
Received November 14, 2019, accepted December 11, 2019, date of publication December 23, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961416

ActiMon: Unified JOP and ROP Detection With
Active Function Lists on an SoC FPGA
HYUNYOUNG OH 1,2, MYONGHOON YANG 1,2, YEONGPIL CHO 3,
AND YUNHEUNG PAEK 1,2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
2ISRC, Seoul National University, Seoul 08826, South Korea
3School of Software, Soongsil University, Seoul 06978, South Korea

Corresponding authors: Yeongpil Cho (ypcho@ssu.ac.kr) and Yunheung Paek (ypaek@snu.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evalution (IITP) Grant
Funded by the Korean Government (MSIT) under Grant 2018-0-00230 (Development on Autonomous Trust Enhancement Technology of
IoT Device and Study on Adaptive IoT Security Open Architecture based on Global Standardization [TrusThingz Project]) and Grant
2017-0-00213 (Development of Cyber Self Mutation Technologies for Proactive Cyber Defense), in part by the National Research
Foundation of Korea (NRF) Grant Funded by the Korean Government (MSIT) under Grant NRF-2017R1A2A1A17069478 and Grant
NRF-2018R1D1A1B07049870, in part by the BK21 Plus Project in 2019, and in part by the EDA tool from the IC Design Education
Center (IDEC), South Korea.

ABSTRACT Field programmable gate arrays (FPGAs) have been increasingly mounted on commodity
systems. As a matter of fact, such an emerging adoption of FPGAs in the commodity systems is attributed to
their versatility came from the programmable property. Accordingly many industrial and academic attempts
have been performed to exploit FPGAs in a variety of applications. In this paper, we note that FPGAs also
can be used to protect the host CPU from a nasty security threat, called code reuse attacks (CRAs). Code
reuse attack (CRA) is a powerful technique that allows attackers to execute arbitrary code. Control-flow
integrity (CFI) has been popularly employed to mitigate CRAs. CFI entails CRA monitoring that checks if a
program runs as directed by its control-flow graph. However, as monitoring naturally incurs non-negligible
runtime overhead to the host CPU, many studies proposed hardware techniques to lessen the monitoring
overhead. To facilitate the immediate deployment of a hardware-based solution, we propose a CRAmonitor,
called ActiMon, that can be implemented on an SoC FPGAwhere the host CPU and FPGA are manufactured
together in a single platform. However, implementing the CRA monitor operating on FPGA arouses a new
challenge that has never been addressed in the previous solutions: the operating clock of FPGA is many times
slower than the CPU. By overcoming this speed difference, we ultimately purpose to evince the feasibility
of FPGA as a computing device in the field of CRA defense. For this purpose, we have developed a highly
efficient algorithm designed to run on FPGA whose goal is to monitor the existence of CRAs on the host
CPU residing in the same SoC FPGA platform. Empirical results show that ActiMon runs on our target SoC
FPGA platform efficiently enough to catch up to the speed of host code execution and promptly detects two
important types of CRAs, JOP (Jump-Oriented Programming) and ROP (Return-Oriented Programming),
as soon as they occurred in the host system. We assert that such results are encouraging thanks to our
unified, lightweight ROP/JOP detection mechanism based on a list of active functions, and also to additional
optimizations to leverage the inherent capabilities of FPGA for parallel computation.

INDEX TERMS Code reuse attacks (CRAs), control-flow integrity (CFI), external monitor, field
programmable gate arrays (FPGAs), hardware-based security.

I. INTRODUCTION
Field programmable gate arrays (FPGAs) have been
increasingly mounted on commodity systems. For exam-
ple, Amazon has established FPGA-builtin servers to allow

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Elhoseny .

customers to use FPGAs in Amazon Web Services (AWS) [1].
In another example, Intel, a prominent commercial CPU
vendor, has recently developed a programmable acceleration
card (PAC) [2] which runs various operations on an FPGA
connected via PCIe to the host CPU. It is noteworthy that
FPGAs become more tightly coupled by being integrated
on the same die with various CPUs such as Intel Xeon [3]

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 186517

https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0001-6263-7195
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0001-6347-8368

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

ARM [4], [5] and RISC-V [6]. As a matter of fact, such
an emerging adoption of FPGAs in the commodity systems
(i.e., hybrid CPU-FPGA architectures) is attributed to
their versatility came from the programmable property.
Accordingly, many industrial and academic attempts
have been performed to exploit FPGAs in a variety of
applications—data analytics [7], media processing [8], arti-
ficial intelligence [9], network security and monitoring [10],
financial [11] and genomics [12].

In this paper, we note that FPGAs also can be used to
protect the host CPU from a nasty security threat, called code
reuse attacks (CRAs). Attackers frequently launch CRAs to
hijack control-flow of the program execution so that they can
force the victim program to execute the existing code snippets
(i.e., gadgets) in a maliciously crafted order to seize sensitive
information or cause unexpected actions like program inter-
ruption or data tampering.

Many techniques for mitigating CRAs have been devised
over the past decade. Among them, control-flow integrity
(CFI) [13] has been the most popular, whose goal is to ensure
that a program is performed according to the control-flow
intended by software developers. Unfortunately, enforcing
CFI typically entails CRA monitoring [14], [15] whose run-
time overhead should grow to a great extent. To lessen the
monitoring overhead in enforcing CFI, security researchers
have developed a solution that uses hardware support, par-
ticularly FPGAs. As a concrete example, the authors in [16]
proposed an FPGA-basedmonitor to detect CRAswhich have
been launched inside the host CPU. To be brief, the solution
extracts the runtime information of a program running on
the host CPU via ARM’s built-in external interface, and then
delivers to the monitor implemented on the FPGA to check
if the CFI is violated. Note that these FPGA-based solutions
including that of [16] have built up on an assumption that
monitors on the FPGA can run virtually as fast as the host
CPU. However, such an assumption goes against the fact that
in real systems there is a big gap between the CPU and FPGA
in operating speed—according to our observations FPGAs
merely run about eight times slower than the host CPU—due
to the intrinsic nature of FPGA that has to sacrifice perfor-
mance for programmability [17]. According to our prelimi-
nary experiment, in real systems where the CPU and FPGA
shows significantly different operating speed, the implemen-
tation of [16] ran too slowly to process all crucial runtime
information emitted from the CPU for CRA detection in a
timely fashion, resultantly raisingmany false alarms and even
failing to recognize the existence of several CRAs that were
all detected in [16].

In this paper, we propose a new FPGA-based CRA mon-
itor, ActiMon, that is deployable to real systems despite of
the certain differential operating speed between the host CPU
and FPGA. ActiMon aims to defeat twomajor CRA schemes,
JOP [18] and ROP [19]. One way for ActiMon to tackle
these types of attacks is to capture all branch traces taken in
the host CPU and employ the well-known CFI enforcement
techniques such as branch regulation (BR) [20] and shadow

stack (SS) [21]. However, due to the intrinsic performance
limitation of FPGA, the monitor on FPGA was not able to
process all branch traces promptly as they are generated and
transmitted from the CPU, and thus soon overwhelmed by the
speed and volume of incoming branch traces.

Therefore, in order to avoid such a problem, we have
engineered a CRA monitoring algorithm for ActiMon such
that it can fulfill its monitoring task even on low-speed FPGA
fast enough to process all branch traces emitted from the
high-speed CPU. At the center of our algorithm, there is a
notion, called the active function, which allows ActiMon to
read a much less amount of runtime information from the
CPU with little loss of CRA detection accuracy. We here
say that a function is active if it was invoked but is not yet
returned. In our algorithm, active functions are recorded in
the active function list (AFL), which is updated every time
functions are invoked and returned during program execution.
ActiMon detects ROP attacks by enforcing the rule that a
return is only allowed to target one of the active functions.
To add JOP detection capability hereby, we have combined
our ROP detection rule with the BR rule that the control jumps
across a function boundary is only allowed to target the entry
of another function. More specifically, in our algorithm with
AFL, we classify such cross-function jumps that target the
middle of functions into two classes depending on whether
or not their target locations belong to active functions. Of the
first class are the jumps that transfer the control flow into
the middle of an inactive function. As regulated by BR,
we declare that they are making illegal control transfers
induced by CRAs. On the other hand, a jump that causes the
control transfer to the middle of active functions can be either
legal or illegal depending on the instruction type. If the jump
is made not by a return instruction but by an ordinary indirect
branch instruction, it will be judged illegal by our algorithm.
However, we rule that the jump made indeed by a return is a
legal, normal control transfer from the callee function to the
caller.

As can be seen from our description just above,
our JOP/ROP detection algorithm is deemed unified in a
sense that it tackles JOP and ROP simultaneously with a
single unified mechanism based on AFL. More accurately,
it is basically the ROP defense scheme added with JOP
detection capability where the AFL management of Acti-
Mon is involved in the detection of both JOP and ROP.
As evidenced experimentally, our unified, lighter AFL-based
detection solution runs more efficiently, thus attaining higher
performance in JOP/ROP detection than [16], heavier solu-
tion carrying out multiple schemes separately for JOP and
ROP detection. As another optimization to maximize the
inherent capabilities of FPGA specialized for parallel pro-
cessing, we parallelize the AFL management by process-
ing multiple cross-function jumps concurrently whenever
possible.

In principle, as far as two jumps have all different call
objects, return targets and return objects, the transactions to
manage AFL for these jumps can be parallelized because

186518 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

no order dependency exists among the transactions in our
scheme. The most typical, commonly-occurring case where
they must be processed sequentially is when either the pair
of call and return or that of return and return relates to the
same function. In this case, each member of the pair must be
processed in order one after the other by first updating AFL
for the one jump and then verifying the other. To reason this,
suppose that a call/return pair in the above case is processed
in parallel. Then in our scheme, the return jump may raise a
false attack alarm because the target function entry of AFL
is not yet activated by the prior call jump. At runtime, upon
receiving a group of cross-function jumps from the host CPU,
ActiMon first performs the pair-wise comparison between
them to determine if the AFL transactions for these jumps
are parallelizable. We then divide the group of jumps into
subgroups in each of which the AFL transactions for its mem-
bers are carried out concurrently. Once the AFL transactions
are complete for one subgroup, the next subgroup is chosen
in order, obeying the dependence, and all its jumps belong-
ing to the same subgroup are processed in parallel again.
Fortunately, our observations have revealed that performance
degradation due to such serialization of AFL transactions
among subgroups is negligible because a majority of jumps
encountered in reality are parallelizable.

To summarize, the AFL-based CRA defense mechanism
has been an enabler of our unified ROP/JOP detection
algorithm for ActiMon that is lightweight enough to success-
fully run on an FPGA platform today. Further performance
optimizations on the platform were made possible by paral-
lelizing AFL transactions for cross-functions jumps. Despite
all these strengths in terms of performance, we also admit
that ActiMon has a relative weakness in terms of security as
comparedwith previous solutions based on separate detection
algorithms specialized for ROP and JOP respectively. For
instance, the algorithm based on SS can regulate the strictly
ordered matching between a return address and its call site,
whereas our AFL-based algorithm is more lenient or coarse-
grained in a sense that it allows a return to target one of
the executing functions. However, our experiment revealed
that the monitoring algorithm of ActiMon is effective enough
to detect CRAs by demonstrating all the real attack sam-
ples as implemented in previous work [16] are successfully
detected. At the same time, the experiment with the SPEC
CPU2006 [22] demonstrates that ActiMon is able to run
on Zynq-7000 SoC FPGA with an acceptable performance
overhead of 9.77% on average in comparison with native
host code execution without CRA detection. This result we
assert is encouraging in a sense that it exhibits a potential
of immediate deployment of today’s SoC FPGA (possibly
including many other types of devices integrated with FPGA
inside) armed with security functions for real uses in the field.

Our contributions are as follows:
• Readily deployable FPGA-based CRA monitor.
ActiMon is a CRAmonitor that can be actually deployed
to the FPGA. Unlike previous work [16] not considering
the significant clock speed difference between FPGA

and CPU, ActiMon is workable even at up to an eight
times slower clock.

• Optimizations for an efficient CRAmonitor. To over-
come the slower clock speed of FPGA, we invented the
CRAmonitoring algorithm based onAFL to read amuch
less amount of runtime information. In addition, we par-
allelized the AFL management processes to maximize
the performance.

• Low performance and area overhead. In our
experiments, ActiMon only incurs 9.77% performance
overhead to the host CPU, while having a small binary
size increment of 18.7% and 100k LUTs which is
45.75% usage in our Zynq-7000 SoC FPGA.

II. RELATED WORK
There have been diverse attempts to mitigate CRAs by
enforcing CFI. Abadi et al. [13] introduced a software-based
CFI solution to protect against CRA attacks that change the
original control flow graph (CFG). The CFG is typically
generated by statically analyzing the source code or the
binary of a program. According to the CFG, a unique label is
assigned between the indirect branch and the basic block that
the control can move to. Then the instrumented code checks
whether the label matches between the branch and the target
basic block in runtime. While being a promising method
in defending gains JOP and ROP, representative attacks of
CRA, it still requires an expensive static analysis and incurs
non-trivial performance overhead due to a software-based
runtime check.

Coarse-grained CFI is a policy which does not strictly
enforce the full CFG in order to improve the performance
[14], [15], [23], [24] while minimizing the loss of secu-
rity measure. They set a few equivalence classes of target
addresses and verify that the target of the indirect branch
matches one of the equivalence classes. For example, binCFI
[24] allows a return to go to one of all the possible targets, and
PICFI [15] allows a return to go to one of the functions called
so far. In addition, regardless of CFI technique, DROP [14]
monitors ROP attacks by intercepting a return and examining
the length of its sequence based on the knowledge that the
ROP often connects gadgets of short length repeatedly.

As another line of study, there are various CFI solutions
augmented with hardware supports to enhance their perfor-
mance [16], [25]–[38]. Their hardware modules are inte-
grated into the CPU pipeline stage [25]–[31] or just placed
within the CPU without significant changes in the CPU
architecture [32]–[34] or combined with the outside of CPU
in the form of SoCs [16], [35], [37], [38] to extract and
analyze information needed to monitor CRA attacks. Since
their hardware modules execute monitoring algorithms in
parallel with the host CPU, the performance overhead is
greatly decreased. Our ActiMon also operates in a parallel
fashion similar to the previous hardware-based solutions. The
first group that integrates the monitor inside of the CPU has
a disadvantage where invasive modifications to the processor

VOLUME 7, 2019 186519

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

internals (e.g., registers and pipeline datapaths) are required.
In fact, modern microprocessor development may take sev-
eral years and hundreds of engineers from initial design to
production [39]. Therefore, the substantial costs of develop-
ment to integrate the customized logic would hamper pro-
cessor vendors to adopt them, unless the necessity is clearly
established. Although the second group that implements their
monitor outside of the CPU can eliminate the redesign cost
of the CPU, they still result in the tremendous cost of the
semiconductor manufacturing for the integrated custom SoC.
However, our solution is designed to be operated on com-
mercial off-the-shelf (COTS) SoC FPGAs that can easily be
acquired from the market. On top of this, ActiMon makes
its notable difference in that, unlike previous hardware-based
solutions, it does not require either high non-recurring cost or
long manufacturing time.

ActiMon, we would say, is the direct descendant of the
CRA monitor developed by Lee et al. [16] among the pre-
vious hardware-based solutions. Both ours and theirs are
detecting CRAs from the devices located outside of the ARM
host processor and connected via the built-in debug port.
These monitors are designed to detect JOP and ROP together
for comprehensive CFI enforcement. However, there is a
profound difference between these two in that their CRA
monitor is not designed for operating in FPGA while Acti-
Mon is in FPGA. For example, their CRA monitor could
operate under a circumstance where the speed ratio of CPU
and theirs is only up to 4:1. In contrast, ActiMon is designed
efficiently enough to handle the flood of data from CPU so
that it can withstand that of 8:1, which is the real frequency
discrepancy. To achieve such a notable efficiency, ActiMon
also adopted an optimized binary instrumentation technique
that extracts only the essential information, greatly reducing
the total amount of PTM packets, so that ActiMon can per-
form the monitoring algorithm in a more lightweight manner
than [16].

Efficient monitoring algorithms often used by hardware-
based solutions to monitor CRA attacks are shadow stack
[21] and branch regulation [20], defending against ROP and
JOP respectively. A shadow stack stores an extra copy of
the return addresses corresponding to each function call.
ROP attacks, which modify the return address stored in the
stack, are detected by comparing the return address with the
reference value securely stored in the shadow stack. In branch
regulation, JOP is mitigated by allowing for branching only
to any function entry point or any point within the currently
executing function. HAFIX [30] implements a coarse-grained
CFI that only allows a return to target the currently executing
active functions. ActiMon has borrowed this policy from
HAFIX to monitor ROP. In fact, our AFL-based scheme is
similar to their strategy that has the label statememory storing
the activated state of each function. However, ours differs
from theirs in several aspects, such as the unified detection
algorithm for JOP, various optimizations targeting FPGA,
and so on. ActiMon manages AFL with multiple branches
in parallel (see section IV) while HAFIX accesses only one

FIGURE 1. ActiMon overall architecture.

entry of their label state memory at once. Aside from all these,
the most noticeable difference and contribution of our work
is that ActiMon can be directly applied to a COTS hardware
platform while HAFIX entails modifications to the processor
internal architecture.

III. THREAT MODEL AND ASSUMPTIONS
We assume that the OS kernel, which configures the hard-
ware modules, is uncompromised. Therefore, attackers can-
not directly tamper with the configuration of ActiMon. It is
assumed that the OS and CPU cooperate to forbid a memory
page from being both writable and executable simultaneously
by enforcing the W⊕X security protection rule. Under this
assumption, attackers cannot directly execute their own code
bymodifying the code region of the target program. However,
attackers are well aware of the implementation details of
the target program and can undermine code randomization
techniques such as Address Space Layout Randomization
(ASLR) [40], [41]. Attackers also have full control over
the stack and heap to exploit a memory overflow vulner-
ability. We focus on detection conventional CRAs subvert-
ing control-flow by corrupting return addresses and function
pointers. Accordingly, other attacks such as COOP [42],
non-control-data attack [43] andDOP [44] that are carried out
by corrupting different types of data are outside of the scope
of this paper. Since ActiMon necessitates the static analysis
of the code, it cannot support the self-modifying code feature
that allows dynamic changes in code contents. We also rule
out physical attacks that try to compromise the underlying
CPU and the ActiMon hardware modules.

IV. DESIGN
In this section, the design of ActiMon will be described in
detail. Figure 1 depicts the overall architecture where the host
ARMCPU and ActiMon are connected and interfaced. When
the target program is running on the host CPU, ActiMon
receives the runtime program information extracted by the
built-in debug interface, ARMCoreSight PTM [45]. ActiMon
is now able to execute the monitoring algorithm by tracking
the target address of indirect branches gathered from the
information it received. Hence, it successfully detects the
control flow hijacking induced by JOP or ROP attacks. Our
design goal hereby is to engineer an efficient monitoring
algorithm and implement a viable architectural design for a
CRA monitor on FPGA. Our ultimate objective is to evince
the feasibility of FPGA as a computing device in the field
for CRA defense. The following subsections will provide

186520 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

detailed descriptions of our algorithm and each hardware
module in ActiMon.

A. PACKET BUFFER AND PACKET DECODER
First, the runtime program information extracted from ARM
CPU is stored in Packet Buffer, then, decoded by Packet
Decoder in order to obtain the indirect branch addresses.
To elaborate and justify our design choices, details regarding
ARMCoreSight PTM and TPIU will be presented as follows.
ARM CoreSight PTM captures various debug information
generated by the program, such as branch target addresses,
exceptions, instruction set mode changes (ARM/THUMB)
and current process IDs. This information is encoded into
the trace packets which is routed to TPIU then, forwarded
to the output pins afterward. Before TPIU emits the trace
packets, the packets are temporarily stored in the internal
FIFO, named PTM FIFO for ease of explanation. TPIU reads
PTM FIFO at the rate of the clock provided from the external
modules. By doing so, we achieve the synchronization of the
rate between the emitted packets and the external module
that processes them. Note that if the external clock is not
fast enough to read PTM FIFO immediately after the packets
are being stored, the PTM FIFO will soon overflow and the
packets will be discarded. This overflowwill eventually cause
the failure of the monitoring algorithm. Since the previous
study [16] assumed that the external module is operated at
almost the same clock as ARM CPU, they did not need
to address the overflow issue of PTM FIFO. In ActiMon,
however, the modules that process PTM packets are operating
on FPGA, so the clock speed is inevitably much slower than
ARM CPU, as discussed in section I.

To overcome this limitation of FPGA, the speed of con-
suming the stored packets inside PTM FIFO is maximized by
connecting 250MHz clock. It is the fastest clock that can be
provided in our FPGA to the host CPU as the external clock of
TPIU. However, the typical FPGA design cannot meet such
tight timing constraint (i.e., 4ns clock period). ActiMon mod-
ules support 100MHz as the maximum clock rate. In order to
link these two different clock domains, we have implemented
the asynchronous buffer called Packet Buffer in between the
host CPU and Packet Decoder. Packet Buffer is a two-port
SRAMwhere the ports for writing/reading are separated, and
they can be operated in different clock rates. In our design,
Packet Buffer stores the transmitted packets in 250MHz
clock rate synchronized with TPIU and Packet Decoder reads
Packet Buffer in 100MHz. Then Packet Decoder decodes
the read packets and analyze the legality according to the
algorithm aswill be explained in subsection IV-C. It takes less
than five cycles to complete all the procedures from decoding
to anlyzing the packets.

Although this asynchronous design can lower the
possibility of overflow in PTM FIFO, it does not guaran-
tee that all the packets will be decoded for a successful
monitoring task by CRA monitor. Therefore, to assure that
CRA monitor does not miss any PTM packets, which is the
minimum requirement for CRA monitor, we should reduce

the amount of PTM packets generated from the CPU to
minimize the overflow possibility of PTM FIFO as well as
Packet Buffer.

B. BINARY INSTRUMENTATION
In this subsection, we describe our special binary instrumen-
tation mechanism to achieve the following two goals: (1) for
PTM to emit only the necessary branch addresses for our
CRA monitoring algorithm and (2) to supplement the lacked
information for our algorithm.

Our first goal of the instrumentation is to filter out unnec-
essary indirect branch addresses before being stored in PTM
FIFO. Recall that, ActiMon needs to track only the target
addresses of the indirect branches that jump to outside of
the currently executing function as mentioned in section I.
To extract only those cross-function jumps, we leveraged
Address Comparators inside PTM which only pass through
the branch target addresses that match the ranges set by eight
pairs of Address Comparator registers. However, regardless
of how many registers are available, grouping the target of
cross-function jumps that are evenly distributed throughout
the code would be not only inefficient but also deterrent to
achieving the first goal of ours. This is due to the fact that it
will inevitably include useless information (i.e., branches that
are not cross-function jumps) in a group. Hence, ActiMon
is designed to only collect necessary pieces of information
which will require just a single Address Comparator to do
the job.

In relation to the second goal, the target address of an
indirect branch can only be acquired from PTM packets
coming through the debug interface. While gathering the
target addresses of indirect branches are quite straightforward
in our solution as the ARM debug interface is designed to
provide such information, it lacks the following four classes
of information: (1) type of indirect branches, (2) addresses
of each function entry, (3) source and (4) target addresses of
return.

We resolved these limitations by adding new code sections,
so-called trampolines, in the binary instrumentation. The first
step of the instrumentation is to move the first instructions
of each function, returns, calls and indirect jumps in the
original code to an associated location in the trampoline. They
are then replaced with jump instructions which point to the
associated place. We note that aforementioned binary mod-
ifications regarding trampolines preserve the original code
layout. To be concrete, the trampolines are located at the
end of the original code section and the jump instructions to
the trampolines are added by overwriting an existing indirect
branch instruction. Thus, all references to code, such as via
function pointers, remain intact even after the binary modifi-
cations. Each trampoline code section is named Entry, Exit,
Return, Comparison and CrossFunc respectively. We will
explain each code section in detail below. Figure 2 illustrates
how the trampoline code sections are inserted into the original
binary. The modified codes are represented by grey-shaded
areas in the figure.

VOLUME 7, 2019 186521

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 2. Comparison between the original binary and the instrumented binary.

1) ENTRY SECTION
Entry section is for delivering the following information to
ActiMon: (1) the fact that current control-flow moves to a
function entry and (2) which function is called. As shown
in Figure 2a, we make each function correspond to the ded-
icated location in Entry section. We move the original first
instruction to the corresponding location in Entry section
and insert a new indirect jump that jumps to Entry section,
at the entry of the function. Also, we insert a new direct
jump in Entry section strictly after the first instruction of the
function that has already been inserted. So, When the target
address of indirect branch 3© in Figure 2a is delivered to
ActiMon, ActiMon can calculate the unique function label
corresponding to the delivered branch address. For example,
if the branch target address is @A + 8 ∗ (#6) where A is the
starting address of Entry section, it means that function#6 is
called.

2) EXIT SECTION
Exit section is for informing ActiMon the followings:
(1) which function is returned and (2) the fact that current
indirect branch is a return. Similar to Entry section, ActiMon
can infer the returned function label from the branch target
address (emitted from 5©) within Exit section. For example,
if the target of 5© is @B + 4 ∗ (#6) where B is the starting
address of Exit section, function#6 is returned. We must
uniquely handle one particular case by ARM which does
not have the return instruction. Rather, it is implemented by
pop pc, or bx lr where both pop and bx can contain the
condition to be executed. To maintain the original function-
ality, if the original return contains the condition, we simply
exchange the newly inserted indirect jump at the exit of the
function with the conditional indirect jump. Return instruc-
tion inserted in Exit section will be without the condition.

3) RETURN SECTION
Return section is for delivering the target function of return to
ActiMon. Two instructions per every function call are added
to Return section. The first instruction is a call for the function
which is to be invoked in the original binary (2©). The second
instruction is a direct jump to move control-flow back to the
original return target (7©). The offset within Return section
corresponds to the target function of return. For example,

if the target of 6© is @C + 8 ∗ (#5) + 4 where C is the
starting address of Return section, the corresponding return
targets function#5.

4) COMPARISON SECTION
Comparison section is for checking if the current indirect
jump is cross-function jump and preventing the generation of
PTM packets when the jump does not cross the function. All
the indirect jumps are redirected to Comparison section by a
direct branch as shown in Figure 2b. One thing to note here is
that we configure PTM not to emit direct branch addresses.
So, the newly added direct branch does not increase the
amount of PTM packets. It would be acceptable to monitor
only the indirect branch because CRAs mainly targets the
indirect branch rather than the direct branch. In Comparison
section, the instrumented codes compare the target address of
the original indirect jump with the currently executing func-
tion boundaries. Function boundaries are statically extracted
from the binary and inserted as a constant operand for cmp
instruction. Only when the target address lies outside of the
currently executing function, the instrumented indirect jump
to CrossFunc section is executed (10© in Figure 2b).

5) CROSSFUNC SECTION
CrossFunc is for noticing ActiMon that the current indi-
rect branch is an indirect jump and also cross-function
jump. CrossFunc section only contains the original indirect
branches substituted by the direct branch to Comparison
section. ActiMon can infer the occurrence of cross-function
jumps by checking the branch addresses are in CrossFunc
section.

Based on these instrumented sections, the essential PTM
packets for ActiMon are generated during only the following
four cases (represented as the solid red arrow lines in Fig-
ure 2b): (1) moving from the original code section to Entry
section 3© or (2) Exit section 5© or (3) Return section
6© , and (4) moving from Comparison section to CrossFunc
section 10© . In other words, ActiMon needs to monitor
the branches that jump only to the above target sections
(i.e., Entry, Exit, Return and CrossFunc sections). So, we set
the starting and ending addresses of each target section to
the Address Comparator registers. Since the instrumented
sections are arranged in consecutive addresses, a single pair

186522 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

of Address Comparator registers that cover the sections at
once can filter out irrelevant PTM packets. This filtering
greatly relieves the heavy data pressure of both PTM FIFO
and Packet Buffer that was discussed in subsection IV-A.

C. JOP/ROP DETECTION PROCESS
In this subsection, we explain howActiMon detects the illegal
change of the control-flow induced by JOP and ROP attacks.
In the core of our algorithm, ActiMon manages Active Func-
tion List (AFL) to check the existence of those attacks. If Acti-
Mon detects a branch to Entry section, the corresponding
function label in AFL is set to one, i.e., activated. On the other
hand, the corresponding activated label in AFL is set back
to zero when a branch to the corresponding location in Exit
section is executed. Our detection algorithm is as summarized
in section I. The detailed procedure is as the following.

JOP checking procedure starts from when a branch to
CrossFunc section occurs. (10© in Figure 2b). Then, ActiMon
waits for a branch to Entry section to verify the rule of
branch regulation (BR) [20] where the cross-function jump
must target the function entry (3©). If a branch to other
sections occurs in advance to the one to Entry section, Acti-
Mon generates the interrupt that alarms the existence of a
JOP attack for ARM CPU to terminate the target program
immediately. Since all the cross-function indirect jumps must
pass through CrossFunc section, ActiMon does not miss any
malicious jump that violates the BR rule. It is worth to note
that ActiMon has a delay for detecting JOP attacks. The
detection delay is caused by executing several instructions,
called a gadget before encountering the next cross-function
indirect jump instruction. However, we believe that the delay
is negligible as a single gadget is a short code sequence. 1

In order to check the existence of ROP attacks, we regard
a return targeting the non-activated function as an illegal
control-flow induced by ROP attacks. The procedure for
monitoring ROP begins once a branch to Return section
occurs (6©). Hereafter, ActiMon checks if the function label
corresponding to the location in Return section is activated in
AFL. If the corresponding location is not activated, ActiMon
generates an interrupt to raise the ROP attack flag for ARM
CPU. The AFL based mechanism is noteworthy in that it
does not occur false positives for certain programming con-
structions that involve unusual stack management (e.g., C++
exceptions with stack unwinding and setjmp/longjmp) [30].

D. HARDWARE MODULES FOR THE DETECTION
In this subsection, we explain the hardware modules that
perform our monitoring algorithm. Firstly, Packet Decoder
extracts the branch addresses from PTM packets stored in
Packet Buffer and delivers the extracted branch addresses
to Section Decoder. Section Decoder generates AFL trans-
actions from the delivered branch addresses by determining

1According to our investigation, the average length of available gadget
length is 5 instructions. Such a short length comes from the fact that long
gadgets considerably reduce stability of execution [18].

FIGURE 3. Operation of section decoder.

TABLE 1. List of AFL transactions.

which code section and function corresponds to those branch
target addresses. AFL transactions are then delivered to AFL
Manager. It checks if the rules explained in subsection IV-C
are violated based on AFL which is being updated by AFL
transactions.

1) SECTION DECODER
Figure 3 depicts the operation of Section Decoder in detail.
Firstly, to find which code section the branch has jumped
to, each branch address is compared to the section boundary
information that is set by the host CPU prior to running the
target program. Each boundary can be obtained statically
from the instrumented binary. Then, Section Decoder deter-
mines the function labels by calculating the relative offset
from each starting address of the code sections. For example,
if the relative offset of the branch address belonging to Entry
section is 120 (= 8∗15) in decimal, recalling that two instruc-
tions per the corresponding function are inserted in the entry
section, the function label is determined to be #15 as shown in
Figure 3. The section information and the determined func-
tion label are combined into an AFL transaction. There are
four transactions for managing AFL and triggering JOP/ROP
detection process as represented in Table 1. CrossFunc and
Return#C are the transactions triggering AFL Manager to
run the rule check for JOP and ROP detection respectively.
Entry#A and Exit#B are for updating the entries of AFL.
For better performance, Section Decoder is designed to

process four branch addresses simultaneously. The number of
branches is related to the amount of packet data transmitted
at once. More specifically, the output port of ARM CPU
for emitting PTM packet data can be configured to various
sizes, i.e., from 1-bit to 32-bit. We set the size of the port
to the maximum value for the fastest possible extraction
of the PTM packets from PTM FIFO within ARM CPU.

VOLUME 7, 2019 186523

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 4. JOP detection process of AFL Manager.

Since the length of the packet containing branch information
can be 8-bit at its minimum [45], Packet Decoder can decode
up to four branch addresses at a time. The following AFL
Manager is also designed to handle four AFL transactions at
once to synchronize the generation rate of AFL transactions
in Section Decoder. We found that ARMCPU holds the PTM
packets in the PTM FIFO until 4 bytes packets are gathered
(the concrete time or cycles is not documented [46]), which
may delay the detection of attacks that have already carried
out by this buffering period. We deem that this limitation
would be overcome easily once if ARM provides the mode
that immediately emits the PTM packet rather than buffering
unconditionally.

2) AFL MANAGER
We now describe AFL Manager that manages AFL and
enforces our JOP/ROP detection rule by processing AFL
transactions transmitted from Section Decoder.

3) JOP DETECTION PROCESS
Figure 4 illustrates a JOP detection process of AFL Manager
where thereby AFL Manager processes two groups of AFL
transactions in order. As shown in the figure, AFL Manager
enforces the BR rule for every group of AFL transactions
delivered. If a section other than Entry section is followed
after CrossFunc section, it is regarded as a JOP attack and
an interrupt is immediately generated. Although the rule
imposed by AFL Manager checks two consecutive AFL
transactions, it is not always the case where both of them are
located in the same group from Section Decoder. Figure 4
illustrates such case. Therefore, it is crucial to carefully engi-
neer AFL Manager to keep the last AFL transaction of the
previous group and combine it with the first transaction of the
next group. Figure 4 shows an example of a typical JOP attack
that stitches the gadgets by consecutive cross-function jumps.
At the second group, an interrupt will be raised to alert ARM
CPU of JOP attack because CrossFunc section is followed by
other than Entry. In this case, it was another CrossFunc that
came after CrossFunc.

4) ROP DETECTION PROCESS
Figure 5 illustrates ROP detection process of AFL Manager.
As discussed in section I, AFL Manager is designed to pro-
cess multiple AFL transactions concurrently as long as there
is no dependency among the transactions. Figure 5a portrays
one of these full parallelizable cases. Since function labels
are all different, in other words, there is no dependency issue,

FIGURE 5. ROP detection process of AFL Manager.

all the transactions are classified in the same subgroup which
is to be processed in parallel. Consequently, the second trans-
action (denoted by Return#2) triggers the checking logic
for ROP detection rule and then AFL Manager raises an
alarm for ROP attack since function#2 is inactive on AFL.
At the same clock cycle, function#0 and function#14 are
activated, and function#1 is deactivated. It is worth to note
that the value of each AFL Value entry is a counter to con-
sider recursive function calls. It prevents the false positive
in which ActiMon raises an alarm even though the program
is normally executing the recursive function calls, by inre-
menting/decrementing the counter when the same function is
successively called/returned.

In the second example Figure 5b, the transactions having
the same function labels are found. Before dividing a group
into subgroups, AFL Manager deletes the paired transactions
that have no effect on AFL. Entry and Exit with the same
label would be canceled out as long as Entry is followed
by Exit. This prior cancellation may give another chance
of performance gain by saving the clock cycles needed for
updating AFL. In Figure 5b, there is no clock cycle reduc-
tion by the deletion because there is another pair with a
dependency (Entry#1, Return#1). However, if a group of
AFL transactions is (Entry#1, Entry#2, Exit#2, Return#0),
the Entry#2/Exit#2 are canceled out and Entry#1/Return#0 is
grouped into a single subgroup that is to be executed in
parallel, so that only one clock cycle is needed to manage
AFL in this case.

V. EVALUATION
To evaluate ActiMon, we have loaded it on a Xilinx
Zynq-7000 ZC706 platform which is equipped an SoC
XC7Z045 FFG900-2 incorporating a dual-core ARM
Cortex-A9 processor and an FPGA together. We have built

186524 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 6. Overhead comparison between ActiMon-SW and ActiMon.

the host system with the A9 processor that is set by the
maximum possible 800MHz clock speed and deployedXilinx
ARM Linux kernel 4.9 as the host OS. Also, the two Core-
Sight modules, PTM and TPIU, in the Cortex-A9 processor
are enabled to extract branch traces from the CPU. The Acti-
Mon modules are developed in Verilog HDL to be mapped on
the FPGA. In the following subsections, we evaluateActiMon
in terms of storage and performance overhead, then report the
synthesis result and the security evaluation.

A. STORAGE AND PERFORMANCE OVERHEAD
EVALUATION
Since no existing hardware-based CRA monitor solution can
operate validly in our environment where the monitor is eight
times slower than CPU, we implemented the software version
ofActiMon, named byActiMon-SW in order to comparewith
our ActiMon. To implement ActiMon-SW, we instrumented
additional codes to the target binary which execute every
process in ActiMon operating in FPGA. The target binaries
were selected from the SPEC CPU2006 benchmark [22].

Figure 6a depicts the comparison of the storage overhead
due to the binary instrumentation between ActiMon-SW
and ActiMon. The y-axis value represents the instrumented
binary size that is normalized by adjusting the size of the
original binary to be 1. The higher bar means that more codes
are inserted to the original binary. Since each code of the
benchmark program includes a different number of branches,
the storage overhead varies. ActiMon incurred only 18.7%
storage overhead on average, while 26.2% for ActiMon-SW.
If we simply compare the numberwith the previousworkwith
ignoring their limitations, the storage overhead of 18.7% by
ActiMon is relatively comparable to that of 16.6% by [16].

Figure 6b illustrates a graph comparing the performance
overhead between ActiMon-SW and ActiMon. The perfor-
mance overhead was calculated by measuring the execution
time of both the original binary and instrumented binary. The
higher bar in the figure means that the performance overhead
is greater. ActiMon-SW shows the performance overhead
of 19.7% on average while 9.77% for ActiMon. In other
words, The performance overhead was reduced to half by
offloading the monitoring algorithm to our ActiMon operated
on FPGA.

The performance overhead also varied with respect to
each benchmark program similar to the storage overhead.

TABLE 2. Synthesis result of ActiMon.

However, the performance overhead correlated to the number
of branch execution in runtime, while the storage overhead
was proportional to the number of branch instructions in the
code. As shown in Figure 6b, our instrumented codes cor-
responding to indirect branches are executed more frequently
especially in 445.gobmk and 464.h264ref. The internal
buffers (PTM FIFO, Packet Buffer) did not overflow during
running those two benchmark programs as well.

B. SYNTHESIS RESULT
We have synthesized ActiMon onto the FPGA in the
Zynq-7000 board and quantified the logics necessary for the
hardware modules of ActiMon in terms of lookup tables
for logic (LUTs), flip-flops (FFs) and memory elements
(BRAMs). Such modules include Packet Buffer, Packet
Decoder, Section Decoder and AFL Manager. The synthesis
results are shown in Table 2. The total hardware resources
available for the Zynq board are 218600 LUTs, 437200 FFs,
and 545 BRAMs, and ActiMon utilizes 45.75%, 2.08%,
and 0.73% of that for each hardware resource respectively.
As shown in Table 2, AFLManager which comprises of AFL
and logics for managing AFL, occupies most of the resources
within ActiMon (i.e., 95.20% of LUTs and 85.86% of FFs).

The fact that the percentage of resource usage is highly
concentrated on one module (i.e., AFLManager) is related to
our design choice for the performance, in which our AFL was
implemented by flip-flops, not by BRAM. If AFL was made
of BRAM, additional clock cycles would have been required
to access entries of AFL. In contrast, flip-flops do not require
a clock cycle to access the value because the data is always
loaded on Q port. More importantly, we can access multiple
entries concurrently as explained in subsection IV-Dwhich is
only feasible if AFLwas built with flip-flops. As a result, such
FFs/LUTs are respectively mapped to AFL entries and the
logics (e.g., muxes and adders) for reading and updating all

VOLUME 7, 2019 186525

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

the entries of AFL concurrently. In our evaluation, the number
of entries of AFL is implemented as 2048, and each entry
value can range from 0 to 7. We decided on the number of
the entry to be 2048 so as to cover the maximum number of
functions in our benchmark programs used for the evaluation
(i.e., 6k (= 2048∗3) bits are allocated to AFL in total). If we
try to adjust the size of the AFL according to the specific
target program, we merely have to adjust the parameters
(i.e., the number of entries and the bit-width of each one) of
the AFLManager Verilog-HDL code and then load the resyn-
thesized ActiMon on FPGA. By utilizing the programmabil-
ity of FPGA in this way, it is easy to update the ActiMon
module.

C. SECURITY EVALUATION
To evaluate the detection capability of our ActiMon, we have
implemented five CRA samples as explained in [16]. Two
samples are ROP attacks to open a shell, the other two sam-
ples are JOP attacks that aim to achieve the same goal as the
first two ROP attacks, and another sample is a ROP attack to
invokemprotect system call. For this, we used a vulnerable
program that has buffer overflow vulnerability and exploited
it to launch the CRA samples.More specifically, we corrupted
the stack by inputting a file that has characters of a length
greater than the allocated for the destination of strcpy.
Since at least one gadget comes from an inactive function
in all tested ROP samples, ActiMon correctly detected the
existence of such the ROP attacks. Similarly, since every
corrupted target of indirect jumps in all tested JOP samples is
always beyond the currently executing function bounds and
does not target a function entry, ActiMon, again, successfully
detected such JOP attacks.

To analyze the reliability of ActiMon more statistically,
we analyzed the false positive and the false negative rate.
First, there is no false positives—ActiMon does not make
a false alarm on normal program executions. Our interested
cross-function jumps are induced by a function call or a return
instruction. Since every legal function call should transfer the
program control to entries of the target functions, they must
obey our JOP detection rule, BR. Similarly, all legal returns
jump back to the call sites which must be activated already in
our AFL.

On the other hand, ActiMon involves a little false negatives
regarding its monitoring capability. Simply put, ActiMon
might be bypassed by JOP andROP attacks that stitch gadgets
still in active functions as shown in [47], but we believe the
risk is minor. First, the false negative rate for detecting JOP
attacks is virtually zero. To carry out JOP attacks, a dispatcher
gadget (to orchestrate the sequence of gadgets) and a system
call instruction (to do something beyond the compromised
program) are required, but it is hardly that both the dispatcher
gadget and system call exist together in an active function.
Experimentally, for instance, no such a case is found in the
commonly used libraries such as libc or libssl [20].

Similarly, the false negative rate of ActiMon for ROP
attacks is also limited.We evaluated the false negative rate for

TABLE 3. ROP gadgets reduction of ActiMon.

detecting ROP by analyzing gadgets reduction. To measure
to what extent ActiMon reduces the set of valid gadgets,
we calculated and compared the number of the gadgets in
a program and the number of the actually available gadgets
at each return instruction. Table 3 shows the gadget reduc-
tions by ActiMon. We utilized ROPgadget to identify ROP
gadgets in code and Callgrind, a sub tool of Valgrind, to log
each function call and call counts. After logging all call
history of each benchmark program, we built a call-graph
to identify possible active functions from the main function
to the leaf functions, and calculated the min/max/average
number of ROP gadgets from the activated functions. As a
result, ActiMon reduces the number of gadgets by 96.1% on
average. ActiMon exhibits 92.56% reduction on average even
at the worst case (max.) among all the return instructions.
This reduction is relatively better than those of related work,
88.93% [32] and 91.92% [33].

VI. CONCLUSION
The recent rise of FPGA as a versatile embedded comput-
ing device has motivated us to implement a CRA monitor
(i.e., ActiMon) inside an ARM system that is built together
with FPGA within a COTS FPGA SoC platform readily
available in the market today. To overcome the performance
handicap of FPGA, we have crafted ActiMon to achieve fast
performance sufficient to detect realistic JOP/ROP attacks
on a real SoC FPGA platform. We ascribe such achieve-
ment to its lightweight, unified algorithm based on AFL.
To further improve the performance, ActiMon processes mul-
tiple branches in parallel whenever possible. Additionally,
our binary instrumentation mechanism alleviates the perfor-
mance overhead of ActiMon by filtering out all jumps except
essential cross-function jumps before transmitting them to
it. Consequently, the experiments demonstrated that unlike
existing solutions piggybacking the high speed of custom
SoCs, our ActiMon was able to meet the minimum per-
formance requirements for successful JOP/ROP detection,
even when running on SoC FPGA, with acceptable storage
overhead of 18.7% and performance overhead of 9.77% on
average.

REFERENCES
[1] Amazon. (2018). AWS EC2 FPGA Development Kit. [Online]. Available:

https://github.com/aws/aws-fpga

186526 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

[2] Intel. (2018). Intel(r) Programmable Acceleration Card (PAC) With
Intel(r) Arria(r) 10GXFPGADatasheet. [Online]. Available: https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/ds-
pac-a10.pdf

[3] (2018). Intel(r) Xeon(r) Gold 6138 Processor. [Online]. Available:
https://en.wikichip.org/wiki/intel/xeon_gold/6138p

[4] Xilinx. (2018). Zynq-7000 SOC Data Sheet: Overview. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data_sheets/ds190-
Zynq-7000-Overview.pdf

[5] (2018). Versal: The First Adaptive Compute Acceleration
Platform (ACAP). [Online]. Available: https://www.xilinx.com/support/
documentation/white_papers/wp505-versal-acap.pdf

[6] Microchip. (2019). Polarfire FPGA: Building a MI-V Processor
Subsystem. [Online]. Available: https://www.microsemi.com/document-
portal/doc_download/136945-tu0775-polarfire-fpga-building-a-risc-v-
processor-subsystem-tutorial

[7] K. Neshatpour, M. Malik, M. A. Ghodrat, and H. Homayoun,
‘‘Accelerating big data analytics using FPGAs,’’ in Proc. IEEE 23rd
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2015,
p. 164.

[8] R. Dhanabal, S. K. Sahoo, V. Bharathi, K. Dowluri, B. S. R. P. Varma, and
V. Sasiraju, ‘‘Fpga based image processing unit usage in coin detection and
counting,’’ inProc. Int. Conf. Circuits, Power Comput. Technol. (ICCPCT),
Mar. 2015, pp. 1–5.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, ‘‘A survey of FPGA
based neural network accelerator,’’CoRR, vol. abs/1712.08934, Dec. 2017,
pp. 1–26. [Online]. Available: http://arxiv.org/abs/1712.08934

[10] B. Nagy, P. Orosz, and P. Varga, ‘‘Low-reaction time FPGA-based
DDoS detector,’’ in Proc. NOMS IEEE/IFIP Netw. Oper. Manage. Symp.,
Apr. 2018, pp. 1–2.

[11] A. Boutros, B. Grady, M. Abbas, and P. Chow, ‘‘Build fast, trade fast:
FPGA-based high-frequency trading using high-level synthesis,’’ in Proc.
Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2017,
pp. 1–6.

[12] A. Surendar, ‘‘FPGA based parallel computation techniques for bioinfor-
matics applications,’’ Int. J. Res. Pharmaceutical Sci., vol. 8, pp. 124–128,
Jan. 2017.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, ‘‘Control-flow
integrity,’’ in Proc. 12th ACM Conf. Comput. Commun. Secur.,
New York, NY, USA, 2005, pp. 340–353, doi: 10.1145/1102120.
1102165.

[14] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, ‘‘Drop: Detecting
return-oriented programming malicious code,’’ in Proc. 5th Int. Conf.
Inf. Syst. Secur. Berlin, Germany: Springer-Verlag, 2009, pp. 163–177,
doi: 10.1007/978-3-642-10772-6_13.

[15] B. Niu and G. Tan, ‘‘Per-input control-flow integrity,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, 2015,
pp. 914–926, doi: 10.1145/2810103.2813644.

[16] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Using CoreSight PTM
to integrate CRA monitoring IPs in an arm-based SoC,’’ ACM Trans. Des.
Autom. Electr. Syst., vol. 22, p. 52:1–52:25, 2017.

[17] I. Kuon and J. Rose, ‘‘Measuring the gap between FPGAs and ASICs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[18] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘‘Jump-oriented pro-
gramming: A new class of code-reuse attack,’’ in Proc. 6th ACM Symp.
Inf., Comput. Commun. Secur., New York, NY, USA, 2011, pp. 30–40,
doi: 10.1145/1966913.1966919.

[19] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),’’ in Proc. 14th ACM Conf.
Comput. Commun. Secur., New York, NY, USA, 2007, pp. 552–561,
doi: 10.1145/1315245.1315313.

[20] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, ‘‘Branch
regulation: Low-overhead protection from code reuse attacks,’’ in
Proc. 39th Annu. Int. Symp. Comput. Archit. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 94–105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337171

[21] T.-C. Chiueh and F.-H. Hsu, ‘‘RAD: A compile-time solution
to buffer overflow attacks,’’ in Proc. 21st ICDSC, Apr. 2001,
pp. 409–417.

[22] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006,
doi: 10.1145/1186736.1186737.

[23] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, ‘‘Practical control flow integrity and randomiza-
tion for binary executables,’’ in Proc. IEEE Symp. Secur. Privacy. Wash-
ington, DC, USA: IEEE Computer Society, May 2013, pp. 559–573,
doi: 10.1109/SP.2013.44.

[24] M. Zhang and R. Sekar, ‘‘Control flow integrity for cots bina-
ries,’’ in Proc. 22nd USENIX Conf. Secur. Berkeley, CA, USA:
USENIX Association, 2013, pp. 337–352. [Online]. Available: http://
dl.acm.org/citation.cfm?id=2534766.2534796

[25] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, ‘‘Hardware-assisted
run-time monitoring for secure program execution on embedded proces-
sors,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 12,
pp. 1295–1308, Dec. 2006.

[26] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
‘‘HCFI: Hardware-enforced control-flow integrity,’’ in Proc. 6th ACM
Conf. Data Appl. Secur. Privacy, New York, NY, USA, 2016, pp. 38–49,
doi: 10.1145/2857705.2857722.

[27] W. He, S. Das, W. Zhang, and Y. Liu, ‘‘No-jump-into-basic-block: Enforce
basic block CFI on the fly for real-world binaries,’’ in Proc. 54th
Annu. Design Autom. Conf., New York, NY, USA, 2017, pp. 23:1–23:6,
doi: 10.1145/3061639.3062291.

[28] A. Francillon, D. Perito, and C. Castelluccia, ‘‘Defending embedded
systems against control flow attacks,’’ in Proc. 1st ACM Workshop
Secure Execution Untrusted Code, New York, NY, USA, 2009, pp. 19–26,
doi: 10.1145/1655077.1655083.

[29] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-Ghazaleh,
‘‘SCRAP: Architecture for signature-based protection from code reuse
attacks,’’ in Proc. IEEE 19th Int. Symp. High Perform. Comput.
Archit. (HPCA). Washington, DC, USA: IEEE Computer Society,
Feb. 2013, pp. 258–269, doi: 10.1109/HPCA.2013.6522324.

[30] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, ‘‘HAFIX: Hardware-assisted flow integrity exten-
sion,’’ in Proc. 52nd Annu. Design Autom. Conf., New York, NY, USA,
2015, pp. 74:1–74:6, doi: 10.1145/2744769.2744847.

[31] D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,
‘‘Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity,’’ in Proc. 53rd Annu. Design Autom. Conf., New York, NY,
USA, 2016, pp. 163:1–163:6, doi: 10.1145/2897937.2898098.

[32] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu, ‘‘Control flow integrity
based on lightweight encryption architecture,’’ IEEE Trans. Comput.-
AidedDesign Integr. Circuits Syst., vol. 37, no. 7, pp. 1358–1369, Jul. 2018.

[33] P. Qiu, Y. Lyu, D. Zhai, D.Wang, J. Zhang, X.Wang, and G. Qu, ‘‘Physical
unclonable functions-based linear encryption against code reuse attacks,’’
in Proc. 53nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016,
pp. 1–6.

[34] J. Zhang, B. Qi, Z. Qin, and G. Qu, ‘‘HCIC: Hardware-assisted control-
flow integrity checking,’’ IEEE Internet Things J., vol. 6, no. 1,
pp. 458–471, Feb. 2019.

[35] Z. Guo, R. Bhakta, and I. G. Harris, ‘‘Control-flow checking for intrusion
detection via a real-time debug interface,’’ in Proc. Int. Conf. Smart Com-
put. Workshops, Nov. 2014, pp. 87–92.

[36] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Integration of ROP/JOP
monitoring IPs in an arm-based SoC,’’ in Proc. Conf. Design, Autom. Test
Eur., San Jose, CA, USA: EDA Consortium, 2016, pp. 331–336. [Online].
Available: http://dl.acm.org/citation.cfm?id=2971808.2971884

[37] J. Lee, I. Heo, Y. Lee, and Y. Paek, ‘‘Efficient security monitoring
with the core debug interface in an embedded processor,’’ ACM Trans.
Des. Autom. Electron. Syst., vol. 22, no. 1, pp. 8:1–8:29, May 2016,
doi: 10.1145/2907611.

[38] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, ‘‘Towards a practical
solution to detect code reuse attacks on ARMmobile devices,’’ in Proc. 4th
Workshop Hardw. Architectural Support Secur. Privacy, New York, NY,
USA, 2015, pp. 3:1–3:8, doi: 10.1145/2768566.2768569.

[39] D. Y. Deng and G. E. Suh, ‘‘High-performance parallel accelerator for
flexible and efficient run-time monitoring,’’ in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2012, pp. 1–12.

[40] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis,
C. Giuffrida, and H. Bos, ‘‘Undermining information hiding (and what to
do about it),’’ in Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016,
pp. 105–119.

[41] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
‘‘Poking holes in information hiding,’’ in Proc. 25th USENIX Secur.
Symp. (USENIX Secur.), 2016, pp. 121–138.

VOLUME 7, 2019 186527

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1007/978-3-642-10772-6_13
http://dx.doi.org/10.1145/2810103.2813644
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/SP.2013.44
http://dx.doi.org/10.1145/2857705.2857722
http://dx.doi.org/10.1145/3061639.3062291
http://dx.doi.org/10.1145/1655077.1655083
http://dx.doi.org/10.1109/HPCA.2013.6522324
http://dx.doi.org/10.1145/2744769.2744847
http://dx.doi.org/10.1145/2897937.2898098
http://dx.doi.org/10.1145/2907611
http://dx.doi.org/10.1145/2768566.2768569

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
‘‘Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 745–762.

[43] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, ‘‘Non-control-data
attacks are realistic threats,’’ in Proc. 14th Conf. USENIX Secur. Symp.,
vol. 14. Berkeley, CA, USA: USENIX Association, 2005, p. 12. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251398.1251410

[44] H. Hong, S. Shweta, A. Sendroiu, L. C. Zheng, S. Prateek, and L. Zhenkai,
‘‘Data-oriented programming: On the expressiveness of non-control
data attacks,’’ in Proc. IEEE Symp. Secur. Privacy (S P), May 2016,
pp. 969–986.

[45] AC Ltd. (2017). Arm CoreSight Architecture Specification V3.0.
[Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.
ihi0029e/coresight_v3_0_architecture_specification_IHI0029E.pdf

[46] (2017). CoreSight PTM-A9 Techincal Reference Manual. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0401c/
DDI0401C_coresight_ptm_a9_r1p0_trm.pdf

[47] M. Theodorides and D. Wagner, ‘‘Breaking active-set backward-edge
CFI,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
May 2017, pp. 85–89.

HYUNYOUNG OH received the B.S. and M.S.
degrees in electrical and electronics engineering
from Yonsei University, South Korea, in 2005 and
2007, respectively. He is currently pursuing the
Ph.D. degree in electrical and computing engineer-
ing with Seoul National University, South Korea.
He was a SoCDesigner with Samsung Electronics,
South Korea, from 2007 to 2017. His research
interest includes hardware-backed system security
against various types of threats.

MYONGHOON YANG received the B.S. degree
in electronics and radio engineering from
Kyunghee University, South Korea, in 2016, and
the M.S. degree in electrical and computing engi-
neering from Seoul National University, South
Korea, in 2019. His research interest includes
hardware-backed system security against various
types of threats.

YEONGPIL CHO received the B.S. degree in elec-
trical engineering from POSTECH, South Korea,
in 2010, and the Ph.D. degree in electrical and
computer engineering from Seoul National Uni-
versity, South Korea, in 2018. He is currently a
Professor with the School of Software, Soongsil
University. His research interest includes system
security against various types of threats.

YUNHEUNG PAEK received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, South Korea, in 1988 and
1990, respectively, and the Ph.D. degree in com-
puter science from the University of Illinois at
Urbana–Champaign, in 1997. He is currently a
Professor with the Department of Electrical and
Computer Engineering, Seoul National University.
His research interests include system security with
hardware, secure processor design against various

types of threats, and machine learning-based security solution.

186528 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	THREAT MODEL AND ASSUMPTIONS
	DESIGN
	PACKET BUFFER AND PACKET DECODER
	BINARY INSTRUMENTATION
	entry section
	EXIT SECTION
	RETURN SECTION
	COMPARISON SECTION
	CROSSFUNC SECTION

	JOP/ROP DETECTION PROCESS
	HARDWARE MODULES FOR THE DETECTION
	SECTION DECODER
	AFL MANAGER
	JOP DETECTION PROCESS
	ROP DETECTION PROCESS

	EVALUATION
	STORAGE AND PERFORMANCE OVERHEAD EVALUATION
	SYNTHESIS RESULT
	SECURITY EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	HYUNYOUNG OH
	MYONGHOON YANG
	YEONGPIL CHO
	YUNHEUNG PAEK

