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ADDITIVE s-FUNCTIONAL INEQUALITIES AND
PARTIAL MULTIPLIERS IN BANACH ALGEBRAS

CHOONKIL PARK

(Communicated by A. Gildnyi)

Abstract. In this paper, we solve the additive s-functional inequalities

[fx+y=2) = f() = f+ LRI < Is(f =)+ F=2) = fx=2), 0.1)
where s is a fixed nonzero complex number with |s| < 1, and
[f=y)+ =2 = fx=2l < [s(fx+y—=2) = f(x) = fF() + FRDI, 0.2)

where s is a fixed nonzero complex number with |s| < 1.

Furthermore, we prove the Hyers-Ulam stability of the additive s-functional inequalities
(0.1) and (0.2) in complex Banach spaces. This is applied to investigate partial multipliers in
Banach x-algebras and unital C* -algebras, associated with the additive s-functional inequalities
(0.1) and (0.2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[20] concerning the stability of group homomorphisms.

The functional equation f(x+y) = f(x) + f(y) is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers” Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [17] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [3] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

Gilanyi [4] showed that if f satisfies the functional inequality

12f(x) +2f () = fFr=I < [f x+ )l (1.1)
then f satisfies the Jordan-von Neumann functional equation

2f()+2f(y) = fx+y) + f(x—).
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See also [18]. Fechner [2] and Gilanyi [5] proved the Hyers-Ulam stability of the
functional inequality (1.1).

Park [14, 15] defined additive p -functional inequalities and proved the Hyers-
Ulam stability of the additive p-functional inequalities in Banach spaces and non-
Archimedean Banach spaces. The stability problems of various functional equations
and functional inequalities have been extensively investigated by a number of authors
(see [8,9, 10, 11, 12, 16]).

In [19], Taghavi introduced partial multipliers in complex Banach x-algebras as
follows.

DEFINITION 1.1. Let A be a complex Banach x-algebra. A C-linear mapping
P:A — A is called a partial multiplier if P satisfies

PoP(xy) = P(x)P(y)

forall x,y € A.

This paper is organized as follows: In Section 2, we solve the additive s-functional
inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequal-
ity (0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional
inequality (0.2) and prove the Hyers-Ulam stability of the additive s-functional inequal-
ity (0.2) in complex Banach spaces. In Section 4, we investigate partial multipliers in
C* -algebras associated with the additive s-functional inequalities (0.1) and (0.2).

Throughout this paper, let X be a complex normed space with norm |||/, ¥ a
complex Banach space with norm || -|| and A a complex Banach x-algebra with norm
|| 1|. Assume that s is a fixed nonzero complex number with |s| < 1.

2. Additive s-functional inequality (0.1)

We solve and investigate the additive s-functional inequality (0.1) in complex
normed spaces.

LEMMA 2.1. If a mapping [ :X — Y satisfies f(0) =0 and
[fx+y=2) =) = fO)+ @I < s(fx =) +fy—2) = fx=2))[ 2.1

forall x,y,z€ X, then f:X — Y is additive.

Proof. Assume that f: X — Y satisfies (2.1).
Letting x =y and z =0 in (2.1), we get f(2x) =2f(x) forall x€ X.
Letting y= —x and z =0 in (2.1), we get

1FG0) + F (=) < Mls(F(2%) + £ (=x) = FEDI = [ls(f () + F (=)

and so f(—x) = —f(x) forall z € X, since |s| < I.
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Letting x =0 in (2.1), we get
1fG=2)=f)+F QI < Is(f (=) +f =2 =f (=) = [s(f=2) = fO) + [ (D)l

andso f(y—z) = f(y)— f(z) forall y,z € X, since |s| < 1.So f(y+2) = f(y) + f(2)
forall yzeX. O

We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in
complex Banach spaces.

THEOREM 2.2. Let r > 1 and 0 be nonnegative real numbers and let f: X —Y
be an odd mapping satisfying

1f(x+y—2) = fx) = fO) +fRI < Is(fx=y) +f(y—2) = Flx—2))
A0l + Iy 1"+ [I=1") (2.2)
forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

20
2r—-2

1 (x) = A < " (2.3)

forall x € X.

Proof. Letting z=0 and y = x in (2.2), we get
[1F(2%) = 2f () || < 26 |x[|" (2.4)

forall x € X. So

lr-2r(3)] <« Zowr

for all x € X. Hence

HORIO B TUORIES

<25 2 gy 25)
S or = orj X .

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (2.5)
that the sequence {2¢f (;—k)} is Cauchy for all x € X. Since Y is a Banach space, the
sequence {2Ff (5¢)} converges. So one can define the mapping A : X — Y by

A(x) = lim 28 f (%)

k—soo

for all x € X. Moreover, letting [ = 0 and passing to the limit m — oo in (2.5), we get
(2.3).
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It follows from (2.2) that

JAGr-+y-2) A - AG) +A)]
2 (r(57) ()1 (30) 1 (30)
s () (7))~ ()

+11m—9(IIXH HIVIT+ NIzl < lls(A(x=y) + Ay —2) —Alx = 2))|

= lim

n—oo

< lim ||2

n—oo

for all x,y,z€ X. So
[A(x+y—2) —A@x) —A(Y) +AQ@)| < [|s(A(x—y) +A(y —2) —A(x—2))]]

for all x,y,z € X. By Lemma 2.1, the mapping A : X — Y is additive.
Now, let 7 : X — Y be another additive mapping satisfying (2.3). Then we have

la@ -1l = {24 (57) ~27 (53]

<kz(j>2”( Dl (5) -2 ()]
=l

which tends to zero as ¢ — oo for all x € X. So we can conclude that A(x) = T'(x) for
all x € X. This proves the uniqueness of A, as desired. [J

THEOREM 2.3. Let r < 1 and 0 be nonnegative real numbers and let f: X —Y

be an odd mapping satisfying (2.2). Then there exists a unique additive mapping A :
X — Y such that

1 () = A <

20 el 2.6
forall x€ X.

Proof. Tt follows from (2.4) that

< O|xll”

70 3re

forall x € X. Hence
m—1

1 . 1 .
<S5 gy

12r
< Z —0|x|" (2.7)

1 1 "
gf(zlx) - z—mf(z x)
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for all nonnegative integers m and [ with m > [ and all x € X. It follows from (2.7)
that the sequence {2% f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete,

the sequence {4 f(2"x)} converges. So one can define the mapping A : X — Y by
A(x) := lim f (2"x)
n—>o<)

for all x € X. Moreover, letting [ = 0 and passing to the limit m — o in (2.7), we get
(2.6).
The rest of the proof is similar to the proof of Theorem 2.2. [J

3. Additive s-functional inequality (0.2)

We solve and investigate the additive s-functional inequality (0.2) in complex
normed spaces.

LEMMA 3.1. If a mapping f:X — Y satisfies

[fx=y)+f—2) = fx= < [s(fx+y—2) = f(x) = f) +F@)I G.D
forall x,y,z€ X, then f:X — Y is additive.

Proof. Assume that f : X — Y satisfies (3.1). Letting x=y=2z=0 in (3.1), we
get f(0)=0

Letting x =z =0 in (3.1), we get || f(—y)+ f(y)|]| <0 and so f(—y) = —f(y) for
allye X.

Letting z=x+y in (3.1), we get

1F =)+ f(=2) = (= < Mls(Fx+y) = fx) = F)) 3.2)
for all x,y € X. Replacing y and —y in (3.2), we obtain

1 Ge4y) =) = FOI < NIs(f e =y) = fF) + F W) (3.3)

for all x,y € X. It follows from (3.2) and (3.3) that f(x+y) = f(x)+ f(y) for all
x,y € X, since |s| < 1. So f is additive. O

We prove the Hyers-Ulam stability of the additive s-functional inequality (3.1) in
complex Banach spaces.

THEOREM 3.2. Let r > 1 and 0 be nonnegative real numbers and let f:X —Y
be an odd mapping satisfying

1f=y)+ =) ==l < Is(fx+y—2) = f(x) = F () + F )]l
O ([l + lIy[1”+ [l=11") (3.4)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

26
170 =A< 5

(3.5)

forall x € X.
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Proof. Since f is odd, f(0) =
Letting z=0 and y = —x in (3.4), we get

[1£(2x) =2f(x)[| < 26]x]" (3.6)
forall x € X. So

(3 -2 () < S 2 () -2 ()|

m 2
,
< ,Z 2701l (3.7)
j=l+1
for all nonnegative integers m and [ with m > [ and all x € X. It follows from (3.7)
that the sequence {2¢f (5¢)} is Cauchy for all x € X. Since Y is a Banach space, the
sequence {2Ff ( )} converges. So one can define the mapping A: X — Y by
= i1 ()
for all x € X. Moreover, letting [ = 0 and passing to the limit m — oo in (3.7), we get
(3.5).
The rest of the proof is similar to the proof of Theorem 2.2. [J

THEOREM 3.3. Let r < 1 and 0 be nonnegative real numbers and let f:X —Y
be an odd mapping satisfying (3.4). Then there exists a unique additive mapping A :
X —Y such that

170) ~ A < 5ozl 38)
forall x € X.
Proof. Tt follows from (3.6) that
1
|70 3720 < ol

forall x € X. Hence

1 1 m=1 1 . 1 .
gf(zlx)—z—mf(Z’”x) < 2_" Ef(ZJx)—Wf(Z’“x)
m— 12r
< Z 0| (3.9)

for all nonnegative integers m and [/ with m > [ and all x € X. It follows from (3.9)
that the sequence {4 f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete,
the sequence {3 f(2"x)} converges. So one can define the mapping A : X —Y by

A(x) = lim (2"

n—boc
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for all x € X. Moreover, letting / = 0 and passing to the limit m — <o in (3.9), we get
(3.9).
The rest of the proof is similar to the proof of Theorem 2.2. [J

4. Partial multipliers in C* -algebras

In this section, we investigate partial multipliers in complex Banach x-algebras
and unital C*-algebras associated with the additive p -functional inequalities (2.1) and
3.D).

THEOREM 4.1. Let r > 2 and 0 be nonnegative real numbers, and let f:A — A
be an odd mapping such that

1 x4y =2)) =u(fO) +f ) = fI < s(fx=y) +fy—2) = fx=2)l
A0+ Iyl + =1 4.1)

forall u e TV :={A €C | |A| = 1} and all x,y,z € A. Then there exists a unique
C-linear mapping P : A — A such that

26
170~ PO < 5 @2)
forall x € A.
If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) and
[1f o flxy) = f)SOI < Oxl"+ Iyl (4.3)
1F(5) = )7l < O] (4.4)

forall x,y € A, then the mapping f is a partial multiplier.

Proof. Let u =1 in (4.1). By Theorem 2.2, there is a unique additive mapping
P: A — A satisfying (4.2) defined by

P(x) = 11m2”f( 7)

n—oo

forall x € A.
Letting y=2z=0 in (4.1), we get

1/ (px) = pf ()| < O]
forall x €A andall u € T'. So

|P(x) — pP(x)]| = lim 2"

(03) 1 (1)) < m B0

forall x €A and all u € T'. Hence P(ux) = uP(x) for all x € A and all u € T'.
By the same reasoning as in the proof of [13, Theorem 2.1], the mapping P: A — A is
C-linear.
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If f(2x) =2f(x) for all x € A, then we can easily show that P(x) = f(x) for all
x € A. It follows from (4.3) that

I o () = F@F 0| = [PoPlay) — Px)PG)|
= fim#|res (5 2n>—f<2—n>f<§—n>H

n—oo
(HXII’+ I¥[I") =

n

< lim
2rn

for all x,y € A. Thus

forall x,y € A.
It follows from (4.4) that

1FG) = f) " = [[P(x") = P(x)"]| = lim 2"

f(E—I)—fG—n)*

n

2"
< lim == ([ + [lxl]) =

n—oco NI
forall x € A. Thus
JO&) =f)"
for all x € A. Hence the mapping f : A — A is a partial multiplier. [J
THEOREM 4.2. Let r < 1 and 0 be nonnegative real numbers, and let f 1A — A

be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P:A — A such that

10— PO < 5o (4.5)

2-2r

forall x € A.
If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.3)
and (4.4), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.1. [
Similarly, we can obtain the following results.

THEOREM 4.3. Let r > 2 and 0 be nonnegative real numbers, and let f:A — A
be an odd mapping such that

1f (=) +f(u(y=2) —uf =) < [s(Fx+y—2) = f(x) = f ) + f Q)
A0+ Iyl + =) (4.6)

forall u € T' and all x,y,7 € A. Then there exists a unique C-linear mapping P: A —
A such that

0
170~ POl < 5 @)



PARTIAL MULTIPLIERS IN BANACH ALGEBRAS 875

forall x € A.
If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.3)
and (4.4), then the mapping f is a partial multiplier.

THEOREM 4.4. Let r < 1 and 0 be nonnegative real numbers, and let f:A — A

be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P:A — A such that

1f (%) = P[] <

r 4.
L “8)

forall x € A.
If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.3)
and (4.4), then the mapping f is a partial multiplier.

From now on, assume that A is a unital C*-algebra with norm || - || and unitary
group U(A).

THEOREM 4.5. Let r > 2 and 0 be nonnegative real numbers, and let f: A — A
be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P: A — A satisfying (4.2).

If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A and

1o f (uv) = f(u)f(v)
1F (") = f (w)*

Sorall u,v € U(A), then the mapping f is a partial multiplier.

(4.9)

| <
| <6 (4.10)

Proof. By the same reasoning as in the proof of Theorem 4.1, there is a unique
C-linear mapping P : A — A satisfying (4.2) defined by
. X
P(x):=1im2"f(=)
n—o0 2”
forall x € A.
If f(2x) =2f(x) for all x € A, then we can easily show that P(x) = f(x) for all
xX€EA.
By the same reasoning as in the proof of Theorem 4.1, fo f(uv) = f(u)f(v) and
fu)=f(u)* forall u,y e U(A).
Since f is C-linear and each x € A is a finite linear combination of unitary ele-
ments (see [7]), i.e., x =3, Ajuj (A; €C, u; € U(A)),

— (S T = 3 T f ) =
=1 =1
— )

forall x € A.

)L_ Z%f uj)) Z)L”J

TMs
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Since f and fo f are C-linear and each x,y € A is a finite linear combination of
unitary elements, i.e., x = Z;’;l)tjuj (AjeC,ujcU(A) and y=3}_, Bk (B €C,
vi €U(A)),

n n

> AiBujvi) = ii iBf o f(ujvi) = i 3 AiBif (ui) f(vi)

k=1 j=lk=1

= Ajuj)f 2 Vi) ()

1

Ms

foflxy) = f

E
-
I

~.
I

forall x,y € A.
Therefore, the mapping f : A — A is a partial multiplier. [

THEOREM 4.6. Let r < 1 and 0 be nonnegative real numbers, and let f: A — A
be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P : A — A satisfying (4.8).

If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.9)
and (4.10), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.5. [
Similarly, we can obtain the following results.

THEOREM 4.7. Let r > 2 and 0 be nonnegative real numbers, and let f:A — A
be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P : A — A satisfying (4.7).

If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.9)
and (4.10), then the mapping f is a partial multiplier.

THEOREM 4.8. Let r < 1 and 0 be nonnegative real numbers, and let f : A — A
be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P: A — A satisfying (4.8).

If, in addition, the mapping f : A — A satisfies f(2x) =2f(x) forall x € A, (4.9)
and (4.10), then the mapping f is a partial multiplier.
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