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1 Introduction

Recently, quantum chaos has been intensively investigated in AdS/CFT. One of the diag-

nosis of the chaos is the well-known butterfly effect which stands for the sensitivity of a

system on the initial condition. In quantum system, such sensitivity can be captured by

the out-of-time-ordered correlator (OTOC) defined by [1–5]

〈V (t)W (0)V (t)W (0)〉β , (1.1)

where 〈· · · 〉β denotes the thermal expectation value at temperature β−1. The sensitivity

of a chaotic system on the initial condition leads to an exponential growth of the OTOC

between the dissipation time td ∼ β and the scrambling time t∗ [1–5]:

〈V (t)W (0)V (t)W (0)〉β
〈V (t)V (t)〉β〈W (0)W (0)〉β

= 1− κg2eλLt for td < t < t∗ . (1.2)

Here, g2 is proportional to the inverse of the large central charge c, and κ is a constant

depending on the details of models. Note that the scrambling time t∗ is of order 1
λL

log 1
g2

.

The exponential growth rate λL is known as the Lyapunov exponent. It was shown [5]

that the Lyapunov exponent λL is bounded in a quantum field theory with unitarity and

causality.1 I.e.

λL 5
2π

β
. (1.3)

This bound on chaos indicates the concept of the maximal chaos, and it was shown that

SYK models [7–19], the tensor models [16, 20–24], the dilaton gravity on nearly-AdS2 [25]

1Also, see [6] for understanding of the bound on chaos from the stability of the Schwarzian theory.
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and string worldsheet theories [26–28] have the maximal Lyapunov exponent λL = 2π
β . In

such a maximally chaotic system, (1.2) is almost constant in early time because the expo-

nential growth is negligible compared to the leading constant term. As time is increased,

the sub-leading exponential growth with λL = 2π
β in (1.2) is comparable to the leading con-

stant around the scrambling time t∗ ∼ 1
λL

log 1
g2

. At the same time, the next sub-leading

term of order O(g4) would also become of importance. Then, it is interesting to ask a

question whether the next sub-leading correction of order O(g4) increases or decreases the

maximum Lyapunov exponent λL = 2π
β .

In this paper, we will make an attempt to answer this question2 in the Schwarzian

theory [35–41] which describes the low-energy sector of the SYK-like models and the dilaton

gravity on the nearly-AdS2. And, it is responsible for the saturation of the bound on

chaos thereof. Although not all the quantum correction of order O(g4) ∼ O( 1
c2

) to the

OTOC exhibits universality, the contribution of the Schwarzian modes of order O(g4) will

be universal.

The outline of this paper is as follows. In section 2, we review the semi-classical analysis

of the Schwarzian theory. Then, we evaluate the propagator of the Schwarzian soft mode

and its loop correction. In section 3, we consider a bi-local field and its Euclidean two

point function which corresponds to four point function of a fundamental local field. By

studying the soft mode expansion of the dressed bi-locals, we evaluate the contribution

of the soft mode to the Euclidean two point function of bi-locals. Then, taking analytic

continuation to the real time, we obtain the soft mode contribution to OTOC. In section 4,

we make concluding remarks, and we present caveats and future directions.

2 Schwarzian theory

2.1 Review

We begin with the review of the Schwarzian theory in [35]. The partition function of the

Schwarzian theory is given by

Z[g] =

ˆ
µ[φ]

SL(2,R)
exp

[
− 1

2g2

ˆ 2π

0
dτ

((
φ′′

φ′

)2

− (φ′)2

)]
, (2.1)

where φ(τ) ∈ Diff(S1) is a diffeomorphism of a circle. The Schwarzian theory has SL(2,R)

symmetry given by

tan
φ

2
−→

a tan φ
2 + b

c tan φ
2 + d

(a, b, c, d ∈ R and ad− bc = 1) , (2.2)

and we mod out the SL(2,R) volume. Hence, the physical degree of freedom of

the Schwarzian theory lives on the quotient space Diff(S1)/SL(2). Note that µ[φ]

is the reparametrization invariant measure. After SL(2,R) gauge-fixing, the measure

2Note that there has been a series of works to pursue a similar question [29–31]. Also, see [32–34].
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becomes [35, 42, 43]

µ[φ] ≡ Dφ∏
τ

φ′(τ)
. (2.3)

The measure µ[φ] can be exponentiated by introducing a fermion ψ(τ), and the partition

function of the Schwarzian in (2.1) can be written as [35]

Z[g] =

ˆ
DφDψ

SL(2,R)
e−S , (2.4)

where the action S is given by

S =
1

2

ˆ 2π

0
dτ

[
1

g2

(
φ′′

φ′

)2

− 1

g2
(φ′)2 +

ψ′′ψ′

(φ′)2
− ψ′ψ

]
. (2.5)

In the weak coupling limit g � 1, one can perform the semi-classical analysis of the

action in (2.5) by expanding the diffeomorphism φ(τ) around a saddle point φ(τ) = τ :

φ(τ) = τ + g ε(τ) , (2.6)

Accordingly, the Schwarzian action in (2.5) can be expanded with respect to g:

S = − π
g2

+ S(2) + gS(3) + g2S(4) +O(g3) , (2.7)

where we have

S(2) =
1

2

ˆ 2π

0
dτ
[
(ε′′)2 − (ε′)2 + ψ′′ψ′ − ψ′ψ

]
, (2.8)

S(3) =
1

2

ˆ 2π

0
dτ ε′

[
−2(ε′′)2 − 2ψ′′ψ′

]
, (2.9)

S(4) =
1

2

ˆ 2π

0
dτ (ε′)2

[
3(ε′′)2 + 3ψ′′ψ′

]
. (2.10)

After fixing the SL(2) gauge [35]

ˆ
dτ ε(τ) =

ˆ
dτ e±iτ ε(τ) = 0 ,

ˆ
dτ ψ(τ) =

ˆ
dτ e±iτψ(τ) = 0 , (2.11)

we Fourier-transform the soft mode ε(τ) and the fermion ψ(τ) to the (discrete) momen-

tum space:

ε(τ) =
∑
|n|=2

εne
−inτ , ψ(τ) =

∑
|n|=2

ψne
−inτ . (2.12)

– 3 –
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〈ε−nεn〉free =

(a) Soft mode

〈ψ−nψn〉free =

(b) Fermion

Figure 1. Free propagator of the Schwarzian soft mode and the fermion.

(a) Cubic vertex (b) Fermi cubic vertex (c) Quartic vertex (d) Fermi quartic vertex

Figure 2. Vertices.

In the momentum space, (2.8)∼(2.10) can be written as

S(2) =π
∑
|n|=2

n2(n2 − 1)ε−nεn − πi
∑
|n|=2

n(n2 − 1)ψ−nψn , (2.13)

S(3) =
2πi

3

∑
|n|,|m|=2
|m+n|=2

mn(m+ n)(m2 +mn+ n2)ε−m−nεmεn

+ π
∑

|n|,|m|=2
|m+n|=2

nm(m+ n)(n+ 2m)ψ−m−nψmεn , (2.14)

S(4) = − π

2

∑
|n|,|m|,|p|=2
|m+n+p|=2

mnp(m+ n+ p)(m2 + n2 + p2 +mn+ np+ pm)ε−m−n−pεmεnεp

+
3πi

2

∑
|n|,|m|,|p|=2
|m+n+p|=2

mnp(m+ n+ p)(m+ n+ 2p)ψ−m−n−pψpεmεn . (2.15)

They give the free propagator as well as cubic, quartic vertices of the soft modes and

fermions (see figure 1 ∼ 2). For the leading quantum correction to OTOC, it is enough to

consider the interactions up to quartic vertex.

2.2 Soft mode propagator

From the quadratic action in (2.13), one can read off the free propagator of the soft mode

and the fermion in (discrete) momentum space:

〈ε−nεn〉free =
1

2π

1

n2(n2 − 1)
, 〈ψ−nψn〉free =

1

2πi

1

n(n2 − 1)
. (2.16)
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〈ε−nεn〉quartic =

(a) Soft mode loop

〈ψ−nψn〉quartic =

(b) Fermi loop

Figure 3. The loop correction by one quartic vertex to the propagator.

〈ε−nεn〉cubic =

(a) Soft mode loop

〈ψ−nψn〉cubic =

(b) Fermi loop

Figure 4. The loop correction by two cubic vertices to the propagator.

Now, we will evaluate the loop correction of order O(g2) to the propagators in (2.16). At

order O(g2), there are two types of loops: one with a quartic vertex and one with two cubic

vertices. And, each loop correction gives divergence. However, as in the calculation of the

free energy [35], the divergence in the bosonic loop is cancelled with that of the fermion

loop of the same type, which leads to a finite answer.

One-loop with one quartic vertex: we evaluate the contribution of the two diagrams

in figure 3 with bosonic and fermi loops made of quartic vertex:

〈ε−nεn〉quartic = − 6g2

8π2

∑
|m|=2

n2 +m2

n2(n2 − 1)2(m2 − 1)
+

6g2

8π2

∑
|m|=2

m2

n2(n2 − 1)2(m2 − 1)
. (2.17)

Note that each series does not converge because the term of each series does not converge

to zero as m goes to infinity. However, the summation of two terms converges to zero as

m→∞, and its series can be expressed as contour integral as follow.

〈ε−nεn〉quartic =− 3g2

4π2

∑
|m|=2

1

(m2 − 1)(n2 − 1)2
, (2.18)

=− 3g2

4π2
1

(n2 − 1)2
1

2πi

˛
C
dζ

π

tanπζ

1

(ζ2 − 1)
. (2.19)

where the contour C is a collection of small counterclockwise circles centered at ζ ∈
Z/{−1, 0, 1}. By deforming the contour, it can be changed into the sum of the residues at

ζ = −1, 0, 1:

〈ε−nεn〉quartic =
3g2

4π2
1

(n2 − 1)2

∑
m=−1,0,1

Res
ζ=m

π

tanπζ

1

(ζ2 − 1)
= − 9g2

8π2
1

(n2 − 1)2
. (2.20)
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One-loop with two cubic vertices: in a similar way, one can calculate the sum of two

diagrams with bosonic and fermi loop composed of two cubic vertices in figure 4. Again,

each diagram does not converge, but the summation of the two diagram gives a finite

contribution.

〈ε−nεn〉cubic =
g2

2π2

∑
|m|=2
|m+n|=2

(m2 +mn+ n2)2

n2(n2 − 1)2(m2 − 1)((m+ n)2 − 1)

− g2

8π2

∑
|m|=2
|m+n|=2

m(n+m)(n+ 2m)2

n2(n2 − 1)2(m2 − 1)((m+ n)2 − 1)
,

=
g2

8π2

∑
|m|=2
|m+n|=2

7m2 + 7mn+ 4n2

(n2 − 1)2(m2 − 1)((m+ n)2 − 1)
. (2.21)

It can also be written as contour integral as before.

〈ε−nεn〉cubic =
g2

8π2

∑
|m|=2
|m+n|=2

1

(n2 − 1)2
1

2πi

˛
C

π

tanπζ

7ζ2 + 7ζn+ 4n2

(ζ2 − 1)((ζ + n)2 − 1)
. (2.22)

However, one has to consider the contour for |n| > 2 case and for n = 2 case separately.

For the case of |n| > 2, the contour C is a collection of small counterclockwise circles

centered at ζ ∈ Z/{−n− 1,−n,−n+ 1,−1, 0, 1} . For n = 2, the contour C is a collection

of small counterclockwise circles around integers except for {−3,−2,−1, 0, 1} i.e., ζ ∈
Z/{−3,−2,−1, 0, 1}, and similar for n = −2. (See figure 7) By deforming the contour, we

pick up the residue at the rest of the poles, and we have

〈ε−nεn〉cubic =


g2

8π2
−112 + 104n2 + 179n4 − 111n6 + 12n8

n2(n2 − 4)2(n2 − 1)3
for n 6= ±2

−g
2

96
+

1465g2

6912π2
for n = ±2

. (2.23)

3 Out-of-time-ordered correlator

We will evaluate the contribution of the Schwarzian soft mode to OTOC. For this, we first

evaluate Euclidean four point function in a specific configuration, and then we will take

analytic continuation to real time OTOC.

3.1 Dressed bi-local field

The OTOC is basically a four point function of “matter” fields. In the SYK model,

the OTOC of the fundamental fermion χi(τ) (i = 1, 2, · · · , N) was evaluated [12, 16–

18, 44]. This can also be viewed as two point function of the bi-local field ψ(τ1, τ2) ≡
1
N

∑N
i=1 χ

i(τ1)χ
i(τ2). A similar bi-local field from a matter scalar field was used to eval-

uated OTOC in the two-dimensional dilaton gravity on the nearly-AdS2 [25]. Here, the

– 6 –
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gravity sector is described by Schwarzian action, and the scalar matter field was included

on top of the Schwarzian mode. On the other hand, without coupling to an extra matter

field, one can also construct the bi-local field by a (boundary-to-boundary) SL(2) Wilson

line of BF theory for AdS2 [39, 40, 45–47] or Chern- Simons gravity for AdS3 [48, 49].3

One can consider a smooth fluctuation around the constant background (e.g., BTZ black

hole) with a fixed holonomy along the time circle. This fluctuation can be described by

Schwarzian action on the boundary [41, 48, 49, 52]. For OTOC, one can study Wilson line

evaluated with the SL(2) gauge field corresponding to the smoothly fluctuated background,

which can be interpreted as bi-local field dressed by the soft mode [48, 49]. Note that this

soft mode generates conformal transformation on the boundary. Hence, the dressed bi-local

field can equivalently be obtained by the conformal transformation of the (boundary-to-

boundary) two point function. Then, one can expand the dressed bi-local field with respect

to the soft mode:

Φdressed(τ1, τ2)

Φcl(τ1, τ2)
≡ [φ′(τ1)φ

′(τ2)]
h[

sin 1
2(φ(τ1)− φ(τ2))

]2h
/

1

[sin τ12
2 ]2h

=1 + g
∑
|n|=2

εne
−inχf (1)n (σ) + g2

∑
|m|,|n|=2

εmεne
−i(m+n)χf (2)m,n(σ)

+ g3
∑

|m|,|n|,|p|=2

εmεnεpe
−i(m+n+p)χf (3)m,n,p(σ) + · · · , (3.1)

where h is the conformal dimension of the matter field, and Φcl(τ1, τ2) is the leading term

in the soft mode expansion which corresponds to the two point function in the constant

background. Here, we defined the center of time χ and the relative time σ to be

χ =
1

2
(τ1 + τ2) , σ =

1

2
(τ1 − τ2) . (3.2)

In addition, the soft mode eigenfunction f
(1)
n (σ) and f

(2)
m,n(σ) in (3.1) are found to be

f (1)n (σ) ≡− 2ih

[
n cosnσ − sinnσ

tanσ

]
, (3.3)

f (2)m,n(σ) ≡− 2h2
(
m cosmσ − sinmσ

tanσ

)(
n cosnσ − sinnσ

tanσ

)
+ h

[
mn cos(m+ n)σ − sinmσ sinnσ

sin2 σ

]
. (3.4)

In particular, it is convenient to evaluate them at σ = −π
2 :

f (1)n

(
− π

2

)
=− 2ihn cos

nπ

2
, (3.5)

f (2)m,n

(
− π

2

)
=− h

[
(2h− 1)mn cos

mπ

2
cos

nπ

2
+ (mn+ 1) sin

mπ

2
sin

nπ

2

]
. (3.6)

3For the path integral representation of Wilson line, one need to consider a probe particle moving on

the SL(2,R) group manifold [50, 51].

– 7 –
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The form of f
(3)
m,n,p(σ) is complicated, but it is enough to evaluate it at a particular value

for our purpose.

f
(3)
m,n,−m

(
− π

2

)
= −1

3
ihe−inχn cos

nπ

2

[
h+ 2(h− 1)2m2 + h(−1 + 2(h− 1)m2) cosmπ

]
.

(3.7)

3.2 Euclidean four point function

In this section, we will evaluate the contribution of the soft mode to the Euclidean two

point function of the dressed bi-local fields Φdressed, which corresponds to four point function

of a matter field:

〈Φdressed(τ1, τ2)Φ
dressed(τ3, τ4)〉 . (3.8)

The leading contribution is the product of the one point function of the bi-locals which

corresponds to the disconnected diagrams in the four point function of the matters in the

constant background.

〈Φdressed(τ1, τ2)Φ
dressed(τ3, τ4)〉 = Φcl(τ1, τ2)Φcl(τ3, τ4) + · · · , (3.9)

where the leading one-point function Φcl(τ1, τ2) is given by

Φcl(τ1, τ2) ≡ 〈Φdressed(τ1, τ2)〉leading ∼
1[

sin τ12
2

]2h . (3.10)

Note that one can evaluate the correction to the one point function of the bi-local field.

For this, we perform the soft mode expansion of the one point function:

Φdressed
0 (σ) ≡ 〈Φ

dressed(τ1, τ2)〉
Φcl(τ1, τ2)

= 1 + g2
∑
|n|=2

〈ε−nεn〉f (2)−n,n(σ) + · · ·

= 1 +
1

4
g2h(4 + 8h− π2) + · · · . (3.11)

Note that Φdressed
0 is independent of χ because of SL(2) charge. In this paper, we will consider

a fixed value of σ (i.e., σ = −π
2 ), and then Φdressed

0 is nothing but a numerical constant.

One may evaluate the Euclidean four point function for any choice of (τ1, τ2; τ3, τ4).

However, for the analytic continuation to a particular OTOC, it is enough to consider the

following configuration which simplifies the calculation of the four point function:

(τ1, τ2, τ3, τ4) =

(
χ− π

2
, χ+

π

2
, 0, π

)
, (3.12)

where χ ∈ (−π/2, π/2). Therefore, we will evaluate the following Euclidean four point

function.

F(χ) ≡ 〈Φ
dressed(χ− π/2, χ+ π/2)Φdressed(0, π)〉

Φcl(χ− π/2, χ+ π/2)Φcl(0, π)
= Fd + g2F (1)(χ) + g4F (2)(χ) +O(g6) ,

(3.13)

where the numerical value Fd = [Φdressed
0 (−π

2 )]2 corresponds to the disconnected diagrams.

– 8 –
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Φ(τ1, τ2) Φ(τ3, τ4)

(a) Leading ∼ O(g2)

Φ(τ1, τ2) Φ(τ3, τ4)

(b) Loops ∼ O(g4)

Φ(τ1, τ2) Φ(τ3, τ4) Φ(τ1, τ2) Φ(τ3, τ4)

(c) Three soft modes scattering ∼ O(g4)

Φ(τ1, τ2) Φ(τ3, τ4)

(d) Two soft modes exchange ∼ O(g4)

Φ(τ1, τ2) Φ(τ3, τ4) Φ(τ1, τ2) Φ(τ3, τ4)

(e) Soft modes dressing ∼ O(g4)

Figure 5. Diagrams for the contributions of the soft mode to the Euclidean two point function of

bi-local fields. We represent the dressed bi-local field by a dot.

Leading connected diagram of order O(g2): from the soft mode expansion (3.1),

the leading contribution of the soft modes to the (connected) four point function at the

configuration (3.12) (See figure 5(a)) is found to be

F (1)(χ) =
∑
|n|=2

〈ε−nεn〉einχe−
nπi
2 f

(1)
−n

(
− π

2

)
f (1)n

(
− π

2

)
= 4h2

∑
|n|=2
n : even

einχe−
πin
2

2π(n2 − 1)
, (3.14)

where we used the leading propagator of the soft mode in (2.16). This can be written as

the following contour integral

F (1)(χ) =4h2
1

2πi

˛
C
dζ

π
2

sin πζ
2

eiζχ

2π(ζ2 − 1)
. (3.15)

Here, the contour C is a collection of small counterclockwise circles centered at ζ ∈
Z/{−1, 0, 1} (See figure 6). Then, we deform the contour to pick up the rest of poles. I.e.

F (1)(χ) = −4h2
∑

n=0,±1
Res
ζ=n

π
2

sin πζ
2

eiζχ

2π(ζ2 − 1)
=

2h2

π

(
1− π

2
cosχ

)
. (3.16)

Loop correction of order O(g4): now, let us consider the loop corrections to the

soft mode propagator in (2.20) and (2.23) (See figure 5(b)), which give a contribution to

g4F (2)(χ).

F (2)
loop(χ) =4h2

∑
|n|=2
n : even

einχe−
πin
2 〈ε−nεn〉loopn2 ⊂ F (2)(χ) . (3.17)

– 9 –
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Deform
========⇒

Figure 6. The contribution of the soft mode can be written as the contour integral along circles

with small radius centered at ζ ∈ Z/{−1, 0, 1}. After deforming the contour, one can rewrite it as

the sum of residues at ζ = −1, 0, 1.

For the loop with one quartic vertex, one can repeat the same calculation as the leading

contribution. However, for the loop with two cubic vertices, one has to calculate |n| > 2

case and n = ±2 case separately. For |n| > 2, one can also rewrite the contribution as a

contour integral where the contour is a collection of small counterclockwise circles centered

at ζ ∈ Z/{−2,−1, 0, 1, 2}. And, the deformation of the contour gives the sum of residues

at ζ = −2,−1, 0, 1, 2. Summing up the results for |n| > 2 and n = ±2, we have

F (2)
loop(χ) =

7h2

2π2

[
−1 +

π

168
(88− 3π2 + 12χ2) cosχ+

1

126
(−79 + 9π2 + 36χ2) cos 2χ

+
5π

14
χ sinχ− 2

3
χ sin 2χ

]
. (3.18)

Correction from scattering of three soft modes with cubic vertex of order O(g4):

F (2)(χ) includes the contribution from the scattering of three soft modes emitted from the

bi-locals. Using the cubic vertex in (2.14) and the soft mode eigenfunction f
(1)
n (σ) in (3.5)

and f
(2)
m,n(σ) in (3.6), this can be written as follows.

F (2)
three soft modes scattering

= − 2h2

π2

∑
m,n : even

|m|,|n|=2,|m+n|=2

(2h− 1)(m2 +mn+ n2)

(n2 − 1)(m2 − 1)[(n+m)2 − 1]
(−1)

n+m
2 cos(n+m)χ

− 2h2

π2

∑
m,n : odd

|m|,|n|=2,|m+n|=2

(mn+ 1)(m2 +mn+ n2)

nm(n2 − 1)(m2 − 1)[(n+m)2 − 1]
(−1)

n+m
2 cos(n+m)χ .

(3.19)

As in the calculation of the loop with two cubic vertices, one has to evaluate them for

|n| > 2 and n = ±2 separately because of the constraint |m + n| = 2 in the summation

– 10 –
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deform
=======⇒

(a) n 6= ±2

deform
=======⇒

(b) n = 2

Figure 7. The soft mode contribution can be expressed as the contour integral along circles with

small radius centered at ζ ∈ Z/{−1, 0, 1,−n−1,−n,−n+1} for n 6= ±2, at ζ ∈ Z/{−3,−2−1, 0, 1, }
for n = 2 or at ζ ∈ Z/{−1, 0, 1, 2, 3} for n = −2, respectively. By deforming the contour, it can

be expressed as the sum of residues at ζ = −n − 1,−n,−n + 1,−1, 0, 1, ζ = −3,−2,−1, 0, 1 or

ζ = −1, 0, 1, 2, 3, respectively.

(See figure 7). We found

F (2)
three soft modes scattering =

h2

π2

[
−1 +

1

36
(178 + 9(2h− 1)π2 − 72χ2) cos 2χ

+
π

8
(−16h+ π2 − 4χ2) cosχ+ π(2h− 1)χ sinχ+

16

3
χ sin 2χ

]
.

(3.20)

Correction from two soft modes exchanges of order O(g4): the exchange of two

soft modes gives the contribution of order O(g4) (See figure 5(d)). For this, using the soft

mode eigenfunction f
(2)
m,n(σ) in (3.6), one can evaluate the diagram for the two soft mode

exchange in a similar way.

F (2)
two soft modes exchange =

h2(2h− 1)2

2π2

∑
n,m : even
|m|,|n|=2

e−i(m+n)χe
πi
2
(m+n)

(n2 − 1)(m2 − 1)

+
h2

2π2

∑
n,m : odd
|m|,|n|=2

(mn+ 1)2e−i(m+n)χe
πi
2
(m+n)

n2m2(n2 − 1)(m2 − 1)

=
h2

8π2
[
4+π2(−2+χ2)+4π(3 + χ2) cosχ+(2h− 1)2(−2 + π cosχ)2

+(−22 + 8χ2) cos 2χ− 2πχ sinχ− 24χ sin 2χ
]
. (3.21)
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Analytic continuation
================⇒

Figure 8. Analytic continuation from the configuration on Euclidean thermal circle to the real

time out-of-time-ordered configuration.

Correction from soft mode dressing of order O(g4): one can also consider a cor-

rection to the leading diagram in figure 5(a) by the soft mode dressing. (See figure 5(e)).

This contribution of order O(g4) can be written as

F (2)
soft mode dressing = 2

∑
|n|,|m|=2

einχe−
nπi
2 f

(3)
m,n,−m

(
− π

2

)
f
(1)
−n

(
− π

2

)
〈ε−nεn〉〈ε−mεm〉 . (3.22)

In the same way as before, the contour integral representation for the summation over

m gives the leading connected diagram in (3.14) (but, of order O(g4)) up to numerical

constant. i.e.,

F (2)
soft mode dressing =

h

36π
(3 + 6h− π2)

∑
|n|=2

einχf
(1)
−n

(
− π

2

)
f (1)n

(
− π

2

)
〈ε−nεn〉 . (3.23)

Hence, we have

F (2)
soft mode dressing =

h3

18π2
(3 + 6h− π2)

(
1− π

2
cosχ

)
. (3.24)

Total contribution of soft modes: summing up the above all results, we have

Ftotal(χ) =Fd + g2F (1)

+ g4
[
F (2)

loop + F (2)
three soft modes scattering + F (2)

two soft modes exchange + F (2)
soft mode dressing

]
=Fd +

2g2h2

π

(
1− π

2
cosχ

)
+

g4h2

144π2

[
288πhχ sinχ+ 9π2(1 + 2h)2 cos 2χ

+ π
[
36χ2 − 4h(3 + 78h− π2) + 9(24 + π2)

]
cosχ

+ 18π2χ2 + 12h2(28 + 3π2)− 44h(6 + π2)− 504− 27π2
]
. (3.25)

3.3 Real-time out-of-time-ordered correlator

From the Euclidean four point function in (3.25), we take the analytic continuation from

Euclidean time χ to Lorentzian time t (See figure 8)

χ −→ −2πit

β
, (3.26)
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in order to obtain the OTOC:

FOTOC(t) =Fd − g2
[
h2

2
e

2πt
β − 2g2h2

π
+
h2

2
e
− 2πt

β

]
+ g4

[
h2(2h+ 1)2

32
e

4πt
β − h2π

2β2
t2e

2πt
β − 2h3

β
te

2πt
β

+
h2(312h2 − 4h(π2 − 3)− 9(π2 + 24))

288π
e

2πt
β + · · ·

]
, (3.27)

where the ellipsis represents terms that do not grow exponentially at order O(g4).

First of all, note that the leading Lyapunov exponent saturates the bound on chaos [6,

12, 25]. i.e.,

λL =
2π

β
+O(g2) . (3.28)

Among the contribution of order O(g4) in (3.27), a term like −2h3

β g4te
2πt
β has been observed

to give a correction to the maximum Lyapunov exponent. In SYK model, for instance,

the contribution of the non-zero mode to OTOC gives te
2πt
β which leads to the 1/βJ

correction to the leading Lyapunov exponent [12]. While the 1/βJ correction in SYK

model decreases the Lyapunov exponent from the maximum value 2π
β , the 1/c correction

to the Lyapunov exponent from the Virasoro conformal block in large c was shown [29, 30]

to increase the Lyapunov exponent. i.e., λL = 2π
β (1 + 12

c ). In our result, the contribution

−2h3

β g4te
2πt
β in (3.27) seemingly plays a role of increasing the Lyapunov exponent. However,

we have other terms at order O(g4) which grow faster than te
2πt
β . In particular, the fastest

growing term, h
2(2h+1)2

32 e
4πt
β in (3.27), naively seems to violate the bound on chaos because

it grows exponentially with growth rate 4π
β . However, it turns out that it reduces the

Lyapunov exponent because its contribution to the OTOC has opposite sign to the leading

exponential growth.

Note that each contribution of order O(g4) (e.g., the analytic continuation

of (3.18), (3.20), (3.21)) includes exponentially growing terms such as t2e
4πt
β and te

4πt
β

which grow faster than e
4πt
β . In particular, those in (3.18) and (3.21) play a role of increas-

ing the Lyapunov exponent. On the other hand, the analogous terms in (3.20) decreases

the Lyapunov exponent. It is interesting that those fast growing contributions are cancelled

exactly, and in the end the remaining fastest growth e
4πt
β decreases the Lyapunov exponent

as we have seen. If we considered only the loop correction in (3.18) for the calculation of

OTOC, we would get

FOTOC, loop(t) =Fd − g2
[
h2

2
e

2πt
β − 2g2h2

π
+
h2

2
e
− 2πt

β

]
+ g4

[
− 2h2

β2
t2e

4πt
β +

7h2

3πβ
te

4πt
β +

h2(−79 + 9π2)

72π2
e

4πt
β − h2π

2β2
t2e

2πt
β

− 5h2

4β
te

2πt
β − h2(−88 + 3π2)

96π
e

2πt
β + · · ·

]
. (3.29)

One can easily see that the fastest exponential growth at of order O(g4) increases the

Lyapunov exponent.
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g=1/1000
g=1/10000
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(a) Total contribution

g=1/100
g=1/1000
g=1/10000
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2π t
β

β 2
π
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(b) Loop contribution

Figure 9. Lyapunov exponent λL(t) from the total contribution to OTOC and from the loop con-

tribution to OTOC. We plot them for the case of g = 1/100, 1/1000, 1/10000, and the corresponding

scrambling time would be 2π
β t ∼ log g2 ' 9.21, 13.82, 18.42.

To see the change of the Lyapunov exponent concretely, we go back to the original

statement of the bound on chaos where we define the Lyapunov exponent by

λL(t) ≡ d

dt

[
log
(
Fconst −F(t)

)]
, (3.30)

where Fconst corresponds to the constant terms4 in F(t). The bound on chaos states

λL(t) 5
2π

β
for β < t < t∗ , (3.31)

where t∗ ∼ β
2π log 1

g2
is the scrambling time.

We plot numerically the Lyapunov exponent λL(t) as a function of time from FOTOC(t)

in (3.27) and from FOTOC, loop(t) in (3.29), respectively. See figure 9. Here, we plot the

Lyapunov exponent λL(t) for g = 1/100, 1/1000, 1/10000 of which the scrambling time

would be 2π
β t ∼ log g2 ' 9.21, 13.82, 18.42, respectively. In figure 9(a), the Lyapunov

exponent λL(t) from FOTOC(t) in (3.27) is less than 2π
β . As time increase, the Lyapunov

exponent quickly saturates the bound, and it begins to decrease around the scrambling

time. The term g4h2(2h+1)2

32 e
4πt
β at order O(g4) in (3.27) is responsible for this decrease of

Lyapunov exponent. The Lyapunov exponent seemingly vanishes beyond the scrambling

time t∗. However, we cannot trust the Lyapunov exponent beyond the scrambling time

because the small g perturbation will break down.

On the other hand, if we had only the loop correction for the quantum correction to

the OTOC, we would observe the violation of chaos bound before the scrambling time t∗.

See figure 9(b). This violation of the bound mainly comes from the fastest exponential

growth −g4 2h2
β2 t

2e
4πt
β at order O(g4) in (3.29).

4In the bound on chaos of [5], Fd was used for this constant. However, we choose Fconst to be all constant

terms in all order g. For example, Fconst = Fd + 2g2h2

π
+O(g4).
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4 Conclusion

In this paper, we have evaluated the quantum correction of order O(g4) by the Schwarzian

soft mode to the OTOC. As is well known, the OTOC at order O(g2) grows exponentially

with the maximum growth rate 2π
β [6, 12, 25]. At order O(g4), we have found that the loop

correction by the Schwarzian soft modes and the correction by two soft mode exchanges

make the OTOC grow faster than the maximal growth. On the other hand, the correction

by three soft mode scattering decreases the exponential growth rate. And, we have showed

that the total correction slows down the exponential growth of the OTOC.

Note that the contributions of multi soft mode exchanges have been considered in [25,

29]. For two soft mode exchange, [25, 29] obtained a contribution corresponding to the

term 1
8g

4h2(2h − 1)2 cos2 χ in (3.21). After analytic contribution to real time, this slows

down the exponential growth because it has the opposite sign to the contribution of order

O(g2). However, in (3.21) we have the other contribution h2

π2χ
2 cos 2χ which is a faster

growth in time. Therefore, we concluded that the overall contribution from the two soft

mode exchange speeds up the exponential growth.

It is important to issue caveats in our analysis. First of all, we have not shown that

the chaos bound would hold beyond the scrambling time, but we have found that the soft

mode contribution to the OTOC at order O(g4) slows down the exponential growth of

order O(g2). To see the behavior of the OTOC beyond the scrambling time, one need

to go beyond the perturbation, or, at least, the higher order corrections are required to

estimate the behavior beyond the scrambling time. Note that our perturbative calculations

in 1/c will break down near the scrambling time. But, the resummation of those higher

order corrections would allow us to study the behavior of OTOC beyond the scrambling

time. We hope to report the higher order calculations in near future. Also, it would be

highly interesting to find a constraint on the behavior of OTOC beyond the scrambling

time from a simple physical argument.

In addition, our analysis is based on the Schwarzian theory which might not be as

universal as other approaches such as the Virasoro conformal block [29–31] or pole-skipping

phenomenon [53–59]. Nevertheless, the low energy physics of many interesting models such

as SYK-like models and the dilaton gravity on nearly AdS2 is described by Schwarzian

action, in which our result can provide the understanding of the quantum correction to

the chaos. It is interesting to explore the quantum correction to chaos in the context of

“pole-skipping” phenomenon in the CFT2 or higher dimensional CFT.

Finally, we have not evaluated all of the OTOC at order O(g4), but we have calculated

the contribution of the Schwarzian soft mode at order O(g4). We have not considered

the interaction of the matter fields which could also give a contribution to the OTOC.

Unlike the soft mode, the contribution of matter fields might not be universal, but it

would possibly depend on the details of models. Nevertheless, it would be interesting if

the quantum correction to the chaos can constraint the matter interaction.
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