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Abstract: This study proposes a novel robust predictive current control that is based on a discrete-time disturbance observer for
an interior permanent magnet synchronous motor (IPMSM), does not require rotor flux information. To confirm the effects of the
current control response on a parameter mismatch, the parameter sensitivity for the current prediction of a conventional
deadbeat predictive current control (DPCC) is analysed. With the proposed method, disturbances owing to a parameter
mismatch, rotor flux term, and unmodelled dynamics are estimated using a Luenberger observer in the discrete-time domain.
The estimated disturbances are compensated with the predicted reference voltage model considering a digital delay. The
stability of the proposed disturbance observer owing to a parameter mismatch of the stator resistance and d–q inductance is
also analysed. The proposed method is robust against the stator resistance and an inductance variation, and an accurate
predicted current control can be obtained without an offline or online estimation of the rotor flux. Compared with the conventional
DPCC, the proposed method can eliminate a steady-state current and transient state error caused by disturbances of the
system. Experimental results are presented to verify the proposed control scheme even with mismatched parameters of the
IPMSM.

1 Introduction
Permanent magnet synchronous motor (PMSM) is widely used in
various industrial fields, such as industrial robots and electric
vehicles, owing to its high efficiency, high output density, and
excellent control performance. Therefore these applications require
a fast-electrical torque response and a fast current control loop.
Methods for current control include hysteresis control [1, 2],
proportional-integral control [3], direct torque control [3, 4] and
predictive control [5, 6]. Predictive control is generally classified
into finite-control-set model predictive control (FCS-MPC) [7–11]
and deadbeat predictive current control (DPCC) [12–14]. The FCS-
MPC does not require a modulator, and a discrete voltage vector
that minimises the cost function is chosen as the optimal vector.
The FCS-MPC has a fast-dynamic response because it does not
have an internal current loop and is easy to apply in non-linear
systems. However, FCS-MPC generally has certain drawbacks
such as a high computational burden, large current ripple, and
variable switching frequency. Meanwhile, DPCC uses the system
model to calculate the reference voltage vector for every sampling
period and allows the inverter output current to reach the reference
current value after one sampling period. DPCC uses pulse width
modulation to ensure a constant switching frequency and has the
advantages of a fast dynamic and low current ripple. Therefore,
DPCC is used in various applications such as three-phase inverter
control [13, 14] and a motor drive [12].

Although DPCC can achieve fast current response, the strong
dependence problem of the system model still needs to be solved.
With DPCC, the current prediction and reference voltage model of
the next period are obtained using a discrete model of the motor.
Therefore, the control performance depends on the parameters of
the motor. Unfortunately, these parameters differ from the actual
values owing to measurement errors, or the values vary depending
on the motor drive conditions. Thus, motor parameter mismatches
and uncertainties can cause prediction errors, and the system can
become unstable.

In an interior permanent magnet synchronous motor (IPMSM),
the rotor flux is equal to the permanent magnet flux linkage. A

mismatch of the rotor flux has a significant influence on medium
and high speeds because the back electromotive force (EMF) is
proportional to the rotor flux. If the rotor flux is not correct, a
constant current error occurs in steady-state, and overcurrent or
undercurrent occurs in transient state. In general, because the rotor
flux is difficult to measure directly, it is calculated by measuring
the EMF offline by driving a load motor. However, if the ambient
temperature increases or the operating condition of the motor
changes owing to the large current, the rotor flux will be reduced,
resulting in errors in the EMF and an adverse effect of the current
control. The accuracy of the inductance, as well as the rotor flux, is
also important. In general, the inductance can change dramatically
owing to magnetic saturation depending on the load conditions. An
inductance mismatch causes a current prediction error and
oscillation, which deteriorates the current control [15, 16]. The
accuracy of motor parameters such as rotor flux, inductance, and
stator resistance is important in predictive current control and the
system may be unstable due to the system model errors in
parameters or various disturbances. Therefore, it is necessary for a
method to obtain robustness against motor parameter variation.

Several robust predictive controls have been proposed to
overcome this parameter sensitivity [15–23]. First, a method using
the error value of the model was developed. In [18], a method to
reduce the torque ripple under a parameter mismatch by adding the
latest prediction error to the prediction current is proposed.
Although this method is easy to implement, it is susceptible to
current measurement errors and is limited to FCS-MPC. In [19], a
method compensating for a parameter disturbance by a time delay
control approach of the voltage equation is proposed. Although this
method is also easy to implement, because of the low-pass filter,
the phase delay of the calculated disturbance degrades the
compensation characteristics and limits the range of robustness.
Another method is an online parameter identification technique. In
[20], a method overcoming a model mismatch and parameter
uncertainty by estimating the input inductance and resistance of the
AC–DC active front ends online is presented. In [21], an online
multiparameter estimation method using a recursive least squares
estimator in FCS-MPC of an IPMSM is proposed. In [22], a
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position-offset based parameter estimation is used to estimate the
rotor flux, along with some other mechanical parameters. Although
these methods can accurately estimate the parameters in the real
time, their implementation is complicated, and an offline rotor flux
estimation must first be conducted, and it is difficult to obtain
robustness against uncertain disturbances. Finally, a disturbance
observer (DOB)-based control method has been developed. This is
a good solution to system disturbances that include parameter
uncertainties. Luenberger observer, a type of DOB, is used to
correct the deviations between an actual system and the model used
for control, and is applied in many industrial fields such as electric
motors [16] and grid-connected inverter systems [15, 17, 23].
Huerta et al. in [23], a deadbeat control law combined with a
Luenberger observer is proposed to estimate the future value of the
grid currents. This offers robustness against filter and grid-
impedance uncertainties. Lee et al. in [15], proposed a robust
predictive current controller based on a Luenberger observer to
estimate the parameter uncertainty and grid angle in a three-phase
grid-connected inverter system. Wang et al. in [16], described a
discrete Luenberger observer designed to estimate the future values
of the stator current and parameter disturbances in the induction
machine drives.

In this paper, a novel robust predictive current control (RPCC)
with a discrete-time DOB that estimates the disturbance of the
parameter variation online for an IPMSM drive is proposed. The
contributions of the proposed observer are as follows: (i) sensitivity
from uncertainty of the resistance and inductance is overcome and
(ii) predictive control is possible regardless of the rotor flux
information. This method is robust to the stator resistance and
inductance parameters and does not require a pre-estimation or
online estimation technique for the rotor flux information.

This paper is organised as follows. Section 2 describes a
conventional DPCC and an analysis of the error of the predicted
current according to the parameter variations. Section 3 describes
the discrete-time domain of RPCC with the proposed DOB and
includes a stability analysis. Section 4 verifies the effectiveness of
the proposed method based on the experimental results. Finally, the
conclusions are summarised in Section 5.

2 Conventional DPCC and parameter sensitivity
analysis
This section briefly introduces the voltage equation of the IPMSM
and the conventional DPCC method, and analyses the sensitivity to
a parameter mismatch of the conventional DPCC method.

2.1 Machine equation of IPMSM

In the rotating reference frame, the voltage equation of an IPMSM
can be expressed as (1) [24]

vd = Rsid + Ld

did
dt

− Lqωriq

vq = Rsiq + Lq

diq
dt

+ Ldωrid + λmωr

(1)

where Rs is the stator resistance, λm is the permanent magnet flux
linkage, ωr is the electric angular speed, Ld and Lq are the d–q-axis
inductances, id and iq are the d–q-axis stator currents, and vd and vq

are the d–q-axis stator voltages.
Expressing id and iq as state variables, (1) can be rewritten as

follows:

did
dt

diq
dt

=

−
Rs

Ld

Lq

Ld
ωr

−
Ld

Lq
ωr −
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id

iq

+
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0

0
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−
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.

(2)

If the sampling period Ts is sufficiently small, (2) can be expressed
as a discrete-time model in (3) by applying the Euler
approximation method [25]. Here, matrices A, B, and D are given
by (4).

id k + 1

iq k + 1
= A k

id k

iq k
+ B

vd k

vq k
+ D k (3)

A k =

1 −
TsRs

Ld

Lq

Ld
Tsωr k

−
Ld

Lq
Tsωr k 1 −

TsRs

Lq

B =

Ts

Ld
0

0
Ts

Lq

D k =

0

−
Tsλm

Lq
ωr k

(4)

where id k  and iq k  are the d–q-axis (k)th stator currents, id k + 1

and iq k + 1  are the d–q-axis (k + 1)th predicted stator currents,
vd k  and vq k  are the d–q-axis (k)th output voltages, and ωr k  is
the (k)th rotor speed.

2.2 Conventional DPCC

According to the deadbeat control principle, because the inverter
output current reaches the reference current value after one
sampling period, it can be expressed as (5), assuming that the
current reference is constant idq

ref
k = idq

ref
k + 1  [12].

id k + 1 = id
ref

k

iq k + 1 = iq
ref

k
(5)

where idref
k  and iqref

k  are the d–q-axis reference stator currents.
Using the discrete-time model of (3) and (5), the d–q-axis of the

(k)th reference stator voltages vd
ref k  and vq

ref k  are given by

vd
ref k

vq
ref k

= B
−1

id
ref

k

iq
ref

k
− A k

id k

iq k
− D k . (6)

2.3 Parameter sensitivity analysis

According to (3) and (6), DPCC is a model-based control and
includes motor parameters such as the stator resistance, d–q-axis
inductances, and rotor flux. This indicates that the DPCC is
parameter-sensitive and that the accuracy of the system model
affects the current control performance. Therefore it is necessary to
analyse the performance of the current control when the parameters
are mismatched.

To drive the motor in an actual system, the parameter is
measured offline, and the value of the parameter estimated by the
measurement error may differ from the actual parameter value of
the motor. The predictive model of the stator current with a
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mismatch of the actual parameter value can be expressed as (7)
using (3) and (4).

id
Δ

k + 1 = 1 −
Ts Rs + ΔRs

Ld + ΔLd
id k +

Ts

Ld + ΔLd
vd k

+
Ts Lq + ΔLq

Ld + ΔLd
ωr k iq k

iq
Δ

k + 1 = 1 −
Ts Rs + ΔRs

Lq + ΔLq

iq k +
Ts

Lq + ΔLq

vq k

−
Ts Ld + ΔLd

Lq + ΔLq

ωr k id k

−
Ts λm + Δλm

Lq + ΔLq

ωr k

(7)

where ΔRs, ΔLd, ΔLq, and Δλm are the errors between the actual
parameter value and the estimated parameter value, and idΔ k + 1

iq
Δ

k + 1  are the d–q-axis predicted currents owing to a parameter
mismatch.

The prediction errors from a parameter mismatch can be
obtained based on the difference between (3) and (7) and are
shown in (see (8)) , where iderr

k + 1  and iqerr
k + 1  are the d–q-axis

predicted current errors owing to parameter mismatch, respectively.
From (8), it can be seen that the rotor flux mismatch only

affects iq, and that the stator resistance and d–q-axis inductance
mismatch affect both id and iq.

Fig. 1 shows the relationship between each parameter mismatch
and the d-axis prediction error. As can be seen in Fig. 1a, the d-axis
prediction error is not significantly affected by the mismatch
between stator resistance and d-axis inductance. However, Fig. 1b

shows the mismatch with the q-axis inductance has a significant
effect on the d-axis prediction error.

Fig. 2 shows the relationship between each parameter mismatch
and the q-axis prediction error. As can be seen in Fig. 2a, the q-axis
prediction error is not greatly affected by the mismatch between
stator resistance and d-axis inductance. Fig. 2b shows that q-axis
prediction error is slightly affected by the variation of stator
resistance and q-axis inductance. In addition, Fig. 2c shows the
mismatch with the rotor flux has a significant effect on the q-axis
prediction error. Therefore, as can be seen in Figs. 1 and 2, a robust
control method is required, particularly for the q-axis inductance
and rotor flux mismatched.

3 Novel RPCC with proposed disturbance
observer in discrete-time domain
The parameter mismatch in the conventional DPCC degrades the
performance of the current control. A disturbance estimation is
necessary for the predictive current controller to operate robustly to
the parameters.

The Luenberger observer can compensate for deviations
between the actual system and the model used for control, and can
be applied to eliminate disturbance effects and noise. To eliminate
a disturbance owing to an uncertainty of the system, the estimated
disturbance in the observer is applied as a feedforward
compensation to the predicted reference voltage considering the
digital delay.

3.1 Novel predictive discrete-time model with disturbances

If the nominal parameter value is used, and uncertainty owing to
parameter mismatch is taken into the dynamic disturbance, a novel

id
err

=
Ts RsΔLd − ΔRsLd

Ld Ld + ΔLd
id k

+
Ts LdΔLq − LqΔLd

Ld Ld + ΔLd
ωr k iq k

−
TsΔLd

Ld Ld + ΔLd
vd k

iq
err

=
Ts RsΔLq − ΔRsLq

Lq Lq + ΔLq

iq k

+
Ts LdΔLq − LqΔLd

Lq Lq + ΔLq

ωr k id k

−
TsΔLq

Lq Lq + ΔLq

vq k

+
Ts λmΔLq − LqΔλm

Lq Lq + ΔLq

ωr k

(8)

Fig. 1  d-axis current prediction errors of conventional predictive control at 1500 r/min and under 1.6 N m conditions
(a) With a mismatch of the d-axis inductance and resistance, (b) With a mismatch of the q-axis inductance and resistance
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stator voltage model for IPMSM with disturbance terms can be
rewritten as

vd = Rsnid + Ldn

did
dt

− Lqnωriq + f d

vq = Rsniq + Lqn

diq
dt

+ Ldnωrid + f q

(9)

where the subscript ‘n’ denotes the nominal value, and f d and f q

are expressed using (10).

f d = ΔRsid + ΔLd

did
dt

− ΔLqωriq + dd

f q = ΔRsiq + ΔLq

diq
dt

+ ΔLdωrid + λmωr + dq

(10)

where ΔRs = Rs − Rsn, ΔLd = Ld − Ldn, ΔLq = Lq − Lqn, and dd and
dq represent unmodelled dynamics.

It should be noted that f d and f q are not state variables but
disturbances caused by parameter variations or other unstructured
uncertainties. In addition, by adding a rotor flux and the rotor speed
term to the q-axis disturbance term as shown in (10), state variables
in (9) independent of the rotor flux are derived. The voltage (9)
including the disturbance components can be expressed as a
discrete-time model matrix, as shown in (11). Here, An and Bn are
control matrices containing nominal IPMSM parameters and are
given by (12). Therefore, a novel predictive discrete-time stator
voltage model independent of the rotor flux term of IPMSM can be
obtained by

vd k

vq k
= Bn

−1
id k + 1

iq k + 1
− An k

id k

iq k

+
f d k

f q k

(11)

An k =

1 −
TsRsn

Ldn

Lqn

Ldn
Tsωr k

−
Ldn

Lqn
Tsωr k 1 −

TsRsn

Lqn

Bn =

Ts

Ldn
0

0
Ts

Lqn

.

(12)

The predicted currents id k + 1  and iq k + 1  can be easily
computed using the present sampled values from (11) in the
following equation

id k + 1

iq k + 1
= An k

id k

iq k
+ Bn

vd k − f d k

vq k − f q k
. (13)

To apply deadbeat control, as shown in (6), the matrix for the
reference voltage including the disturbance terms can be expressed
as

vd
ref k

vq
ref k

= Bn
−1

id
ref

k + 1

iq
ref

k + 1
− An k

id k

iq k

+
f d k

f q k
.

(14)

In real digital implementations, the update mechanism of the
microprocessor is applied with an inherent delay. As a result, the
voltage vector selected at the (k)th instant is not a voltage vector
minimising the current error in the next period, which leads to poor
control performance. Assuming that a one-period delay occurs
from a digital control, the control delay can be compensated using
the predicted values after two periods from the present state. Thus,
assuming that (14) moves after one period, and the current

Fig. 2  q-axis current prediction errors of conventional predictive control at 1500 r/min and under 1.6 N m conditions
(a) With a mismatch of the d-axis inductance and resistance, (b) With a mismatch of the q-axis inductance and resistance, (c) With a mismatch of the rotor flux
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reference idq
ref

k = idq
ref

k + 1 = idq
ref

k + 2  is constant, the
predicted reference voltage can be expressed as

vd
ref k + 1

vq
ref k + 1

= Bn
−1

id
ref

k

iq
ref

k
− An k

id k + 1

iq k + 1

+
f d k + 1

f q k + 1

(15)

where vd
ref k + 1  and vq

ref k + 1  are the d–q-axis (k + 1)th predicted
reference voltages, respectively.

From (15), future disturbances f d k + 1  and f q k + 1  can be
estimated as (16) using the Lagrange interpolation formula [26]

f d k + 1

f q k + 1
= 3

f d k

f q k
− 3

f d k − 1

f q k − 1

+
f d k − 2

f q k − 2
.

(16)

3.2 Design of discrete-time disturbance observer

For the RPCC, a disturbance estimation is necessary. Assuming
that the disturbance values are constant during the sampling period,
the state-space equation with disturbance terms can be obtained
using (13). Here, Φ, Γ , and I are given by (18).

id k + 1

iq k + 1

f d k + 1

f q k + 1

= Φ

id k

iq k

f d k

f q k

+ Γ

vd k

vq k

0

0

(17)

Φ =
An k −Bn

0 I

Γ =
Bn 0

0 0

I =
1 0

0 1
.

(18)

From (17), the DOB can be constructed as shown in (19), and the
observer gains l1, l2  are designed using a pole placement method.

i
^

d k + 1

i
^

q k + 1

f
^

d k + 1

f
^

q k + 1
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i
^

d k

i
^

q k

f
^

d k

f
^

q k

+ Γ

vd k

vq k

0

0

+L

id k

iq k

id k

iq k

− H

i
^

d k

i
^

q k

f
^

d k

f
^

q k

(19)

where L =
l1I 0

0 l2I
, and H =

I 0

I 0
.

Fig. 3 shows a block diagram of the DOB in the discrete-time
domain. This DOB represents the characteristics of the system, and
the estimated state converges to the actual state under the same
currents and voltages applied in the actual system. Therefore, the
proposed observer can estimate the disturbance components with
the appropriate gain using the estimation error of the state variable.
In addition, this observer is configured with nominal values and
can be designed without a rotor flux term. The outputs ( f

^

d k  and
f
^

q k ) of the observer are generated through a parameter mismatch,
rotor flux linkage, and unmodelled dynamics, and are compensated
with the predicted reference voltage in (15).

3.3 Stability analysis

The stability analysis of the proposed DOB can be performed by
mapping the closed-loop poles of the system. The closed-loop
characteristic equation of the DOB can be obtained using

det zI − Φ − LH = 0. (20)

To simplify the stability analysis, the cross-coupling term in Fig. 3
is omitted because it is extremely small.

According to (20), the observer characteristic equation is
derived in the Appendix. Fig. 4 shows the closed-loop poles loci of
the DOB, where l1 changes from 0.2 to 0.8 and l2 changes from −20
to 0. As shown in Fig. 4, the observer is stable when l1 is above 0.2
and l2 is below zero. However, observer gains need to be set
appropriately because they affect the bandwidth and damping ratio.
In this paper, observer gains are selected as l1 = 0.4 and l2 = − 10.

To evaluate the effects of a parameter mismatch on the DOB,
closed-loop poles loci were analysed for a variation of the nominal
values of Ldn, Lqn, and Rsn. Figs. 5a and b show the closed-loop
poles loci when the nominal values of the d–q-axis inductance are
varied from 50 to 150% of the actual d–q-axis inductance values
Ld = 11.5 mH, Lq = 20 mH . Fig. 5c shows the closed-loop poles

loci when the nominal value of the stator resistance is varied from
0 to 10 Ω. As shown in Fig. 5, the closed-loop poles of the DOB
exist in the unit circle, and the system is stable. As the nominal

Fig. 3  Block diagram of DOB in the discrete-time domain
 

Fig. 4  Closed-loop pole loci of the DOB with l1 varied between 0.2 and
0.8, and l2 varied between − 20 and 0
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value is smaller than the actual value, the damping ratio decreases
and the pole becomes unstable because it will be close to the unit
circle. In contrast, as the nominal value becomes larger than the
actual value, the damping ratio increases and the system does not
diverge.

Fig. 6 shows the entire control block diagram including the
proposed DOB for an RPCC. 

In the proposed scheme, the control block diagram is composed
of a PI speed controller, DOB, Lagrange interpolation, stator
current prediction, and voltage reference calculation. The outputs
of the DOB go into the stator current prediction block and

Langrange interpolation. The voltage reference calculation block
outputs the predicted reference voltages compensated for the
disturbance term considering a digital delay.

Figs. 7 and 8 show the relationship between each parameter
mismatch and the d–q-axis prediction error. In contrast to Figs. 1
and 2, using the proposed method, there are almost no d–q-axis
predicted current errors for all parameters. Therefore, the proposed
method is robust to the parameter variations.

To verify the effectiveness of the proposed method, experiments
were conducted on the prototype of the IPMSM system. The
parameters of the IPMSM are shown in Table 1. 

Fig. 5  Closed-loop pole loci of the DOB with parameter variations
(a) Ldn varied from 50 to 150% of the actual value, (b) Lqn varied from 50 to 150% of the actual value, (c) Rsn varied from 0 to 10 Ω

 

Fig. 6  Block diagram of the RPCC with proposed DOB
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4 Experimental results
The proposed control method is implemented in an experimental
system using a DSP TMS320F28335 in which the PWM switching
frequency is 10 kHz. To clearly demonstrate the current level, the
d-axis reference current is set to 0 A in the experiment, and the q-
axis current is set as the speed controller output value. The gains of

the proposed Luenberger observer are selected as l1 = 0.4 and
l2 = − 10, as described in the previous section.

To evaluate the validity of the proposed current control method
under a motor parameter mismatch in a steady-state condition, we
compared the experimental results of the proposed RPCC with a
conventional DPCC. The experiment was conducted at a full load
of 1.6 Nm and at 1500 r/min. Stator resistance Rs, d-axis

Fig. 7  d-axis current prediction errors of proposed predictive control at 1500 r/min and under 1.6 N m conditions
(a) With a mismatch of the d-axis inductance and resistance, (b) With a mismatch of the q-axis inductance and resistance

 

Fig. 8  q-axis current prediction errors of proposed predictive control at 1500 r/min and under 1.6 N m conditions
(a) With a mismatch of the d-axis inductance and resistance, (b) With a mismatch of the q-axis inductance and resistance, (c) With a mismatch of the rotor flux

 

Table 1 Motor parameters
Parameter Value Unit
rated power 600 W
rated torque 1.6 N m
pole pairs 3 —
stator resistance 1.65 Ω
d-axis inductance 11.5 mH
q-axis inductance 20 mH
permanent magnet flux linkage 0.105 Wb
DC-link voltage 311 V
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inductance Ld, q-axis inductance Lq, and rotor flux λm were chosen
as the test motor parameters. The performance of the current
control to the parameter variation was confirmed by changing the
parameters of the current controller programming code into three
steps in online. The experimental waveforms include the d–q-axis
reference currents and d–q-axis currents, and the estimated
disturbance terms f d k + 1 , f q k + 1  are also given in the
proposed method.

Fig. 9 shows the current response of the conventional DPCC
and the proposed scheme under Rs mismatch. The parameter step
change of Rs is Rs = Rs → 5 ⋅ Rs → 10 ⋅ Rs.

As shown in Fig. 9a, the d-axis current follows the reference
value well in a conventional DPCC; however, owing to a mismatch
of the stator resistance, the q-axis current fails to follow the
reference value accurately, and an error occurs. A conventional
DPCC is somewhat sensitive to the stator resistance. In contrast, as
shown in Fig. 9b, f d k + 1  and f q k + 1  of the proposed method
compensate the steady-state current error caused by a mismatch of
the stator resistance, and all d–q-axis currents follow their
reference values well.

Fig. 10 shows the current response of the conventional DPCC
and the proposed scheme under Ld mismatch. The parameter step
change of Ld is Ld = 0.5 ⋅ Ld → Ld → 1.5 ⋅ Ld. As shown in Fig. 10,
both the current responses of the conventional DPCC and the
proposed method follow their reference value well, even if Ld

mismatch occurs. Therefore, as shown in Figs. 1 and 2, the

conventional DPCC and the proposed method are not sensitive to
the influence of Ld.

Fig. 11 shows the current response of the conventional DPCC
and the proposed scheme under Lq mismatch. The parameter step
change of Lq is Lq = 0.5 ⋅ Lq → Lq → 1.5 ⋅ Lq. As shown in
Fig. 11a, the q-axis current follows the reference value well in the
conventional DPCC; however, owing to a mismatch of the q-axis
inductance, the d-axis current fails to follow the reference value
accurately, and an error occurs.

A conventional DPCC is sensitive to the q-axis inductance.
However, as shown in Fig. 11b, f d k + 1  and f q k + 1  of the
proposed method compensate the steady-state current error caused
by a mismatch of the q-axis inductance, and all d–q-axis currents
follow their reference values well.

Fig. 12 shows the current response of a conventional DPCC and
the proposed scheme under a λm mismatch. 

The parameter step change of λm is λm = 0 → λm → 2 ⋅ λm. As
shown in Fig. 12a, the d-axis current follows the reference value
well; however, owing to the mismatch of the rotor flux, in a
conventional DPCC, the q-axis current does not follow the
reference value correctly, and an error occurs. A conventional
DPCC is sensitive to the rotor flux. In contrast, as shown in
Fig. 12b, even though the rotor flux is zero because f q k + 1  of the
proposed method already includes the value of λm and compensates
for the steady-state current error, all d–q-axis currents follow their
reference values well. Therefore, the proposed method does not

Fig. 9  Experimental results under Rs mismatch
(a) Conventional DPCC, (b) RPCC with proposed DOB

 

Fig. 10  Experimental results under Ld mismatch
(a) Conventional DPCC, (b) RPCC with proposed DOB
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require the rotor flux information, and accurate current control is
possible.

To evaluate the validity of the proposed current control method
under a motor parameter mismatch in a transient condition,
transient experiments were performed on starting and speed
reversal to confirm the independence of rotor flux information.

Fig. 13 shows the starting responses of the motor speed, q-axis
current reference, q-axis current, and the stator current in the abc
frame from standstill to 1500 r/min when the rotor flux is 0. As
shown in Fig. 13a, when the rotor flux is 0, the feedforward term

of the motor stator voltage equation disappears. As a result, the
output voltage becomes small during acceleration, so undercurrent
of q-axis current occurs in the transient state. Therefore, the desired
torque cannot be obtained and the acceleration of the motor is slow.
On the other hand, in Fig. 13b, even though the rotor flux is 0
because the voltage compensation by the proposed method is
performed to the motor stator voltage equation as shown in (15), an
appropriate q-axis current response can be obtained. Therefore, it is
possible to obtain an appropriate torque and to accelerate a little
faster than Fig. 13a.

Fig. 11  Experimental results under Lq mismatch
(a) Conventional DPCC, (b) RPCC with proposed DOB

 

Fig. 12  Experimental results under λm mismatch
(a) Conventional DPCC, (b) RPCC with proposed DOB

 

Fig. 13  Starting responses from standstill to 1500 r/min under λmn  = 0
(a) Conventional DPCC, (b) RPCC with proposed DOB
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Fig. 14 shows the starting responses of the motor speed, q-axis
current reference, q-axis current, and the stator current in the abc
frame from standstill to 1500 r/min when the nominal value of
rotor flux is twice the actual value. As shown in Fig. 14a, when the
nominal value of rotor flux is twice the actual value, the
feedforward term of the motor stator voltage equation is doubled.
As a result, the output voltage becomes large during acceleration,
so overcurrent of q-axis current occurs in the transient state.
Therefore, the motor will accelerate faster because it outputs a
torque greater than the desired torque. Accordingly, a speed
overshoot occurs and it is difficult to satisfy the desired speed
response. On the other hand, in Fig. 14b, even though nominal
value of rotor flux is twice the actual value because the voltage
compensation by the proposed method is performed to the motor
stator voltage equation as shown in (15), an appropriate q-axis
current response can be obtained. Therefore, it is possible to obtain
an appropriate torque and speed response.

Fig. 15 shows the results of speed reversal operation at ±1500 
r/min when the rotor flux is 0. As shown in Fig. 15a, due to the
absence of an accurate feedforward value, an error occurs in the
output voltage, resulting in a current error in the region where the
speed changes abruptly. Therefore, a linear speed change cannot be
obtained. On the other hand, in Fig. 15b, the proposed method
improves the current control without the information of the rotor
flux, and thus achieves a linear speed response.

The experimental results show that the current error is not large
for Ld mismatch, and the mismatch between Lq and λm significantly
affects the predicted current error, that is similar to Figs. 1 and 2. In
the case of Rs, a current error occurs when the degree of mismatch
is large. The proposed method can compensate for Rs, Ld, Lq and λm

parameter errors to obtain a more accurate current control
response.

5 Conclusion
In this paper, RPCC for an IPMSM without rotor flux information
based on a discrete-time DOB was proposed. Deadbeat control and
model-based predictive current control predict a current using the
model of the motor and generate the predicted reference voltage,

and thus the current control performance is considered to be
parameter sensitive. The current control error according to the
parameter variation was analysed. Therefore, a discrete-time DOB
based on a Luenberger observer with a robust parameter variation
was proposed for accurate current control, and the estimated
disturbances are compensated with the predicted voltage reference
model considering a digital delay. Compared with a conventional
DPCC, the proposed method is robust against variations of Rs, Ld,
and Lq, and accurate current control can be obtained even without
information on λm. Therefore, the proposed method is robust to the
parameters, and there is no need for a parameter estimation
technique to estimate the rotor flux either offline or online. To
verify the validity of the proposed method, experimental results
compared with a conventional DPCC are presented under the
IPMSM parameter mismatch conditions.
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7 Appendix

A closed-loop characteristic equation of the DOB in (20) is
expressed as (see (21)) , where
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