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Abstract: In this paper, we define the notion of a probability function on a poset which is similar to
the probability function discussed on d-algebras, and obtain three probability functions on posets.
Moreover, we define a probability realizer of a poset, and we provide some examples to describe
its role for the standard probability function. We apply the notion of a probability function to the
ordered plane and obtain three probability functions on it.
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1. Introduction

There has been some research between posets and algebraic structures. Neggers [1] proved
that there is a natural isomorphism between the category of pogroupoids and the category of
posets. Neggers and Kim [2] showed that a poset (X,≤) is (C2 + 1)-free if and only if its associated
pogroupoid (X, ·) is modular*. Neggers and Kim [3] introduced the notion of d-algebras. It is a kind
of generalization of BCK-algebras to which they discussed some relations between d-algebras and
BCK-algebras, as well as some relations between d-algebras and oriented digraphs. Cha et al. [4]
introduced the notions of a trend and probability functions on d-algebras. They obtained an equivalent
condition defining a trend π0 with condition (j) on a standard BCK-algebra. Loof et al. [5] discussed
mutual rank probabilities in partially ordered sets. Baets et al. [6] characterized the transitivity of the
mutual rank probability relation of a poset, and Lerche et al. [7] evaluated ranking probabilities for
partial orders based on random linear extensions.

In this paper, we define a probability function on a poset. The idea of a probability function on a
poset came from [4], and we obtained some probability functions on a poset. We defined a probability
realizer on a poset, and found some examples for probability realizers of posets for the standard
probability function π0. Moreover, we applied the notion of a probability function to the ordered
plane (order geometry), and found three probability functions acting on it. Some comments have been
suggested for further research.

2. Preliminaries

Some definitions and terminologies will be recalled for partially ordered sets which are necessary
for reading this paper.

An ordered pair (X,≤) is called a partially ordered set if ≤ is a partial order, i.e., reflexive,
anti-symmetric, and transitive, on the set X. A poset (X,≤) is said to be a chain if every two distinct
elements of X are comparable, and we denote it by Cn when the cardinality of X is equal to n. A poset
(X,≤) is said to be an anti-chain if every two distinct elements of X are incomparable, and we denote
it by n when the cardinality of X is equal to n. Given two posets X and Y, a poset Z is said to be an
ordinal sum of X and Y if z1 ≤ z2 in Z, then either z1 ∈ X and z2 ∈ Y or z1 ≤ z2 in X, or z1 ≤ z2 in Y.
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A graph Z can be realized by placing the Hasse diagram of Y above the Hasse diagram of X, and by
drawing line segments from the maximal elements of X to all the minimal elements of Y. We denote
it by Z = X ⊕ Y. A chain (X,≤∗) is said to be a linear extension of a poset (X,≤) if x ≤ y implies
x ≤∗ y. A family of linear extensions R = {L1, · · · , Lk} of a poset (X,≤) is said to be a realizer of
(X,≤) if (X,≤) can be realized as the intersection of R, but not as the intersection of fewer than k
linear extensions. For details we refer to [8].

A non-empty set X with a constant 0 and a binary operation “ ∗ ” is said to be a d-algebra [3] if it
satisfies: (i) x ∗ x = 0, (ii) 0 ∗ x = 0, and (iii) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A mapping π : X× X → [0, 1] is said to be a trend [4] on a d-algebra (X, ∗, 0) if it satisfies: for any
x, y ∈ X,

(a) x ∗ y = 0 implies π(x, y) = 1,
(b) x ∗ y 6= 0 implies π(x, y) + π(y, x) = 1.

A trend π : X×X → [0, 1] is said to be a probability function [4] on a d-algebra (X, ∗, 0) if it satisfies:
for any x, y, z ∈ X,

(c) y ∗ z = 0 implies π(x, y) ≤ π(x, z).

It is of course possible to consider other conditions to build (different) notions of trends and
probability functions and to compare the resulting classes with those obtained here. In fact, we will
actually do so below. As an example of the situation above, let X := [0, ∞) and let x ∗ y := 0 if and only
if x ≤ y, and x ∗ y := 1 otherwise. Thus (a) holds if π(x, y) := x ∗ y. If y ≤ z, then x ≤ y implies x ≤ z
while y > z means π(y, z) = y ∗ z = 1, so that (c) does not apply in that case. Condition (b) holds
since x ∗ y 6= 0 implies x ∗ y = 1, and x > y yields π(y, x) = 1 since y < x in that case. The groupoid
(X, ∗, 0) is certainly a d-algebra.

3. Probability Functions on Posets

In this section we discuss probability functions on posets. We define the notion of a probability
function on a poset which is a little bit different from the probability function discussed in d-algebras.
Given a poset P, a map π : P× P→ [0, 1] is called a probability function on P if:

(I) π(x, x) = 1,
(II) x ≤ y, x 6= y implies π(x, y) = 1,
(III) x 6= y implies π(x, y) + π(y, x) = 1,
(IV) y < z implies π(x, y) ≤ π(x, z),

for any x, y, z ∈ X.

Theorem 1. If π is a probability function on a poset (P,≤), then:

(IV)′ y < z implies π(z, x) ≤ π(y, x),

for any x, y, z ∈ P.

Proof. Let y < z and let x ∈ P. Case (i): x = z. By (I), we have π(z, x) = π(x, x) = 1 and
π(y, x) = π(y, z) = 1. Hence π(z, x) ≤ π(y, x). Case (ii): z 6= x. By (III), we have π(z, x) + π(x, z) = 1.
We have 3 subcases:

x

z

z

x

x z

(ii-1) (ii-2) (ii-1)
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Subcase (ii-1): z < x. By (II), we have π(z, x) = 1. Now, y < z, z < x implies y < x and hence
π(y, x) = 1. Hence π(z, x) ≤ π(y, x). Subcase (ii-2): x < z. By (III), 1 = π(x, z)+π(z, x) = 1+π(z, x),
since x 6= z. It follows that π(z, x) = 0. Hence π(z, x) = 0 ≤ π(y, x). Subcase (ii-3): z||x, i.e., z and x

are incomparable. Subcase(ii-3-a): y < x, i.e., x
y z . Then π(y, x) = 1 ≥ π(z, x). Subcase (ii-3-b):

x < y. Since y < z, we have
z
y
x

, i.e., x < z. This is a contradiction, since z||x. Subcase(ii-3-c):

x||y. Since y < z, by (IV), we have π(x, y) ≤ π(x, z). Since z||x, x||y, we have z 6= x, x 6= y, and

y < z, whence it follows that z
y x . Hence π(y, x) = 1− π(x, y) ≥ 1− π(x, z) = π(z, x). Thus

(IV)′ holds.

Remark 1 (Another proof of Theorem 1). This proof was suggested by a reviewer. It was proved axiomatically,
not using the Hasse diagram of a poset. Let y < z and let x ∈ P. We consider 3 cases: (i) Assume that x 6= y
and x 6= z. Then π(x, y) ≤ π(x, z). It follows that π(y, x) = 1− π(x, y) ≥ 1− π(x, z) = π(z, x) by
using the conditions (III) and (IV). (ii) Assume x = y. Then π(y, x) = π(x, x) = 1 ≥ π(z, x). (iii) Assume
x = z. Since y < z = x, by (II) we obtain π(y, x) = 1 ≥ π(z, x), proving the theorem.

Notice that if α, β ∈ [0, 1] and α + β = 1, then if π1 and π2 are probability functions on a poset P,
it follows that απ1 + βπ2 is also a probability function on P.

Let (P,≤) be a poset. Define a map π0 : P2 → [0, 1] by:

π0(x, y) :=


1
2 if x||y, x 6= y,
0 if y < x,
1 if x ≤ y

for any x, y ∈ P. We shall prove such a function π0 is a probability function on a poset P.

Proposition 1. The mapping π0 is a probability function on P.

Proof. The conditions (I), (II), and (III) hold trivially. Assume that the condition (IV) does not hold. Then there
exist y, z ∈ P such that y < z and π0(x, y) > π0(x, z) for some x ∈ P. Case (i): π0(x, y) = 1, π0(x, z) = 1

2 .
Then x ≤ y, x||z, x 6= z. Since y < z, we have x ≤ z, a contradiction. Case (ii): π0(x, y) = 1, π0(x, z) = 0. We
have x ≤ y, z < x, which implies z ≤ y, which is a contradiction. Case (iii): π0(x, y) = 1

2 , π0(x, z) = 0. Then
x||y, x 6= y, z < x. Since y < z, we have x||y, y < x, which is a contradiction.

Remark 2. The reviewer suggested that the proof of Proposition 1 can be proved axiomatically. We omit
its proof.

The mapping π0 discussed in Proposition 1 is called a standard probability function.

Let (P,≤) be a finite poset and let L(P) be the collection of all linear extensions of P. Given
x, y ∈ P, we denote L(P; x ≤ y) the collection of all linear extensions satisfying the condition x ≤ y.

Theorem 2. Let (P,≤) be a finite poset. If we define a map πL : P2 → [0, 1] by:

πL(x, y) :=
|L(P; x ≤ y)|
|L(P)|

for all (x, y) ∈ P2, then πL is a probability function on P.
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Proof. (I) Given x ∈ P, we have πL(x, x) = |L(P; x≤x)|
|L(P)| = |L(P)|

|L(P)| = 1. (II) Let x ≤ y, x 6= y in (P,≤).
Then x < y in Li for any linear extension Li of (P,≤). It follows that L(P; x < y) = L(P), and hence
πL(x, y) = |L(P; x≤y)|

|L(P)| = 1. (III) Let x 6= y in (P,≤). Then, for any linear extension Li of (P,≤), either
x < y or y < x. This means that there exist |L(P; x < y)|-number of linear extensions of (P,≤) and
|L(P; y < x)|-number of linear extensions of (P,≤). It follows that:

πL(x, y) + πL(y, x) =
|L(P; x < y)|+ |L(P; y < x)|

|L(P)|

=
|L(P; x < y)|+ (|L(P)| − |L(P; x < y)|)

|L(P)|
= 1.

(IV) Let y < z in (P,≤) and let x ∈ P. If Li is a linear extension of P with x < y, then Li is also a
linear extension of P with x < z, since y < z. It follows that |L(P; x < y)| ≤ |L(P; x < z)|. Hence:

πL(x, y) =
|L(P; x < y)|
|L(P)|

≤ |L(P; x < z)|
|L(P)|

= πL(x, z).

This proves the theorem.

Example 1. Let P := {x, y, z} be a poset with the diagram:

x

y

z . Then it has two linear extensions:
y
z
x

L1

y
x
z

L2

It follows that L(P) = {L1, L2} and L(P; x ≤ z) = {L1}. Hence πL(x ≤ z) = 1
2 .

Corollary 1. If (P,≤) is an anti-chain, then πL = π0.

Proof. If (P,≤) is an anti-chain, then |L(P, x ≤ y)| = 1
2 |L(P)| and hence πL(P; x ≤ y) = 1

2 . This
shows that πL = π0.

Let (P,≤) be a poset and let
∧

be a linear extension of (P,≤). Define a map π∧ on P2 by:

π∧(x, y) :=

{
1 if x ≤ y in

∧
,

0 otherwise.

Proposition 2. Let (P,≤) be a poset and let
∧

be a linear extension of (P,≤). Then π∧ is a probability
function on P.

Proof. We show the condition (IV). Let y < z. For any x ∈ P with x < y, we have x < z. Hence
π∧(x, y) = 1 implies π∧(x, z) = 1, which implies that π∧(x, y) ≤ π∧(x, z).

Theorem 3. Let (P,≤) be a finite poset and let n := |L(P)|, say L(P) = {∧1,
∧

2, · · · ,
∧

n}. Then
πL = 1

n ∑n
i=1 π∧

i .
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Proof. Given x, y ∈ P, we have 3 cases. Case 1: x ≤ y in (P,≤). Then |L(P; x ≤ y)| = |L(P)| and
hence πL(x, y) = 1. Since x ≤ y in (P,≤) implies x ≤ y in

∧
i for any i ∈ {1, 2, · · · , n}, we have

1
n ∑n

i=1 π∧
i(x, y) = 1

n ∑n
i=1 1 = 1. Case 2: y ≤ x in (P,≤). If y < x in (P,≤), then y < x in

∧
i for any

i ∈ {1, 2, · · · , n}. It follows that πL(x, y) = 0 and π∧
i(x, y) = 0 for any i ∈ {1, 2, · · · , n}. This shows that

1
n ∑n

i=1 π∧
i(x, y) = 0 = πL(x, y). Case 3: x||y in (P,≤). Let {i1, · · · , ik} ⊆ {1, 2, · · · , n} such that x ≤ y

in
∧

ij
where j = 1, 2, · · · , k. It follows that |L(P; x ≤ y)| = k and hence πL(x, y) = |L(P; x≤y)|

|L(P)| = k
n . Since

π∧
i(x, y) = 0 for any i ∈ {1, 2, · · · } \ {i1, · · · , ik}, we obtain 1

n ∑n
i=1 π∧

i(x, y) = 1
n ∑k

j=1 π∧
j(x, y) = k

n ,
proving the theorem.

4. Some Examples for Probability Realizers for π0

Let (P,≤) be a finite poset and let B := {∧1, · · · ,
∧

n} be a set of all linear extensions of (P,≤).
A set {π∧

i1
, · · · , π∧

ik
| ∧i ∈ B} is said to be a probability realizer of (P,≤) for probability function π if

π = α1π∧
i1
+ α1π∧

i2
+ · · ·+ α1π∧

ik
for some α1, · · · , αk ∈ [0, 1].

Example 2. Let N := {1, 2, 3, 4} be a letter N-poset:

1

3

2

4

Then we have five linear extensions as follows:

4
3
2
1∧

1

4
3
1
2∧

2

3
4
2
1∧

3

3
4
1
2∧

4

3
1
4
2∧

5

Consider 1||4 in (N,≤). Assume π0 = α1π∧
1
+ · · · + α5π∧

5
. Then

1
2 = π0(1,2) = α1π∧

1
(1,2) + α2π∧

2
(1,2) + α3π∧

3
(1,2) + α4π∧

4
(1,2) + α5π∧

5
(1,2) = α1 + α3.

Similarly, we have α5 = 1
2 , α1 + α2 = 1

2 , α1 + α2 + α3 + α4 = 1
2 . From this we obtain α1 = α5 = 1

2 and
α2 = α3 = α4 = 0. Hence π0 = 1

2π∧
1
+ 1

2π∧
5
, i.e., {π∧

1
, π∧

5
} is a probability realizer of letter N-poset for the

standard probability function π0.

Example 3. Consider an anti-chain 3 := {1, 2, 3}. It has the following six linear extensions:

3
2
1∧

1

2
1
3∧

2

1
3
2∧

3

1
2
3∧

4

2
3
1∧

5

2
3
1∧

6

Assume π0 = ∑6
i=1 αiπ

∧
i for some αi ∈ [0, 1]. Then we have the following equations:

1
2 = π0(1, 2) = α1 + α2 + α5,
1
2 = π0(1, 3) = α1 + α5 + α6,
1
2 = π0(2, 3) = α1 + α3 + α6,
1
2 = π0(2, 1) = α3 + α4 + α6,
1
2 = π0(3, 1) = α2 + α3 + α4,
1
2 = π0(3, 2) = α2 + α4 + α5.
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From these equations, we obtain 1
2 = α1 + α2 + α5 = α1 + α2 + α3. If we take α1 = 1

2 , α2 = α3 = 0,
then π0 = 1

2 (π
∧

1
+ π∧

4
). If we take α2 = 1

2 , α1 = α3 = 0, then π0 = 1
2 (π

∧
2
+ π∧

6
). If we take

α3 = 1
2 , α1 = α2 = 0, then π0 = 1

2 (π
∧

3
+ π∧

5
). Hence {π∧

1
, π∧

4
}, {π∧

2
, π∧

6
}, {π∧

3
, π∧

5
} are probability

realizers of 3 for π0.

Remark 3. Note that, in Example 3, {∧1,
∧

2,
∧

3} is a realizer of an anti-chain 3, but {π∧
1
, π∧

2
, π∧

3
} is not a

probability realizer of 3 for π0. In fact, assume that π0 = α1π∧
1
+ α2π∧

2
+ α3π∧

3
for some α1, α2, α3 ∈ [0, 1].

Then we have the following equations:

1
2 = π0(1, 2) = α11 + α21 + α30,
1
2 = π0(1, 3) = α11 + α20 + α30,
1
2 = π0(2, 3) = α11 + α20 + α31,
1
2 = π0(3, 2) = α10 + α21 + α30.

It follows that α1 + α2 = 1
2 , α1 = α2 = 1

2 , which is a contradiction.

Example 4. Consider a poset C2 + 1: 2
1

3 . This poset has three linear extensions as follows:

2
1
3∧

1

2
3
1∧

2

3
2
1∧

3

Let π0 := α1π∧
1
+ α2π∧

2
+ α3π∧

3
for some α1, α2, α3 ∈ [0, 1]. Then we have

1
2 = π0(3, 1) = α1π∧

1
(3, 1) + α2π∧

2
(3, 1) + α3π∧

3
(3, 1) = α1. Similarly, we have

α1 + α2 = 1
2 , α1 + α2 + α3 = 1, α3 = 1

2 . This shows that α1 = α3 = 1
2 and α2 = 0. Hence

π0 = 1
2 (π

∧
1
+ π∧

3
), i.e., {π∧

1
, π∧

3
} is a probability of a poset C2 + 1 for π0.

5. Probability Functions on the Ordered Plane

Given a plane R2, we define a partial order ≤ as follows: (x1, y1) ≤ (x2, y2) if and only if
x1 ≤ x2, y1 ≤ y2. Such an order ≤ is called a product order on R2. A poset (R2,≤) is said to be
an ordered plane (or order geometry). In the book [8], the letter N-poset and the letter Y-poset were
represented as follows:

1

3

2

4
1

2

3

4

y

xo
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c

b

c

d

o

a

b

c

d

y

x

In this section, we discuss probability functions on the ordered plane. Given elements −→x ,−→y ∈ R2

which are incomparable, i.e., −→x ||−→y , as below:

~y

~x

y

x

a

b

o

In this case, we define:

π(−→x ,−→y ) :=
a

a + b
, π(−→y ,−→x ) :=

b
a + b

. (1)

When −→x ≤ −→y , we define:

π(−→x ,−→y ) := 1, π(−→y ,−→x ) := 0. (2)

Theorem 4. The mapping π defined as (1) and (2) on (R2,≤) is a probability function.

Proof. The proofs of (I) and (II) are trivial, and we omit it. (III) Let −→x 6= −→y . Case (i): −→x < −→y . Then
we have π(−→x ,−→y ) = 1, π(−→y ,−→x ) = 0. It follows that π(−→x ,−→y ) + π(−→y ,−→x ) = 1. Case (ii): −→x ||−→y . We
let it be drawn as:

~y

~x

a

b



Mathematics 2019, 7, 785 8 of 18

Then π(−→x ,−→y ) + π(−→y ,−→x ) = a
a+b +

b
a+b = 1. (IV) Let −→y < −→z and let −→x ∈ R2. Then we have

nine subdivisions where −→x can be located in R2 as follows:

~y

~z

1

4

7

2

5

8

3

6

9

We denote its subdivision by, e.g., s{1, 2, 3}, when we consider a region consisting of areas 1 , 2 ,
3 . Case (i): −→x lies in a subdivision s{1, 2, 4, 5}. Then −→x ≤ −→z . It follows that π(−→x ,−→z ) = 1 ≥ (−→x ,−→y ).

Case (ii): −→x lies in a subdivision s{5, 6, 8, 9}. Then −→y ≤ −→x and hence π(−→x ,−→y ) = 0 ≤ (−→x ,−→z ). Case
(iii): −→x lies in a subdivision s{7}. Consider the following figure:

~x

~y

~z

b
a

cc

d

This shows that π(−→x ,−→y ) = a
a+c+d and π(−→x ,−→z ) = a+b

a+c+d . Since b > 0, we have
π(−→x , −→y ) ≤ (−→x ,−→z ). Case (iv): −→x lies in a subdivision s{3}.

~x

~z

~y

a b

c

d

This shows that −→x ||−→y ,−→x ||−→z , and hence π(−→x ,−→y ) = c
a+b+c , π(−→x ,−→z ) = c+d

b+c+d . The following
shows that π(−→x ,−→y ) ≤ (−→x ,−→z ).

π(−→x ,−→y ) ≤ (−→x ,−→z ) ⇔ c
a + b + c

≤ c + d
b + c + d

⇔ c(b + c + d) ≤ (c + d)(a + b + c)

⇔ 0 ≤ ac + ad + bd : true.

Hence π is a probability function on (R2,≤).
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We generalize Theorem 4 by generalizing the condition (1). Let α > 0, β > 0 with α + β = 1.
Given elements −→x ,−→y ∈ R2 which are incomparable, i.e., −→x ||−→y , as below:

~y

~x

a

b

In this case, we define:

π(−→x ,−→y ) :=
αa

αa + βb
, π(−→y ,−→x ) :=

βb
αa + βb

. (3)

When −→x ≤ −→y , we define π(−→x ,−→y ) and π(−→y ,−→x ) as (2) above.

Theorem 5. The mapping π defined as (2) and (3) on (R2,≤) is a probability function.

Proof. The proofs of (I)∼(III) are easy, and we omit it. Let −→y < −→z . To show the condition (IV),
we consider only two cases. Consider the following figure:

~x

~y

~z

ba

cc

d

Then we have π(−→x ,−→y ) = βa
α(c+d)+βa and π(−→x ,−→z ) = β(a+b)

αd+β(a+b) . The following shows that

π(−→x ,−→y ) ≤ π(−→x ,−→z ).

π(−→x ,−→y ) ≤ (−→x ,−→z ) ⇔ βa
α(c + d) + βa

≤ β(a + b)
αd + β(a + b)

⇔ βa[αd + β(a + b)] ≤ β(a + b)[α(c + d) + βa]

⇔ 0 ≤ α[(a + b)c + bd] : true.

Consider the following figure:

~x

~z

~y

a b

c

d
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Then we have π(−→x ,−→y ) = αc
αc+β(a+b) and π(−→x ,−→z ) = α(c+d)

α(c+d)+βb) . The following shows that

π(−→x ,−→y ) ≤ π(−→x ,−→z ).

π(−→x ,−→y ) ≤ (−→x ,−→z ) ⇔ αc
αc + β(a + b)

≤ α(c + d)
α(c + d) + βb

⇔ αc[α(c + d) + βb] ≤ α(c + d)[αc + β(a + b)]

⇔ αβbc ≤ αβ(c + d)(a + b)

⇔ bc ≤ (c + d)(a + b) : true.

Hence we prove that π(−→x ,−→y ) ≤ π(−→x ,−→z ), showing that π is a probability function on (R2,≤).

Remark 4. The mapping π discussed in Theorem 5 provides a two parameter family of probability functions on
the ordered plane. If we let γ := β

α , then π(−→x ,−→y ) = αa
αa+βb = a

a+ β
α b

= a
a+γb , i.e., we may let πγ(

−→x ,−→y ) =

a
a+γb , i.e., 1-parameter family of probability functions determined by γ. For example, if πγ(

−→x ,−→y ) = 1
2 , then

a
a+γb = 1

2 . It follows that a = γb, i.e.,−γ = − a
b is the slope of the lines with the property that πγ(

−→x ,−→y ) = 1
2

if and only if −→x and −→y are on such a line.

Using previous observations, we obtain more complicated probability functions such as a
convex combination:

α1πγ1 + α2πγ2 = π

whence −→x ||−→y yields:

π(−→x ,−→y ) =
a2 + (α1γ2 + α2γ1)ab
(a + γ1b)(a + γ2b)

for example.

Let −→x ||−→y in (R2,≤) and we say that −→x is below −→y , denoted by −→y � −→x , if −→x is located below
−→y in the ordered plane:

~y

~x

Draw a line of slope −|γi| = γ through −→x . Then this line cuts the interval [−→x ∧ −→y ,−→x ∨ −→y ]

into two regions, one containing −→x ∧ −→y and the other containing −→x ∨ −→y . We have two slopes,
γ1 and γ2 as follows:

~x ∧~y

~y ~x ∨~y

~x γ1

γ2

b

a
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Let Aγ be the region containing the point −→x ∨ −→y , and let Bγ be the region containing
the point −→x ∧−→y .

~x ∧~y

~y ~x ∨~y

~x

Aγ

Bγ

γ

Then Aγ + Bγ = ab. Define π∗γ(
−→x ,−→y ) := Aγ

Aγ+Bγ
and π∗γ(

−→y ,−→x ) := Bγ

Aγ+Bγ
. Then we have two

cases. Case (i): |γ| ≤ a
b .

~x ∧~y

~y ~x ∨~y

~x
γ

Aγ

Bγ

b

a
α

If we take α > 0 so that |γ| = α
b , then Bγ = bα

2 = b2

2
α
b = b2

2 |γ| and Aγ = ab − b2

2 |γ|. Hence

π∗γ(
−→x ,−→y ) =

Aγ

ab = 1 − 1
ab

b2

2 |γ| = 1 − b|γ|
2a and π∗γ(

−→y ,−→x ) =
Bγ

ab = 1
ab

b2

2 |γ| =
|γ|b
2a . Notice that

limb→0 π∗γ(
−→y ,−→x ) = limb→0

|γ|b
2a = 0, which shows that limb→0 π∗γ(

−→x ,−→y ) = 1. Case (ii): |γ| ≥ a
b .

~x ∧~y

~y ~x ∨~y

~x

γ

b

a

β

If we take β > 0 so that |γ| = a
β , then Aγ = 1

2 aβ = 1
2 a2 1
|γ| =

a2

2|γ| and Bγ = ab− a2

2|γ| . Hence we

have π∗γ(
−→x ,−→y ) =

Aγ

ab = 1
ab

a2

2|γ| =
a

2b|γ| and π∗γ(
−→y ,−→x ) =

Bγ

ab = 1− 1
2|γ|

a
b . Also lima→0 π∗γ(

−→x ,−→y ) = 0

and lima→0 π∗γ(
−→y ,−→x ) = 1. We define a map π∗γ on the ordered plane (R2,≤) as follow:

π∗γ(
−→x ,−→y ) :=

{
1− |γ|b2a (|γ| ≤ a

b ,−→y � −→x ),
a

2b|γ| (|γ| ≥ a
b ,−→y � −→x ).

(4)

and

π∗γ(
−→y ,−→x ) :=

{ |γ|b
2a (|γ| ≤ a

b ,−→y � −→x ),
1− a

2b|γ| (|γ| ≥ a
b ,−→y � −→x ).

(5)

Moreover, we define:
π∗γ(
−→x ,−→y ) = 1, π∗γ(

−→y ,−→x ) = 0 (6)
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when −→x < −→y . We want to show that π∗γ is a probability function on the ordered plane (R2,≤).
The proofs of the conditions (I), (II), and (III) are easy to show, and we omit it. Assume −→y < −→z . Given
−→x ∈ R2, we have nine places to put −→x as follows:

~y

~z

7

4

1

8

5

2

9

6

3~x

~x

Any place except for s{1} and s{9} are easy to show condition (IV). Consider the case s{9}.
The case can be shown as below:

~x ∧~y

~y
~w

~x ∨~y

~z ~x ∨~z

~x
γ1
γ2

γ3

γ4

b

a

c

d

We can have four slopes between [−→x ∧−→y ,−→x ∨−→y ]. Case (i): The slope γ passing through the
segment [−→x ∧−→y ,−→y ] as follows:
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~x ∧~y

~y
~w ~x ∨~y

~z ~x ∨~z

~x
γb

a

c

d

A′γ

Aγ

Then we have Aγ ≡ and A′γ ≡ , and Bγ = b2

2 |γ| and B′γ = d2

2 |γ|. Hence

π∗γ(
−→x ,−→y ) =

Aγ

ab and π∗γ(
−→x ,−→z ) =

A′γ
cd proves the inequality π∗γ(

−→x ,−→y ) ≤ π∗γ(
−→x ,−→z ) as below:

π∗γ(
−→x ,−→y ) ≤ π∗γ(

−→x ,−→z ) ⇔
Aγ

ab
≤

A′γ
cd

⇔
Bγ

ab
≥

B′γ
cd

⇔ 1
ab

b2

2
|γ| ≥ 1

cd
d2

2
|γ|

⇔ bc ≥ ad : true.

Case (ii): The slope γ passing through the segment [−→y ,−→w ] as follows:

~x ∧~y

~y
~w ~x ∨~y

~z ~x ∨~z

~x

γ
b

a

c

d
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Then we have Aγ2 ≡ and A′γ2
≡ . Hence π∗γ(

−→x ,−→y ) =
Aγ

ab and π∗γ(
−→x ,−→z ) =

A′γ
cd

proves the inequality π∗γ(
−→x ,−→y ) ≤ π∗γ(

−→x ,−→z ) as below:

π∗γ(
−→x ,−→y ) ≤ π∗γ(

−→x ,−→z ) ⇔
Aγ

ab
≤

A′γ
cd

= 1−
B′γ
cd

⇔
Aγ

ab
+

B′γ
cd
≤ 1

⇔ 1
ab

a2

2|γ| +
1
cd

d2|γ|
2
≤ 1

⇔ 1
2

a
b

1
|γ| +

1
2

d
c
|γ| ≤ 1 : true,

since a
b ≤ |γ| and |γ| ≤ c

d .
Case (iii): The slope γ passing through the segment [−→w ,−→z ] as follows:

~x ∧~y

~y
~w ~x ∨~y

~z ~x ∨~z

~x

γ

b

a

c

d

Then we have π∗γ(
−→x ,−→y ) =

Aγ

ab = 1
ab

a2

2|γ| = a
2b|γ| and π∗γ(

−→x ,−→z ) =
A′γ
cd = 1

cd (cd − |γ|d
2

2 ).
It follows that:

π∗γ(
−→x ,−→y ) ≤ π∗γ(

−→x ,−→z ) ⇔
Aγ

ab
≤

A′γ
cd

= 1− 1
cd
|γ|d2

2

⇔ 1
ab

a2

2|γ| +
1
cd

d2|γ|
2
≤ 1

⇔ 1
2

a
b

1
|γ| +

1
2

d
c
|γ| ≤ 1 : true.

Case (iv): The slope γ passing through the segment [−→z ,−→x ∨−→z ] as follows:
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~x ∧~y

~y
~w ~x ∨~y

~z ~x ∨~z

~x

γ

b

a

c

d

Then we have π∗γ(
−→x ,−→y ) =

Aγ

ab = 1
ab

a2

2|γ| =
a

2b|γ| and π∗γ(
−→x ,−→z ) =

A′γ
cd = 1

cd
c2

2|γ| . It follows that:

π∗γ(
−→x ,−→y ) ≤ π∗γ(

−→x ,−→z ) ⇔
Aγ

ab
≤

A′γ
cd

⇔ 1
ab

a2

2|γ| ≤
1
cd

c2

2|γ|

⇔ a
b
≤ c

d
⇔ ad ≤ bc : true.

This shows that condition (IV) holds when −→x is located at the region s{9}.

Consider the region s{1}. In the following figure, there exist four slopes passing through
the point −→x .

~x ∧~y ~y

~z

~x ∨~z~x

γ1 γ2

γ3

γ4
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If we consider two figures below, then we find that π∗γ1
(−→p ,−→q ) = π∗γ2

(
−→
p′ ,
−→
q′ ).

~p

~q

γ1

γ2

≡

~q′

~p′

γ̂1

γ̂2

This shows that all cases for s{1} are dual of the cases for s{9}. This shows that π∗γ is a probability
function on the ordered plane (R2,≤). We summarize:

Theorem 6. If we define a map π∗γ on the ordered plane R2 by (4), (5), and (6), then it is a probability function
on the ordered plane (R2,≤).

6. Conclusions

The notions of a trend and a probability function on d-algebras were developed. This kind of
algebraic and axiomatic approaches gave room for the investigation on general algebraic structures
in different directions. There existed algebras, e.g., BCK-algebras, BCI-algebras, which had poset
structures. It is natural to consider some applications of probability functions to the poset structure.
We defined the notion of a probability function on a poset, which is similar to the probability function
discussed on d-algebras, and obtained three probability functions on posets and some basic properties.
It is interesting to consider the notion of a realizer which are very useful in the study of poset theory,
and so we defined a probability realizer of a poset and provided examples to describe its role for the
standard probability function. We expect further investigations and theoretical results in this area.
Finally, we discussed probability functions on the ordered plane and obtained probability functions
acting on the ordered plane.

7. Comments for Further Research

(a) In Sections 4 and 5, we constructed two large families of probability functions on arbitrary
finite posets, each with a particular flavor and thus also with particular possible applications. Along
these lines one may extend the discussion as follows. Let a poset (P,≤) have n linear extensions∧

1, · · · ,
∧

n. Then the poset is “linearly finitary” and we construct a new poset (Q,≤) as follows:∧
1

∧
2

∧
n

0

...

...

...

...

...

...

· · · · · ·
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In particular, if P =
∧

1 is a chain, then Q :=

∧
1...

...

0

is also a chain and an ordinal sum 0⊕ ∧
1. Then Q may be analyzed in terms of P along the line of

Section 4 above.

(b) For the poset geometry, the poset Rn with−→x = (x1, · · · , xn),
−→y = (y1, · · · , yn) has the product

order: −→x ≤ −→y if and only if xi ≤ yi for i = 1, · · · , n. If we analyze posets P embedded in (Rn,≤) along
the lines of Section 5, then we extend our ideas of (R2,≤) to that of n-dimensional poset geometry
(Rn,≤) and all that implies for geometry.

(c) Given a poset (P,≤) having the least element 0, let x ∗ y = 0 mean x ≤ y, and (i) x ∗ y = 0
mean π(x, y) ≥ π(a, b) for all a, b ∈ P; (ii) π(x, y) < π(a0, b0) for some (a0, b0) ∈ P × P implies
π(x, y) + π(y, x) ≥ π(a, b) for all a, b ∈ P; and (iii) y ∗ z = 0 implies π(x, y) ≤ π(x, z). Such a
mapping π : P× P → [0, 1] (or π : P× P → [0, ∞)) is said to be a soft probability function on (P,≤)
(or (P, ∗)) more generally. If we define π(x, y) = 2

3 for all x, y ∈ P, then it is a soft probability function,
but not a probability function. Thus, there are definitely differences in these concepts which may be
explored further.

(d) In the setting of probability functions as studied above, the underlying model has been that
of BCK-algebras (X, ∗, 0) where x ∗ y = 0 if x ≤ y, (X,≤) is a poset with minimal element 0. Given
the fact that in general the choice of 0 may be rather meaningless, we may introduce generalizations:
(1) weak probability function on (X, ∗): π : X× X → [0, 1], π(x, y) + π(y, x) = 1 (either x ≤ y or y ≤ x
analog), and (2) fuzzy weak probability function on (X, ∗): π : X × X → [0, 1], π(x, y) + π(y, x) ≤ 1.
In either case π(x, y) = 1 implies π(y, x) = 0 and we may use this as an alternative to an idea, such as
x ∗ y = 0. For a variety of modeling in applications, the groupoid (X, ∗) may (conveniently) not be
of a usual type, so that the functions π need to be of types (1) or (2) to fit any requirements. Thus, it
appears that the results obtained in this paper may be further developed for various groupoids (X, ∗)
as well as developed in (1) or (2) as described above in these comments.
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