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Abstract: In this paper, we acquire the general solution of the generalized quadratic functional
equation ∑

1≤a<b<c≤m

ϕ (ra + rb + rc) = (m − 2)
∑

1≤a<b≤m

ϕ (ra + rb)

−

(
m2 − 3m + 2

2

) m∑
a=1

ϕ (ra) + ϕ (−ra)
2

where m > 3 is an integer. We also investigate Hyers-Ulam stability results by means of using
alternative fixed point theorem for this generalized quadratic functional equation.
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1. Introduction

A function f : X → Y between real vector spaces is called a quadratic function if

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), x, y ∈ X. (1.1)

The functional equation (1.1) is called a quadratic functional equation. Quadratic functional equations
play an important role in the characterization of inner product spaces. The quadratic functional
equation arises from the parallelogram equality in inner product spaces. For more general information
on this subject, we refer the reader to [1, 9, 11, 15, 17, 22].
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The examination of stability issues for functional equations is identified with an inquiry of
Ulam [26] regarding the stability of group homomorphisms, which was positively replied for Banach
spaces by Hyers [8]. Later, the consequence of Hyers was generalized by Aoki [2] and Rassias [21]
for additive and linear mappings, respectively, by permitting the Cauchy difference to be unbounded.
Găvruta [7] stated a generalization of the Rassias theorem by replacing the unbounded Cauchy
difference by a general control function. The Hyers-Ulam stability and the generalized Hyers-Ulam
stability problem for the quadratic functional equation (1.1) were studied by several mathematicians
(cf. [4, 10, 25]).

The stability problems of several functional equations in the setting of fuzzy normed spaces have
been extensively investigated by a number of authors. We refer the interested reader to [12, 13, 18].

In this paper, we acquire the general solution of the generalized quadratic functional equation∑
1≤a<b<c≤m

ϕ (ra + rb + rc) = (m − 2)
∑

1≤a<b≤m

ϕ (ra + rb) (1.2)

−

(
m2 − 3m + 2

2

) m∑
a=1

ϕ (ra) + ϕ (−ra)
2

where m > 3 is an integer. We also investigate a fuzzy version of the Hyers-Ulam stability for the
functional equation (1.2) in fuzzy normed spaces by using the direct method and the fixed point method.

2. Preliminaries

We recall some basic facts concerning fuzzy normed spaces and some preliminary results. We use
the definition of fuzzy normed spaces given in [3].

Definition 2.1. [3] Let X be a real vector space. A function N : X × R→ [0, 1] is called a fuzzy norm
on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c , 0;
(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = 1;
(N6) for x , 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

Example 2.2. [14] Let (X, ‖.‖) be a normed linear space and α, β > 0. Define N : X × R→ [0, 1] by

N(x, t) =

{
αt

αt+β‖x‖ , t > 0, x ∈ X;
0, t ≤ 0, x ∈ X.

It is easy to check that N is fuzzy norm on X.

Example 2.3. [14] Let (X, ‖.‖) be a normed linear space and β > α > 0. We define N : X × R→ [0, 1]
by

N(x, t) =


0, t ≤ α‖x‖;

t
t+(β−α)‖x‖ , α‖x‖ < t ≤ β‖x‖;
1, t > β‖x‖.
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It is easy to check that N is fuzzy norm on X.

Example 2.4. Let (X, ‖.‖) be a normed linear space and α > 0. Define N : X × R→ [0, 1] by

N(x, t) =

{
0, t ≤ 0;

tα
tα+‖x‖α , t > 0.

It is easy to check that N is fuzzy norm on X.

Definition 2.5. [3] Let (X,N) be a fuzzy normed space. A sequence {xn}
∞
n=1 in X is said to be convergent

if there exists x ∈ X such that limn→∞ N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of
the sequence {xn}

∞
n=1 and we denote it by N-lim xn = x.

It is easy to see that the limit of the convergent sequence {xn}
∞
n=1 in a fuzzy normed space (X,N) is

unique (see [14]).

Definition 2.6. [3] A sequence {xn}
∞
n=1 in a fuzzy normed space (X,N) is called a Cauchy sequence if

for each ε > 0 and each t > 0 there exists an M ∈ N such that for all n ≥ M and all p > 0, we have
N(xn+p − xn, t) > 1 − ε.

The property (N4) implies that every convergent sequence in a fuzzy normed space is a Cauchy
sequence. A fuzzy normed space (X,N) is called a fuzzy Banach space if each Cauchy sequence in X
is convergent.

Proposition 2.7. Let (X, ‖.‖) be a normed linear space and let N : X × R → [0, 1] be the fuzzy norm
defined by

N(x, t) =

{ t
t+‖x‖ , t > 0;
0, t ≤ 0.

Then (X,N) is a fuzzy Banach space if and only if (X, ‖.‖) is Banach.

Proof. Suppose that (X,N) is a fuzzy Banach space. Let {xn}
∞
n=1 be a Cauchy sequence in (X, ‖.‖) and

0 < ε < 1. Suppose that t > 0 and δ = ε
1−ε . Then there exists an M ∈ N such that ‖xn+p− xn‖ < tδ for all

n ≥ M and all p > 0. Therefore t
t+‖xn+p−xn‖

> 1−ε for all n ≥ M and all p > 0. Hence {xn}
∞
n=1 is a Cauchy

sequence in (X,N). Then limn→∞ N(xn − x, 1) = 1 for some x ∈ X and this shows limn→∞ ‖xn − x‖ = 0.
Conversely, suppose that (X, ‖.‖) is a Banach space and {xn}

∞
n=1 is a Cauchy sequence in (X,N). Let

0 < δ < 1 and ε = δ
1−δ . Then there exists an M ∈ N such that 1

1+‖xn+p−xn‖
> 1 − δ for all n ≥ M and

all p > 0. So ‖xn+p − xn‖ < ε for all n ≥ M and all p > 0. Therefore {xn}
∞
n=1 is a Cauchy sequence in

(X, ‖.‖). Let xn → x0 ∈ X (in ‖.‖) as n→ ∞. Then limn→∞ N(xn − x0, t) = 1 for all t > 0. �

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at
a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence { f (xn)} converges to
f (x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous on X.

2.1. Generalized metric spaces

Let X be a set. A function d : X × X → [0,+∞] is called a generalized metric on X if d satisfies
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1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

It should be noted that the only difference between the generalized metric and the metric is that the
generalized metric accepts the infinity.

We will use the following fundamental result in fixed point theory.

Theorem 2.8. [5] Let (X, d) be a generalized complete metric space and Λ : X → X be a strictly
contractive function with the Lipschitz constant L < 1. Suppose that for a given element a ∈ X there
exists a nonnegative integer k such that d(Λk+1a,Λka) < ∞. Then

(i) the sequence {Λna}∞n=1 converges to a fixed point b ∈ X of Λ;
(ii) b is the unique fixed point of Λ in the set Y = {y ∈ X : d(Λka, y) < ∞};

(iii) d(y, b) 6 1
1−Ld(y,Λy) for all y ∈ Y.

3. General solution for the equation (1.2)

In this segment, we achieve the general solution of the even-quadratic functional equation (1.2). For
m = 3 the functional equation (1.2) is presented as follows:

ϕ(x + y + z) = ϕ(x + y) + ϕ(y + z) + ϕ(x + z)

−
[ϕ(x) + ϕ(y) + ϕ(z)] + [ϕ(−x) + ϕ(−y) + ϕ(−z)]

2
,

(3.1)

where ϕ is a function between two linear spaces. Letting x = y = z = 0 in (3.1), we get ϕ(0) = 0.
Setting y = z = 0 in (3.1), we infer ϕ is even. Substituting z = −y in (3.1), we conclude ϕ satisfies (1.1).

It is well known that a quadratic function can be represented as the diagonal of a symmetric
biadditive map. In fact a function ϕ : X → Y between two linear spaces X and Y is quadratic if and
only if there exists a symmetric biadditive map B : X × X → Y such that ϕ(x) = B(x, x) for all x ∈ X.
Therefore a function ϕ between two linear spaces is quadratic if and only if ϕ satisfies (3.1).

Theorem 3.1. LetX andY be linear spaces. A function ϕ : X → Y fulfils the functional equation (1.2)
if and only if ϕ is quadratic, i.e., ϕ fulfils the functional equation (1.1).

Proof. Suppose that ϕ fulfils the functional equation (1.2). Substituting
(r1, r2, r3, . . . , rm) = (0, 0, 0, . . . , 0) in (1.2), we occur ϕ(0) = 0. Exchanging
(r1, r2, r3, . . . , rm) = (r, 0, 0, . . . , 0) in (1.2), we get

(m − 2)ϕ(r) + (m − 3)ϕ(r) + · · · + ϕ(r) = (m − 2)(m − 1)ϕ(r) −
(m − 2)(m − 1)

4
[ϕ(r) + ϕ(−r)].

Then ϕ(−r) = ϕ(r) for all r ∈ X. Thus ϕ is an even function. Setting
(r1, r2, r3, . . . , rm) = (x, y,−x, 0, . . . , 0) and using ϕ(0) = 0 with the evenness of ϕ, a straightforward
computation yields
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∑
1≤a<b<c≤m

ϕ (ra + rb + rc) =

m∑
c=3

ϕ(r1 + r2 + rc) +

m∑
c=4

ϕ(r1 + r3 + rc) + · · · +

m∑
c=m

ϕ(r1 + rm−1 + rc)

+

m∑
c=4

ϕ(r2 + r3 + rc) +

m∑
c=5

ϕ(r2 + r4 + rc) + · · · +

m∑
c=m

ϕ(r2 + rm−1 + rc)

+

m∑
c=5

ϕ(r3 + r4 + rc) +

m∑
c=6

ϕ(r3 + r5 + rc) + · · · +

m∑
c=m

ϕ(r3 + rm−1 + rc)

= ϕ(y) + (m − 3)ϕ(x + y) + (m − 4)ϕ(x) + (m − 5)ϕ(x) + · · · + ϕ(x)
+ (m − 3)ϕ(x − y) + (m − 4)ϕ(y) + (m − 5)ϕ(y) + · · · + ϕ(y)
+ (m − 4)ϕ(x) + (m − 5)ϕ(x) + · · · + ϕ(x)

= (m − 4)(m − 3)ϕ(x) + ϕ(y) +
(m − 4)(m − 3)

2
ϕ(y) + (m − 3)

[
ϕ(x + y) + ϕ(x − y)

]
,

on the other hand∑
1≤a<b≤m

ϕ (ra + rb) =

m∑
b=2

ϕ(r1 + rb) +

m∑
b=3

ϕ(r2 + rb) +

m∑
b=4

ϕ(r3 + rb)

= ϕ(x + y) + ϕ(x − y) + 2(m − 3)ϕ(x) + (m − 3)ϕ(y).

Hence setting (r1, r2, r3, . . . , rm) = (x, y,−x, 0, . . . , 0) in (1.2), we get

(m − 4)(m − 3)ϕ(x) + ϕ(y) +
(m − 4)(m − 3)

2
ϕ(y) + (m − 3)

[
ϕ(x + y) + ϕ(x − y)

]
= (m − 2)

[
ϕ(x + y) + ϕ(x − y) + 2(m − 3)ϕ(x) + (m − 3)ϕ(y)

]
−

m2 − 3m + 2
2

[2ϕ(x) + ϕ(y)].

Then
ϕ(x + y) + ϕ(x − y) = 2ϕ(x) + 2ϕ(y).

Then ϕ fulfils the functional equation (1.1).
Conversely, suppose that ϕ is quadratic. Then ϕ is even and there exists a symmetric biadditive map

B : X × X → Y such that ϕ(x) = B(x, x) for all x ∈ X. So it suffices to show that

∑
1≤a<b<c≤m

ϕ (ra + rb + rc) = (m − 2)
∑

1≤a<b≤m

ϕ (ra + rb) −
(
m2 − 3m + 2

2

) m∑
a=1

ϕ (ra) . (3.2)

To prove (3.2), a straightforward computation (by using B) yields
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∑
1≤a<b<c≤m

ϕ (ra + rb + rc) =

m∑
c=3

ϕ(r1 + r2 + rc) +

m∑
c=4

ϕ(r1 + r3 + rc) + · · · +

m∑
c=m

ϕ(r1 + rm−1 + rc)

+

m∑
c=4

ϕ(r2 + r3 + rc) +

m∑
c=5

ϕ(r2 + r4 + rc) + · · · +

m∑
c=m

ϕ(r2 + rm−1 + rc)

+ · · · +

m∑
c=m

ϕ(rm−2 + rm−1 + rc)

=
(m − 2)(m − 1)

2

m∑
c=1

ϕ(rc) + 2(m − 2)

 m∑
c=2

B(r1, rc) + · · · +

m∑
c=m

B(rm−1, rc)


=

(m − 2)(m − 1)
2

m∑
c=1

ϕ(rc) + 2(m − 2)
∑

1≤a<b≤m

B(ra, rb).

On the other hand∑
1≤a<b≤m

ϕ (ra + rb) =

m∑
b=2

ϕ(r1 + rb) +

m∑
b=3

ϕ(r2 + rb) + · · · +

m∑
b=m

ϕ(rm−1 + rb)

= (m − 1)
m∑

b=1

ϕ(rb) + 2
m∑

b=2

B(r1, rb) + 2
m∑

b=3

B(r2, rb) + · · · + 2
m∑

b=m

B(rm−1, rb)

= (m − 1)
m∑

b=1

ϕ(rb) + 2
∑

1≤a<b≤m

B(ra, rb).

Then ϕ satisfies the functional equation (1.2). �

4. Stability results for the functional equation (1.2): Direct method

In the rest of this paper, we take X, (Y,N) and (Z,M) are linear space, fuzzy Banach space and fuzzy
normed space, respectively. For notational convenience, we use the following abbreviation for a given
mapping ϕ : X → Y

Dϕ(r1, r2, · · · , rm) =
∑

1≤a<b<c≤m

ϕ (ra + rb + rc) − (m − 2)
∑

1≤a<b≤m

ϕ (ra + rb)

+

(
m2 − 3m + 2

2

) m∑
a=1

ϕ (ra) + ϕ (−ra)
2

for every r1, r2, · · · , rm ∈ X. In this segment, we examine a fuzzy version of the Hyers–Ulam stability
for the functional equation (1.2) in fuzzy normed spaces by means of direct method.

Theorem 4.1. Let t ∈ {−1, 1} be fixed, also consider ζ : Xm → Z be a mapping such that for some
γ > 0 with

(
γ

4

)t
< 1

M
(
ζ
(
2tr,−2tr, 2tr, 0, · · · , 0

)
, δ

)
> M

(
γtζ(r,−r, r, 0, · · · , 0), δ

)
, (4.1)
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including
lim
n→∞

M
(
ζ(2tnr1, 2tnr2, · · · , 2tnrm), 4tnδ

)
= 1

for all r, r1, r2, · · · , rm ∈ X and δ > 0. Suppose an even mapping ϕ : X → Y with ϕ(0) = 0 fulfils the
inequality

N (Dϕ(r1, r2, · · · , rm), δ) > M (ζ(r1, r2, · · · , rm), δ) , (4.2)

for all r1, r2, · · · , rm ∈ X and δ > 0. Then the limit

Q(r) = N − lim
n→∞

ϕ(2tnr)
4tn

exists for all x ∈ X and the mapping Q : X → Y is a unique quadratic mapping such that

N (ϕ(r) − Q(r), δ) > M (ζ(r,−r, r, 0, · · · , 0), δ|4 − γ|) , (4.3)

for all r ∈ X and δ > 0.

Proof. Initially we consider t = 1. Substituting (r1, r2, · · · , rm) through (r,−r, r, 0, · · · , 0) in (4.2), we
reach

N (ϕ(2r) − 4ϕ(r), δ) > M (ζ(r,−r, r, 0, · · · , 0), δ) , r ∈ X, δ > 0.

Then we have

N
(
ϕ(2r)

4
− ϕ(r),

δ

4

)
> M (ζ(r,−r, r, 0, · · · , 0), δ) , r ∈ X, δ > 0. (4.4)

Exchanging r through 2nr in (4.4), we acquire

N
(
ϕ(2n+1r)

4
− ϕ(2nr),

δ

4

)
> M (ζ(2nr,−2nr, 2nr, 0, · · · , 0), δ) , r ∈ X, δ > 0.

Utilizing (4.1) and (N3) in the above inequality, we reach

N
(
ϕ(2n+1r)

4n+1 −
ϕ(2nr)

4n ,
δ

4n+1

)
> M

(
ζ(r,−r, r, 0, · · · , 0),

δ

γn

)
, r ∈ X, δ > 0.

Switching δ through γnδ in the last inequality, we acquire

N
(
ϕ(2n+1r)

4n+1 −
ϕ(2nr)

4n ,
γnδ

4n+1

)
> M (ζ(r,−r, r, 0, · · · , 0), δ) , r ∈ X, δ > 0. (4.5)

From (4.5), we obtain

N

ϕ(2nr)
4n − ϕ(r),

n−1∑
a=0

δγa

4a+1

 = N

 n−1∑
a=0

[ϕ(2a+1r)
4a+1 −

ϕ(2ar)
4a

]
,

n−1∑
a=0

δγa

4a+1


> min

06a6n−1
N

(
ϕ(2a+1r)

4a+1 −
ϕ(2ar)

4a ,
δγa

4a+1

)
> M (ζ (r,−r, r, 0, · · · , 0) , δ) ,

(4.6)

AIMS Mathematics Volume 5, Issue 6, 7161–7174.



7168

for all r ∈ X, δ > 0 and all n ∈ N. Substituting r by 2vr in (4.6) and utilizing (4.1) with (N3), we acquire

N

ϕ(2n+vr)
4n+v −

ϕ(2vr)
4v ,

n−1∑
a=0

δγa

4a+v+1

 > M (ζ(2vr,−2vr, 2vr, 0, · · · , 0), δ)

> M
(
ζ(r,−r, r, 0, · · · , 0),

δ

γv

)
,

and so

N

ϕ(2n+vr)
4n+v −

ϕ(2vr)
4v ,

n+v−1∑
a=v

δγa

4a+1

 > M (ζ(r,−r, r, 0, · · · , 0), δ)

for all r ∈ X, δ > 0 and all integers v, n > 0. Exchanging δ through δ∑n+v−1
a=v

γa

4a+1
in the last inequality,

we obtain

N
(
ϕ(2n+vr)

4n+v −
ϕ(2vr)

4v , δ

)
> M

ζ(r,−r, r, 0, · · · , 0),
δ∑n+v−1

a=v
γa

4a+1

 , (4.7)

for all r ∈ X, δ > 0 and all integers v, n > 0. Since
∑∞

a=0

(
γ

4

)a
< ∞, it follows from (4.7) and (N5) that

{
ϕ(2nr)

4n }
∞
n=1 is a Cauchy sequence in (Y,N) for each r ∈ X. Since (Y,N) is a fuzzy Banach space, this

sequence converges to some point Q(r) ∈ Y for each r ∈ X. So one can define the mapping Q : X → Y
by

Q(r) := N − lim
n→∞

ϕ(2nr)
4n , r ∈ X.

Since ϕ is even, Q is even. Letting v = 0 in (4.7), we obtain

N
(
ϕ(2nr)

4n − ϕ(r), δ
)
> M

ζ(r,−r, r, 0, · · · , 0),
δ∑n−1

a=0
γa

4a+1

 , (4.8)

for all r ∈ X, δ > 0 and all integer n > 1. Then

N (ϕ(r) − Q(r), δ + ε) > min
{

N
(
ϕ(2nr)

4n − ϕ(r), δ
)
,N

(
ϕ(2nr)

4n − Q(r), ε
)}

> min

M

ζ(r,−r, r, 0, · · · , 0),
δ∑n−1

a=0
γa

4a+1

 ,N (
ϕ(2nr)

4n − Q(r), ε
) ,

for all r ∈ X, δ, ε > 0 and all integer n > 1. Hence taking the limit as n → ∞ in the last inequality and
using (N6), we get

N (ϕ(r) − Q(r), δ + ε) > M
(
ζ(r,−r, r, 0, · · · , 0), (4 − γ)δ

)
, r ∈ X, δ, ε > 0.

Taking the limit as ε→ 0, we get (4.3).
Now, we assert that Q is quadratic. It is clear that

N (DQ(r1, r2, · · · , rm), 2δ) > min
{
N
(
DQ(r1, r2, · · · , rm) −

1
4n Dϕ(2nr1, 2nr2, · · · , 2nrm), δ

)
,

N
( 1
4n Dϕ(2nr1, 2nr2, · · · , 2nrm), δ

)}
by (4.2) > min

{
N
(
DQ(r1, r2, · · · , rm) −

1
4n Dϕ(2nr1, 2nr2, · · · , 2nrm), δ

)
,

M (ζ(2nr1, 2nr2, · · · , 2nrm), 4nδ)
}
, r ∈ X, δ > 0.
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Since

lim
n→∞

N
(
DQ(r1, r2, · · · , rm) −

1
4n Dϕ(2nr1, 2nr2, · · · , 2nrm), δ

)
= 1,

lim
n→∞

M (ζ(2nr1, 2nr2, · · · , 2nrm), 4nδ) = 1

we infer N (DQ(r1, r2, · · · , rm), 2δ) = 1 for all r1, r2, · · · , rm ∈ X and all δ > 0. Then (N2) implies
DQ(r1, r2, · · · , rm) = 0 for all r1, r2, · · · , rm ∈ X. Therefore Q : X → Y is quadratic by Theorem 3.1.
To show the uniqueness of Q, let T : X → Y be another quadratic mapping fulfilling (4.3). Since
Q(2nr) = 4nQ(r) and T (2nr) = 4nT (r) for all r ∈ P and all n ∈ N, it follows from (4.3) that

N(Q(r) − T (r), δ) = N
(

Q(2nr)
4n −

T (2nr)
4n , δ

)
> min

{
N

(
Q(2nr)

4n −
ϕ(2nr)

4n ,
δ

2

)
,N

(
ϕ(2nr)

4n −
T (2nr)

4n ,
δ

2

)}
> M

(
ζ(2nr,−2nr, 2nr, 0, · · · , 0),

4n(4 − γ)δ
2

)
> M

(
ζ(r,−r, r, 0, · · · , 0),

4n(4 − γ)δ
2γn

)
for all r ∈ X, δ > 0 and all n ∈ N. Since limn→∞

(4n)(4−γ)δ
2γn = ∞, we have

lim
n→∞

M
(
ζ(r,−r, r, 0, · · · , 0),

4n(4 − γ)δ
2γn

)
= 1.

Consequently, N(Q(r) − T (r), δ) = 1 for all r ∈ X and all δ > 0. So Q(r) = T (r) for all r ∈ X.
For t = −1, we can demonstrate the consequence through homogeneous procedure. The proof of the
theorem is now complete. �

5. Stability results for the functional equation (1.2): A fixed point method

Based on the fixed point alternative, Radu [20] proposed a new method to investigate the stability
problem of functional equations. This method has recently been used by many authors (see, e.g.,
[6,16,19,23,24]). In this segment, we scrutinize the generalized Ulam–Hyers stability of the functional
equation (1.2) in fuzzy normed spaces through the fixed point method. First, we define ξa as a constant
such that

ξa =

2 i f a = 0
1
2 i f a = 1

and we consider Λ = {g : X → Y : g(0) = 0} .

Theorem 5.1. Let ϕ : X → Y be an even mapping with ϕ(0) = 0 for which there exists a function
ζ : Xm → Z with condition

lim
n→∞

M
(
ζ(ξn

ar1, ξ
n
ar2, · · · , ξ

n
arm), ξ2n

a δ
)

= 1, r1, r2, · · · , rm ∈ X, δ > 0, (5.1)
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and satisfying the inequality

N(Dϕ(r1, r2, · · · , rm), δ) > M(ζ(r1, r2, · · · , rm), δ), r1, r2, · · · , rm ∈ X, δ > 0. (5.2)

Let φ(r) = ζ
(

r
2 ,−

r
2 ,

r
2 , 0, · · · , 0

)
for all r ∈ X. If there exist L = La ∈ (0, 1) such that

M
(

1
ξ2

a
φ(ξar), δ

)
> M (Lφ(r), δ) , r ∈ X, δ > 0, (5.3)

then there exist a unique quadratic function Q : X → Y fulfilling

N(ϕ(r) − Q(r), δ) > M
(

L1−a

1 − L
φ(r), δ

)
, r ∈ X, δ > 0. (5.4)

Proof. Let γ be the generalized metric on Λ:

γ(g, h) = inf {w ∈ (0,∞) : N(g(r) − h(r), δ) > M(wφ(r), δ), r ∈ X, δ > 0} ,

and we take, as usual, inf ∅ = +∞. A similar argument provided in [ [12], Lemma 2.1] shows that
(Λ, γ) is a complete generalized metric space. Define Ψa : Λ −→ Λ by Ψag(r) = 1

ξ2
a
g(ξar) for all r ∈ X.

Let g, h in Λ be given such that γ(g, h) ≤ ε. Then

N (g(r) − h(r), δ) > M (εφ(r), δ) , r ∈ X, δ > 0,

whence

N(Ψag(r) − Ψah(r), δ) > M
(
ε

ξ2
a
φ(ξar), δ

)
, r ∈ X, δ > 0.

It follows from (5.3) that

N(Ψag(r) − Ψah(r), δ) > M(εLφ(r), δ), r ∈ X, δ > 0.

Hence, we have γ(Ψag,Ψah) ≤ εL. This shows γ(Ψag,Ψah) ≤ Lγ(g, h), i.e., Ψa is strictly
contractive mapping on Λ with the Lipschitz constant L. Substituting (r1, r2, · · · , rm) by
(r,−r, r, 0, · · · , 0) in (5.2) and utilizing (N3), we get

N
(
ϕ(2r)

4
− ϕ(r), δ

)
> M

(
ζ(r,−r, r, 0, · · · , 0)

4
, δ

)
, r ∈ X, δ > 0. (5.5)

Using (5.3) when a = 0, it follows from (5.5) that

N
(
ϕ(2r)

4
− ϕ(r), δ

)
> M(Lφ(r), δ), r ∈ X, δ > 0.

Therefore
γ(Ψ0ϕ, ϕ) 6 L = L1−a. (5.6)

Exchanging r through r
2 in (5.5), we obtain
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N
(
ϕ(r) − 4ϕ

( r
2

)
, 4δ

)
> M

(
ζ
( r
2
,−

r
2
,

r
2
, 0, · · · , 0

)
, 4δ

)
= M(φ(r), 4δ), r ∈ X, δ > 0.

Therefore
γ(Ψ1ϕ, ϕ) 6 1 = L1−a. (5.7)

Then from (5.6) and (5.7), we conclude γ(Ψaϕ, ϕ) 6 L1−a < ∞. Now from the fixed point alternative
Theorem 2.8, it follows that there exists a fixed point Q of Ψa in Λ such that

(i) ΨaQ = Q and limn→∞ γ(Ψn
aϕ,Q) = 0;

(ii) Q is the unique fixed point of Ψ in the set E = {g ∈ Λ : d(ϕ, g) < ∞};
(iii) γ(ϕ,Q) 6 1

1−Lγ(ϕ,Ψaϕ).

Letting γ(Ψn
aϕ,Q) = εn, we get N(Ψn

aϕ(r)−Q(r), δ) > M(εnφ(r), δ) for all r ∈ X and all δ > 0. Since
limn→∞ εn = 0, we infer

Q(r) = N − lim
n→∞

ϕ(ξn
ar)

ξ2n
a

, r ∈ X.

Switching (r1, r2, · · · , rm) by (ξn
ar1, ξ

n
ar2, · · · , ξ

n
arm) in (5.2), we obtain

N
(

1
ξ2n

a
Dϕ(ξn

ar1, ξ
n
ar2, · · · , ξ

n
arm), δ

)
> M(ζ(ξn

ar1, ξ
n
ar2, · · · , ξ

n
arm), ξ2n

a δ),

for all δ > 0 and all r1, r2, · · · , rm ∈ X. Using the same argument as in the proof of Theorem 4.1, we
can prove the function Q : X → Y is quadratic. Since γ(Ψaϕ, ϕ) 6 L1−a, it follows from (iii) that
γ(ϕ,Q) 6 L1−a

1−L which means (5.4). To prove the uniqueness of Q, let T : X → Y be another quadratic
mapping fulfilling (5.4). Since Q(2nr) = 4nQ(r) and T (2nr) = 4nT (r) for all r ∈ P and all n ∈ N,
we have

N(Q(r) − T (r), δ) = N
(

Q(2nr)
4n −

T (2nr)
4n , δ

)
> min

{
N

(
Q(2nr)

4n −
ϕ(2nr)

4n ,
δ

2

)
,N

(
ϕ(2nr)

4n −
T (2nr)

4n ,
δ

2

)}
> M

(
L1−a

1 − L
φ(2nr),

4nδ

2

)
.

By (5.1), we have

lim
n→∞

M
(

L1−a

1 − L
φ(2nr),

4nδ

2

)
= 1.

Consequently, N(Q(r)− T (r), δ) = 1 for all r ∈ X and all δ > 0. So Q(r) = T (r) for all r ∈ X, which
ends the proof. �

The upcoming corollaries are instantaneous outcome of Theorems 4.1 and 5.1, regarding the
stability for the Eq (1.2). In the following results, we assume that X, (Y,N) and (R,M) are a linear
space, a fuzzy Banach space and a fuzzy normed space, respectively.
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Corollary 5.2. Suppose an even function ϕ : X → Y fulfils ϕ(0) = 0 and the inequality

N(Dϕ(r1, r2, · · · , rm), δ) > M
(
τ + θ

m∏
a=1

‖ra‖
q, δ

)
,

for all r1, r2, · · · , rm ∈ X and all δ > 0, where τ, θ, q are real constants with mq ∈ (0, 2). Then there
exists a unique quadratic mapping Q : X → Y such that

N(ϕ(r) − Q(r), δ) > M(τ, 3δ), r ∈ X, δ > 0.

Corollary 5.3. Suppose an even function ϕ : X → Y fulfils ϕ(0) = 0 and the inequality

N(Dϕ(r1, r2, · · · , rm), δ) > M
(
ε

m∑
a=1

‖ra‖
p + θ

m∏
a=1

‖ra‖
q, δ

)
,

for all r1, r2, · · · , rm ∈ X and all δ > 0, where ε, θ, p and q are real constants with p,mq ∈ (0, 2) ∪
(2,+∞). Then there exists a unique quadratic mapping Q : X → Y such that

N(ϕ(r) − Q(r), δ) > M(3ε‖r‖p, |4 − 2p|δ), r ∈ X, δ > 0.

Corollary 5.4. Suppose an even function ϕ : X → Y fulfils ϕ(0) = 0 and the inequality

N(Dϕ(r1, r2, · · · , rm), δ) > M
(
θ

m∏
a=1

‖ra‖
q, δ

)
,

for all r1, r2, · · · , rm ∈ X and all δ > 0, where θ and q are real constants with 0 < mq , 2. Then ϕ is
quadratic.

6. Conclusions

Using the direct method and the fixed point method, we have obtained the general solution and have
proved the Hyers-Ulam stability of the following generalized quadratic functional equation∑

1≤a<b<c≤m

ϕ (ra + rb + rc) = (m − 2)
∑

1≤a<b≤m

ϕ (ra + rb)

−

(
m2 − 3m + 2

2

) m∑
a=1

ϕ (ra) + ϕ (−ra)
2

where m > 3 is an integer.
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7. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings, J. Math. Anal. Appl., 184 (1994), 431–436.

8. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27
(1941), 222–224.

9. P. Jordan, J. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719–723.

10. S. M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean
Math. Soc., 38 (2001), 645–656.

11. P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995),
368–372.

12. D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed
spaces, J. Math. Anal. Appl., 343 (2008), 567–572.

13. A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Set.
Syst., 159 (2008), 720–729.

14. A. Najati, Fuzzy stability of a generalized quadratic functional equation, Commun. Korean Math.
Soc., 25 (2010), 405–417.

15. A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive
functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399–415.

16. A. Najati, C. Park, Fixed points and stability of a generalized quadratic functional equation, J.
Inequal. Appl., 2009 (2009), 193035.

17. A. Najati, T. M. Rassias, Stability of a mixed functional equation in several variables on Banach
modules, Nonlinear Anal., 72 (2010), 1755–1767.

18. C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Set.
Syst., 160 (2009), 1632–1642.

19. C. Park, J. R. Lee, X. Zhang, Additive s-functional inequality and hom-derivations in Banach
algebras, J. Fix. Point Theory Appl., 21 (2019), 18.

AIMS Mathematics Volume 5, Issue 6, 7161–7174.



7174

20. V. Radu, The fixed point alternative and the stability of functional equations, Sem. Fix. Point
Theory, 4 (2003), 91–96.

21. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.,
72 (1978), 297–300.

22. T. M. Rassias, New characterization of inner product spaces, Bull. Sci. Math., 108 (1984), 95–99.

23. S. Pinelas, V. Govindan, K. Tamilvanan, Stability of a quartic functional equation, J. Fix. Point
Theory Appl., 20 (2018), 148.

24. S. Pinelas, V. Govindan, K. Tamilvanan, Solution and stability of an n-dimensional functional
equation, Analysis (Berlin), 39 (2019), 107–115.
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