1)( i7) (s15). Then
]z+2 =ji+2, ]z+1 = Jis2s Ji = ]i+l if  Ji <Jiwts Jie1 < Jir2
Jz+2 Jit+ 1, Jz+1 Ji+2 — 1 Ji=Jim1 f Ji<Ju Jit12>jin
Sip1(siw) = J/IE = Ji +/1\]1+1 = Jis2s ’J\z =Jiwi— 1 if  Jji= ji1, Ji < Ji2
Jiv2 = Jis Jiv1 = Jiva ~ L ji=jii =1 if  JiZjits Ji 2 Jir2
Jk = Jk if k+ii+1,i+2.
AIMS Mathematics Volume 5, Issue 6, 7562-7581.
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Proof. Letw = s;w = (sn’ﬁ)(sn_l’jn—_]) e (si+]’jij)(si’;) e (51,7,)- Then

Jiv2 = ﬂ +/1,\ji+zji: if  Jir1 < Jis2

sir1(w) = Z; :_ji+1a ji+1 = ji+2 -1 if ji+l > E
Jk = Ji if k#i+1,i+2.

(@) jif\jiﬂijiT:jL‘F L_E:jm SO jir1 < Jiz = Ji+ 1 < jinas E:E‘Fl =Jji+t2,
Jivd = Jiva = Jivas Ji = Ji = Jisl-

(i) ji < jin = Jin = Ji+ 1, !_L = Jist SO i1 Z Jiu2 = Jji+t1 2 jur, Ji2 = Jin = Ji+ 1
ji+1 = ji+2 -1= ji+2 - 1’ ji = ji = ji+l~

(iii) Jz/é ji+1_$ Jixl :/j\i’ ]_i: Jiz1 — 1 So  ji < jijﬁ Ji < Jis2 s ;:2 = jin +1=ji+1,
ji+1 = ji+2 = ji+2, ji = ji -1= ji+1 - 1.

i) ji = ji = Jin1 = Jis ;_: Jisi =1 S0 i1 2 jua = Ji 2 Jias iz = Jiwl = Jis Jin =
Jiro—=1=Jia—=1, ji=ji=jin—1

Using Lemma 3.3 and definitions of A’ and r; operators, we can obtain the followings.

Lemma 3.8. Let w = (5,,;,)(Sn-1,j,_,) " (Six1, jus)(Siji) -+ - (S1,j,)- Then

: g if iz jin

Al 8‘1/ — . . }

) {o i 0 < oo
where wy = (8,5)(8,177) S 7)(8,7) - (8157) with ji = Ji  Ji = jin— 1 and  ji = ji
if k#i,i+1.

Sicl _ oSi _ oSitl g P— 7
Lemma 3.9. r;(&%) = { 8;_ .8 . © . if =
e if i#]

The integral cohomology of S U,,.;/T is generated by Schubert classes indexed

W:{snjnsn_l,jn_l...sljl: j,‘ZO or iSjiSn}.

Let x; = & € H*(SU,4/T,Z). We define an order between generators of the integral cohomology of
S U,+1/T. Since each element gn*n-1in-1--%i-*1ii_can be represented by an n-tuple (j, —n+1, j,-1 —(n—

D+1,...,j;—i+1,...,j; — 1 + 1), we can define an order between n-tuples.

Definition 3.10. (Graded Inverse Lexicographic Order) Let ¢« = (aj,a3,...,2,) and g =
B1,Ba2s---»Bn) € Z5,. Wesay @ > Bif ol = a1+ ar+...a, > Bl =1 +B2+...6, or |a| =B
and in the vector difference @ — 8 € Z", the right-most nonzero entry is positive. We will write
ghninSn=LinoySijp Sy > gk Sn-Ljpy S-St if (7 —n+ 1, joog— (=D + 1, ., ji—i—=1,..., 1 —1+1)>
(ky—n+ Lk, —-(n-D+1,....kk—i—1,.... —1+1).

Example 3.11. 5553514 > g%359455 gipce (3,2,4) > (3,3, 3) in graded inverse lexicographic order.

We will try to find a quotient ring Z[xy, X, . .., X,]/I which is isomorphic to H*(SU,+1/T,Z). We
also define an order between monomials as follows.

AIMS Mathematics Volume 5, Issue 6, 7562-7581.
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Definition 3.12. We say x{" x5 - - - x;," > xflxgz il = tan et a, > 1Bl = B1+Br+---+B,
or || = |B] and in the vector difference @ — 8 € Z" the left-most non-zero entry is negative.

Example 3.13. x‘l‘xgxg < x?x%xi, since (4,2,3)—-(3,3,3) =(1,-1,0).

Xp

Lemma 3.14. x{"x5> ... x," = ghon®n-ten+Siei-Sler 4 Jower terms.

Proof. To prove this, we use induction on degree of the monomials. By definition x; = &% Let us
compute x;x; = &'¢%. Here we may assume that i < j. If j —i > 1, the inverse of s;s; is s;5;. Hence

Py =rAle) =r(1) =1
in the cup product. If j = i + 1, the inverse of s;,5; is s;5,41. In this case

Py = Alrii(e) = Al(e") = & = 1.

SisSi1

If i = j, then we have to consider the word s; ;.. Its inverse s;,1s; and

Pt = AN = (1) = 1.

Now we have to show that P! = 0if % > g%, By definition of cup product the coefficient of &**

is not zero only if s; — sis; and s; — sis;. However, this is possible only if sis; = §;s; Or $i8; = 8; 41
when j = i + 1. Clearly %"+ < g%%i, Hence &g’ = &% + lower terms and &g’ = g%g% if
Jj—1> 1. In the case i = j, we have to look elements s;s; and s;s;. The inverse of s;s; is equal to sys;
itself if k — i > 1, hence
P = Alre%) = Al - &% + &%) = 0

since k —i > 1. Clearly &% < g%+ if k < i. Hence £°g® = &%**! + lower terms.

Assume that x{'x5% ... x;," = g¥m®rtanr-SieiSler 4 Jower terms.

i 1 n - oo Sigi 4] e 1

We have to show xcl” )ng ... x;,l o Xp" = glnanSn-lay_y-Siej+1--Slay + Jower terms by Bruhat ordering.

Snay, Sn—la,y - -+ Sigj+1 « - - Slay — W only if W = 8,508,135 ... S@; . . . S13; where there exists an index
jforwhicha; =a;+1and a; = ai if k # j.

By given ordering

’
W = Sna, Sn—1a - - - Sia; - - - Slag = SnaySn—lLap_; + + - Sia;+1 + - - Slay -

If j > i, then, by Algorithm 3.1, in w’~!, we will not have a subsequence s;j_i, 5j-» ... s; after the
elements s;. Hence in the cup product before applying A’ we will not have the term &%. It means
Py, =0.

If j = i, then, again by Algorithm 3.1, in w'~! we will not have a subsequence s;_, 5,5 ... s; after
the elements s;. Hence in the cup product before applying A’ we will not have the term &%. It means

Pg:w = 1if and only if j > i. m]

Example 3.15. Let [ =3,
X1Xox3 = €%%2% 4+ Jlower terms.
XTxpx3 = €925 4 Jower terms,
Then we have g%3*3%1 > g%3%2512 > 53512 > %3513 > 9255 Since the inverse of s35351 is $3813 and the
inverse of s35281 IS S13, Asr a3 () = Asri(e®) = Az(—&® + &%) = 0.

Similarly, since the inverse of s352812 is $2813, Aar11r3(e) = Aar (%) = Ay(—&” + &%) = 1.
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Before finding the quotient ring Z[ xy, . . ., x,]/I, we give some information about ring k[x, ..., x,]/1
where k is a field. Fix a monomial ordering on k[xy,...,x,]. Let f € k[x;,...,x,]. The leading
monomial of f, denoted by LM(f), is the highest degree monomial of f. The coefficient of LM(f) is
called leading coefficient of f and denoted by LC(f). The leading term of f, LT (f) = LC(f)LM(f).

Let I C k[xi,...,x,] be an ideal. Define LT(I) = {LT(f) : f € I}. Let < LT(I) > be an ideal
generated by LT (/).

Proposition 3.16. [9, Section 5.3, Propostions 1 and 4]

(i) Every f € kl[xi,...,x,] is congruent modulo I to a unique polynomial r which is a k-linear
combination of the monomials in the complement of < LT (I) >.

(ii) The elements of {x* : x* ¢< LT(I) >} are linearly independent modulo 1.

(iii) k[xy,...,x,]/I is isomorphic as a k — vector space to

S = Span{x® : x" ¢< LT(I) >}.

Theorem 3.17. [9, Section 5.3, Theorem 6] Let [ C k[x1,...,x,] be an ideal.
(i) The k-vector space k[xy, ..., x,1/1 is finite dimensional.

(ii) Foreachi, 1 <i < n, there is a polynomial f; € I such that LM(f;) = x}" for some positive integer
m;.

Theorem 3.18. H*(SU,,,/T,Z) isomorphic to Z[xy, X2, ..., X1/ < fi, fos..., fn > where LT(f;) =

x?““ with respect to monomial order given by Definition 3.12.

Proof. Let I be the ideal such that H*(SU,,,/T,R) = Rlay,as,...,a,]/I. Since we found one to
one correspondence between length / elements of H*(S U,.+1/7T,Z) and monomials x‘l"' xgz - x5" where
ay+a;+---a, =land foreachi, 1 <i<n,qa; <n-i+ 1, there should be a polynomial f; € I such

that LT(f;) = x}7*2. o

Example 3.19. Let n = 3. Then we have
ai<n—i+1, i=1,2,3;
a1 <3, a, <2, a’3§1.
Forl=1; x1, xp, x3; and
forl=2; x3, x1xp, X1X3, X2x3, X5. S0 we must have a polynomial f; with LM(f3) = x3.
Forl = 3; xf, x%xz, x%)@, X1X2X3, xlxg, X%X3, S0
we must have a polynomial f, with LM(f,) = xg.
Forl=4; x}x;, XiX3, X;X2X3, X1X3, X|X3X3, SO

we must have a polynomial f, with LM(f,) = x{.

The complex dimension of SU,,;/T is equal to (n + 1)n/2. So the highest element has length of
(n+ Dn/2.

Since the unique highest element has length of
of elements of length k and of length @ — k.

n(n+1)

—5—, we now give the result about the multiplication
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Theorem 3.20. Let A = g%in’-Lin-17%11t he an element of length k and B = g% *=1ru-175101 be an element

of length @ — k. The corresponding polynomials in Z[xy, X2, ..., X,/ < fi, fo,..., [ > has leading
monomials
{‘_H]xéz_%] -'-x{"_m e x{"_"H and x‘;"_lﬂxg'_pr1 e xf”_"+1, respectively. Then
A B { g5nnSn=L>-woSins-eoSin if ji +pi+ l=n+i
0, if j+pi+1#n+i.

Proof. The unique highest degree monomial in Z[x;,x,...,x,)/ < fi,foseeesfu > 18
Xyt xm . x,. The multiplication of leading monomials of corresponding monomials of A

and B produce the monomial

Ji+pr jatpa=2

L it p,—2n+2
X x! x; .

X l

Ifji+pi-2i+2=n-i+1—- ji+p;+1=n+iforeachi, i <1 <n,then the multiplication gives
the x/x5" ... x,. Since this monomial correspondence the element gt sinSin A . B = ginsn-tasin,
If j; + p; + 1 # n + i, then the leading monomial and the monomials of lower degree must reduce
to zero modulo < fi, f5,..., f; > in k[xy, x2, ..., x,] when we apply the division algorithm. Hence
A-B=0. m|

Now we can give the whole computation of the quotient ring Z[xy, x5, x31/ < fi, f>, f5 >.

Example 3.21. Let x; = &%, x, = &%, x3 = &%.
Forl =2, we have

Xoxz = &7 4 "%
x5 = 2 4 g™
xXix3 = g°"
xX1x, = ¥+
x% = g%,
and
X2 X3 5352 5352 X X3
2 5253 5283 2
x5 & & x5
X1x3 | =M]| %% and g3 =M xix3 | where
X1X2 g g X1X2
X% &1 51 X%
1 1000 1 -1 0 1 -1
01 010 0O 1 0 -1 1
M=l0010O0]| M'=[0 0 1 0 O |.Thenwehave
0 0011 O 0 0 1 -1
0 00O01 O 0 0 0 1
92 = X3 — X5+ XXy — X0

25 = g — XX + X0
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S35
831

S8
821

S8
812

= X1X3

X1X2 — x%

_ 2
— Xl.

Here we must have a relation involving x% and we have it as

2
Forl =73;
X%X:; =
X1XpX3 =
x1x§ =
X%X3 =
X%XZ =
@ =
and )
X5X3 £535253
X1X2X3 %251
2 525351
X1X &
2 =ML and
X\ X3 gB2
2
x2x; g52519
X? 515253
1 1 100O00O0
01 1101
1001011 L
M = M =
000101
0 00O0OT1 1
0 00 OO0 1
Then we have
8S3S2S3 —
g% =
852S3S| —
83‘3;&‘15‘2 _
g1 —
g9 =

oS35 2 2
X3 =& = XpX3 — X; + X1 X2 — X].

S350 $38528 §2538
8323+8321+823I

53828 $2838 S§3518 S1828
8321+8231+8312+8123

$28538 S$251S 51528
8231+8212+8123
§35152 515283

o +&

5281 5152
8212+8123

8S1S2S3
£5352%3 x§x3

539251 X1X2X3

525381 2

gszsmz :M_l xéxz 4 where
e X7 X3

ghs1n x%xz

515253 X?

1 -1 O 1 0O O

0O 1 -1 -1 1 0

0 0 1 0O -1 O

0O 0 O 1 0o -1

0O 0 0 O 1 -1

O 0 0 0 O 1

2 2
X5X3 — X1 X2X3 + X X3
2 2 2
X1XpX3 — X1 X5 — X|X3 + X[ X3

X].x% - X%Xz

2 3
X[X3 = X
2 3
3
.X].

Here we must have a relation involving xi and we now we have it as

3 _ $283851 2 2
X, =2¢& = 2(x1x; — X{X2).

AIMS Mathematics
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Forl = 4; we have

Il
SO OO =
OO OO = =
SO = =N

Then

X1X%X3 = SIS SIS 4 ) IS3N 4 ) 83518283
x%xzx?) — 853525152 +852535152 +853515253 +8525152S3
x%x% — 8S2S3S152 + 8S251S253
X? X3 = 853s1 52853
X? X, = Sszsl 5283
8&3 528381 8&3 528381 X xg X3
£93%251%2 £%3%251%2 X%X2X3
£525351%2 and g | = M x2xd | where
£53515283 £53515283 X?X3
£%2515283 £%2515283 XTXZ
2 0 1 -1 -1 -1 2
11 O 1 -1 -1 0
0 1 M'=[0 0 1 0 -1
1 0 O 0 0 1 O
01 0O 0 0 O 1
9 =y x3x3 — XPXpX3 — XoX3 — x?xg + Zx?xz
NI = xixyx3 — XI5 — X X3
2N = iyt — xix,
833 515283 _— X?.X3
2NN = iy,

We must have a relation involving x‘l‘, which is xlx? = g%l g"1%2% = (),

Forl=25;
and
x%x%x_o,
xxxs |=M
X
1 1 1
M=|01 1
0 01
AIMS Mathematics

2.2

X?X2X3

X1X2

$352535152
E !

§385285185258:
g 35251582353

52535152
823]23

M =

_ 5253515253
= i8I

535253515
832312

and 83‘332.&'1 5283
8525351 5253

-1 0
I -1 1.5
0 1

— 53852851525 §2853851828
& 2123+823123

= M_1

538528351 §385251828 §283518528
832312+832123+823123

2,2
X{X5X3
X1 X2X3 |,

X%,

where

Volume 5, Issue 6, 7562-7581.
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3
IR = A2y — XX
9NN = Pyxyxs — xix;

5253518283 3.2
€ = XX

Hence we don’t have any relation.
Forl = 6;
x3x2x . 5385253518253 d S382535182853 — 1342
1X5X3 = & and & = X]X5X3.
Now let us multiple elements with lengths of k and 6 — k.
First My = 1 and | det(M,)| = 1.

Degree 1% Degree 5

Elements | Leading Monomial in Polynomial Ring
o X
P X2
P X3
£53523512 x%x§x3
g7 X X3
53513 )C? X%
£%3 * g83523512 X% X% x%
&% k g%352513 X?)Qx%
g% ® g513513 x?x%)%
&5 *k 83823512 X%x;)@ 0
g2 * ghhss | Py | 1
%2 ® g523513 x? xg 0
51 % g53823512 x?x§x3 1
51k g8382513 )C?)Cng 0
51 ® g523513 xAI« x% 0
Now we will calculate Reidemeister torsion of SU4/T by using above multiplication. From
0 01
multiplication of the second cohomology, we have M, = |0 1 0|and |det(M,)| = 1.
1 00

Degree 2+ Degree 4
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Elements | Leading Monomial in Polynomial Ring
ghn X2 X3
e x5
L] X1X3
o X1X2
g'n X

£5352351 X x§x3
g5%2512 X%XQX3
esBsn )C% X%
g5 X3
g x?xz

£5352 % g8382381 xlxgxg 0

85‘33‘2 % 86‘3323‘12 x%x%x% 0

£53%2 % gs23512 x% x; x3 | 0

g%3%2 * g%3s13 x?xzxg 0

£5352 % gs2513 x?xgx?’ 1

£523 % g8352391 X x‘zl X3 0

£523 % g5352512 X%xSXS 0

53 * gs3s12 x% x‘zt 0

g g | Xxixg | 1

£523 * %2513 x‘I’ xg 0

£9351 % 8352351 X%ngg 0

£5351 % g5382512 x?x2x§ 0

5351 % gsnsn xi )C% X3 1

£5351 % 53513 x‘l‘xg 0

g9% #2515 | xixxs | 0

£5251 % 8382351 x%xg)@ 0

gsle % SS3AY2.712 X”;’x%)@ 1

£5251 % g523512 X?X; 0

g5 # g5 | xixxs | 0

5251 % g82813 x‘l‘xg 0

£512 %k g8352391 x? X% x| 1

gi12 * g5352512 X?X2X3 0

£512 * gs13812 x‘fx% 0

12 * g83513 X?X3 0

gs12 & %2813 x?x2 0

To calculate Reidemeister torsion of SU4/T we need multiplication of fourth cohomology bases

AIMS Mathematics

0
0

elements and then we have M, = |0

0
1

0

o - O O

0

S O = O

0

(=i e

S OO O

and |det(M,)| = 1.
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Degree 3 * Degree 3

Elements | Leading Monomial in Polynomial Ring
PR X553
g% x§x3
&8 X x%
ghsn X7 3
g5 X% X5

e’s x?
£53523 x% X3
395251 X1X2X3
g X1X5
ghsn X0 X3
g1 x% X

e x?

£53523 % 83523 Xéx%
8s3523 % €S3s251 xlxgxg
8s3S23 ES 8323s1 X].x;‘x:;
83‘33‘23 ES 8s3s12 x%xgxg
£93523 *k gf2siz X%XSX'J»
53523 *k o513 x?X%.X’j

— O O O OO

535251 * g9 |y X; )C%

£935251 % o838281 x% x% x%
£535251 % oIS
£535251 % 83512 x§x2x3
35281 sk ~S28512

& & X]X5X3
£535251 % o513 XAI‘XZX3

=
—to
o
0 Lo
=
(95}
SO = O O O O

5351 % 83523 xlx;‘x3
£SB51 k g838251 X%X%)@
S5B81 k o851 x2x;

£52351 % g83512 x?x§x3

5351 % g52812 x?x;
5B *k o513 x‘]‘ X%

£53512 % 83823 X%X%X%
£53512 k% 8385251 x?xzxg
£53512 %k 823581 xfx§x3
53512 % o83512 xéltxg
£53512 3k 82812 XAI‘X2X3
£93%12% gS13 X?X3

(N elel =] SO = O OO
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£52512 % 83523 x%xg)% 0
£52512 % g838281 X?X%)@ 1
52512k o851 X?XS 0
£52512 % g83512 x‘llxzx3 0
£52512 % gsasi x‘fx% 0
£52512 % o513 X?XQ 0
513 * g83523 x? x% x| 1
£513 % g838281 x?x2x3 0
513 * oIS X?X% 0
513 * g53512 X?X3 0
513 * gs2s12 x?x2 0
513 * gs13 X? 0

To calculate Reidemeister torsion of S Us/T we need multiplication of sixth cohomology bases
000O0O01

— o O O
o = O O

0
0
0 and | det(My)| = 1.
0

S O O =

0
0
elements and then we have Mg = 0
0

el el el =

1 00 00
In general the matrix M; represents the intersection pairing between the homology classes of
degrees k and (n + 1)n —k with real coefficient. So in general | det(M nins1) )| = 1. Hence the Reidemeister
torsion of S U, /T is 1 by the Reidmeister torsion formula for manifolds.
By Theorems 1.1, 3.18 and 3.20, we obtain the following result.

Theorem 3.22. The Reidemeister torsion of S U,.1/T is always 1 for any positive integer n with n > 3.

Remark 3.23. We should note that we found this result by Schubert calculus. But, we choose any
basis to define Reidemeister torsion. There are many bases for the Reidemeister torsion to be 1. Why
we focus on this basis to compute the Reidemeister torsion is that we can use Schubert calculus and
we have cup product formula in this algebra in terms of Schubert differential forms. Otherwise these
computations are not easy. Also by Groebner techniques we can find the normal form of all elenents
of Weyl group indexing our basis. So computations in this algebra is avaliable.

Remark 3.24. In our work, we consider flag manifold SU,,,/T for n > 3. Then we consider the
Schubert cells {c,} and the corresponding homology basis a {b,} associated to {c,} . We caculated that

TOI(C*(K)’ {Cp}’;,:()a {bp}gzo) =1.

If we consider the same cell-decomposition but other homology basis {b’} then by the change-base-
formula (1.4), then we have

n ’r\n s 1 (_I)P n n
Tor(C., {¢)}o0, (D} po0) = l_l ([I)’—f)p]) - Tor(C., {¢)} -0 {Dphp—0)-
Remark 3.25. In the presented paper M = K/T is a flag manifold, where K = SU,,, and T is the
maximal torus of K. Clearly, M is a smooth orientable even dimensional(complex) closed manifold.
So there is Poincaré (or Hodge) duality. Therefore, we can apply Theorem 1.1 for M = K/T.

p=0
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