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ADDITIVE s–FUNCTIONAL INEQUALITIES AND

PARTIAL MULTIPLIERS IN BANACH ALGEBRAS

CHOONKIL PARK

(Communicated by A. Gilányi)

Abstract. In this paper, we solve the additive s -functional inequalities

‖ f (x+ y− z)− f (x)− f (y)+ f (z)‖ � ‖s( f (x− y)+ f (y− z)− f (x− z))‖, (0.1)

where s is a fixed nonzero complex number with |s| < 1 , and

‖ f (x− y)+ f (y− z)− f (x− z)‖ � ‖s( f (x+ y− z)− f (x)− f (y)+ f (z))‖, (0.2)

where s is a fixed nonzero complex number with |s| < 1 .
Furthermore, we prove the Hyers-Ulam stability of the additive s -functional inequalities

(0.1) and (0.2) in complex Banach spaces. This is applied to investigate partial multipliers in
Banach ∗ -algebras and unital C∗ -algebras, associated with the additive s -functional inequalities
(0.1) and (0.2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[20] concerning the stability of group homomorphisms.

The functional equation f (x + y) = f (x) + f (y) is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [17] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

Gilányi [4] showed that if f satisfies the functional inequality

‖2 f (x)+2 f (y)− f (x− y)‖� ‖ f (x+ y)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2 f (x)+2 f (y) = f (x+ y)+ f (x− y).
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See also [18]. Fechner [2] and Gilányi [5] proved the Hyers-Ulam stability of the
functional inequality (1.1).

Park [14, 15] defined additive ρ -functional inequalities and proved the Hyers-
Ulam stability of the additive ρ -functional inequalities in Banach spaces and non-
Archimedean Banach spaces. The stability problems of various functional equations
and functional inequalities have been extensively investigated by a number of authors
(see [8, 9, 10, 11, 12, 16]).

In [19], Taghavi introduced partial multipliers in complex Banach ∗ -algebras as
follows.

DEFINITION 1.1. Let A be a complex Banach ∗ -algebra. A C-linear mapping
P : A → A is called a partial multiplier if P satisfies

P◦P(xy) = P(x)P(y)
P(x∗) = P(x)∗

for all x,y ∈ A .

This paper is organized as follows: In Section 2, we solve the additive s-functional
inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequal-
ity (0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional
inequality (0.2) and prove the Hyers-Ulam stability of the additive s-functional inequal-
ity (0.2) in complex Banach spaces. In Section 4, we investigate partial multipliers in
C∗ -algebras associated with the additive s-functional inequalities (0.1) and (0.2).

Throughout this paper, let X be a complex normed space with norm ‖ · ‖ , Y a
complex Banach space with norm ‖ · ‖ and A a complex Banach ∗ -algebra with norm
‖ · ‖ . Assume that s is a fixed nonzero complex number with |s| < 1.

2. Additive s-functional inequality (0.1)

We solve and investigate the additive s-functional inequality (0.1) in complex
normed spaces.

LEMMA 2.1. If a mapping f : X → Y satisfies f (0) = 0 and

‖ f (x+ y− z)− f (x)− f (y)+ f (z)‖� ‖s( f (x− y)+ f (y− z)− f (x− z))‖ (2.1)

for all x,y,z ∈ X , then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y and z = 0 in (2.1), we get f (2x) = 2 f (x) for all x ∈ X .
Letting y = −x and z = 0 in (2.1), we get

‖ f (x)+ f (−x)‖ � ‖s( f (2x)+ f (−x)− f (x))‖ = ‖s( f (x)+ f (−x))‖

and so f (−x) = − f (x) for all z ∈ X , since |s| < 1.
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Letting x = 0 in (2.1), we get

‖ f (y−z)− f (y)+ f (z)‖� ‖s( f (−y)+ f (y−z)− f (−z))‖= ‖s( f (y−z)− f (y)+ f (z))‖

and so f (y− z) = f (y)− f (z) for all y,z ∈ X , since |s| � 1. So f (y+ z) = f (y)+ f (z)
for all y,z ∈ X . �

We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in
complex Banach spaces.

THEOREM 2.2. Let r > 1 and θ be nonnegative real numbers and let f : X → Y
be an odd mapping satisfying

‖ f (x+ y− z)− f (x)− f (y)+ f (z)‖ � ‖s( f (x− y)+ f (y− z)− f (x− z))‖
+θ (‖x‖r +‖y‖r +‖z‖r) (2.2)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 2θ
2r −2

‖x‖r (2.3)

for all x ∈ X .

Proof. Letting z = 0 and y = x in (2.2), we get

‖ f (2x)−2 f (x)‖ � 2θ‖x‖r (2.4)

for all x ∈ X . So
∥∥∥ f (x)−2 f

( x
2

)∥∥∥ � 2
2r θ‖x‖r

for all x ∈ X . Hence

∥∥∥2l f
( x

2l

)
−2m f

( x
2m

)∥∥∥ �
m−1

∑
j=l

∥∥∥2 j f
( x

2 j

)
−2 j+1 f

( x
2 j+1

)∥∥∥

� 2
2r

m−1

∑
j=l

2 j

2r j θ‖x‖r (2.5)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.5)
that the sequence {2k f ( x

2k )} is Cauchy for all x ∈ X . Since Y is a Banach space, the

sequence {2k f ( x
2k )} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2k f
( x

2k

)

for all x ∈ X . Moreover, letting l = 0 and passing to the limit m → ∞ in (2.5), we get
(2.3).



870 C. PARK

It follows from (2.2) that

‖A(x+ y− z)−A(x)−A(y)+A(z)‖
= lim

n→∞

∥∥∥∥2n
(

f

(
x+ y− z

2n

)
− f

( x
2n

)
− f

( y
2n

)
+ f

( z
2n

))∥∥∥∥
� lim

n→∞

∥∥∥∥2ns

(
f

(
x− y
2n

)
+ f

(
y− z
2n

)
− f

(
x− z
2n

))∥∥∥∥
+ lim

n→∞

2n

2rn θ (‖x‖r +‖y‖r +‖z‖r) � ‖s(A(x− y)+A(y− z)−A(x− z))‖

for all x,y,z ∈ X . So

‖A(x+ y− z)−A(x)−A(y)+A(z)‖� ‖s(A(x− y)+A(y− z)−A(x− z))‖
for all x,y,z ∈ X . By Lemma 2.1, the mapping A : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.3). Then we have

‖A(x)−T(x)‖ =
∥∥∥2qA

( x
2q

)
−2qT

( x
2q

)∥∥∥
�

∥∥∥2qA
( x

2q

)
−2q f

( x
2q

)∥∥∥+
∥∥∥2qT

( x
2q

)
−2q f

( x
2q

)∥∥∥
� 4θ

2r −2
2q

2qr ‖x‖r,

which tends to zero as q → ∞ for all x ∈ X . So we can conclude that A(x) = T (x) for
all x ∈ X . This proves the uniqueness of A , as desired. �

THEOREM 2.3. Let r < 1 and θ be nonnegative real numbers and let f : X → Y
be an odd mapping satisfying (2.2). Then there exists a unique additive mapping A :
X → Y such that

‖ f (x)−A(x)‖ � 2θ
2−2r ‖x‖r (2.6)

for all x ∈ X .

Proof. It follows from (2.4) that
∥∥∥∥ f (x)− 1

2
f (2x)

∥∥∥∥ � θ‖x‖r

for all x ∈ X . Hence
∥∥∥∥ 1

2l f (2lx)− 1
2m f (2mx)

∥∥∥∥ �
m−1

∑
j=l

∥∥∥∥ 1
2 j f

(
2 jx

)− 1
2 j+1 f

(
2 j+1x

)∥∥∥∥

�
m−1

∑
j=l

2r j

2 j θ‖x‖r (2.7)
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.7)
that the sequence { 1

2n f (2nx)} is a Cauchy sequence for all x∈ X . Since Y is complete,
the sequence { 1

2n f (2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
2n f (2nx)

for all x ∈ X . Moreover, letting l = 0 and passing to the limit m → ∞ in (2.7), we get
(2.6).

The rest of the proof is similar to the proof of Theorem 2.2. �

3. Additive s-functional inequality (0.2)

We solve and investigate the additive s-functional inequality (0.2) in complex
normed spaces.

LEMMA 3.1. If a mapping f : X → Y satisfies

‖ f (x− y)+ f (y− z)− f (x− z)‖� ‖s( f (x+ y− z)− f (x)− f (y)+ f (z))‖ (3.1)

for all x,y,z ∈ X , then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1). Letting x = y = z = 0 in (3.1), we
get f (0) = 0.

Letting x = z = 0 in (3.1), we get ‖ f (−y)+ f (y)‖ � 0 and so f (−y) = − f (y) for
all y ∈ X .

Letting z = x+ y in (3.1), we get

‖ f (x− y)+ f (−x)− f (−y)‖� ‖s( f (x+ y)− f (x)− f (y))‖ (3.2)

for all x,y ∈ X . Replacing y and −y in (3.2), we obtain

‖ f (x+ y)− f (x)− f (y)‖� ‖s( f (x− y)− f (x)+ f (y))‖ (3.3)

for all x,y ∈ X . It follows from (3.2) and (3.3) that f (x + y) = f (x) + f (y) for all
x,y ∈ X , since |s| � 1. So f is additive. �

We prove the Hyers-Ulam stability of the additive s-functional inequality (3.1) in
complex Banach spaces.

THEOREM 3.2. Let r > 1 and θ be nonnegative real numbers and let f : X → Y
be an odd mapping satisfying

‖ f (x− y)+ f (y− z)− f (x− z)‖ � ‖s( f (x+ y− z)− f (x)− f (y)+ f (z))‖
+θ (‖x‖r +‖y‖r +‖z‖r) (3.4)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 2θ
2r −2

‖x‖r (3.5)

for all x ∈ X .
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Proof. Since f is odd, f (0) = 0.
Letting z = 0 and y = −x in (3.4), we get

‖ f (2x)−2 f (x)‖ � 2θ‖x‖r (3.6)

for all x ∈ X . So
∥∥∥2l f

( x
2l

)
−2m f

( x
2m

)∥∥∥ �
m−1

∑
j=l

∥∥∥2 j f
( x

2 j

)
−2 j+1 f

( x
2 j+1

)∥∥∥

�
m

∑
j=l+1

2 j

2r j θ‖x‖r (3.7)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.7)
that the sequence {2k f ( x

2k )} is Cauchy for all x ∈ X . Since Y is a Banach space, the

sequence {2k f ( x
2k )} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2k f
( x

2k

)

for all x ∈ X . Moreover, letting l = 0 and passing to the limit m → ∞ in (3.7), we get
(3.5).

The rest of the proof is similar to the proof of Theorem 2.2. �

THEOREM 3.3. Let r < 1 and θ be nonnegative real numbers and let f : X → Y
be an odd mapping satisfying (3.4). Then there exists a unique additive mapping A :
X → Y such that

‖ f (x)−A(x)‖ � 2θ
2−2r ‖x‖r (3.8)

for all x ∈ X .

Proof. It follows from (3.6) that∥∥∥∥ f (x)− 1
2

f (2x)
∥∥∥∥ � θ‖x‖r

for all x ∈ X . Hence∥∥∥∥ 1
2l f (2lx)− 1

2m f (2mx)
∥∥∥∥ �

m−1

∑
j=l

∥∥∥∥ 1
2 j f

(
2 jx

)− 1
2 j+1 f

(
2 j+1x

)∥∥∥∥

�
m−1

∑
j=l

2r j

2 j θ‖x‖r (3.9)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.9)
that the sequence { 1

2n f (2nx)} is a Cauchy sequence for all x∈ X . Since Y is complete,
the sequence { 1

2n f (2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
2n f (2nx)
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for all x ∈ X . Moreover, letting l = 0 and passing to the limit m → ∞ in (3.9), we get
(3.8).

The rest of the proof is similar to the proof of Theorem 2.2. �

4. Partial multipliers in C∗ -algebras

In this section, we investigate partial multipliers in complex Banach ∗ -algebras
and unital C∗ -algebras associated with the additive ρ -functional inequalities (2.1) and
(3.1).

THEOREM 4.1. Let r > 2 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping such that

‖ f (μ(x+ y− z))− μ( f (x)+ f (y)− f (z))‖ � ‖s( f (x− y)+ f (y− z)− f (x− z))‖
+θ (‖x‖r +‖y‖r +‖z‖r) (4.1)

for all μ ∈ T1 := {λ ∈ C | |λ | = 1} and all x,y,z ∈ A. Then there exists a unique
C-linear mapping P : A → A such that

‖ f (x)−P(x)‖ � 2θ
2r −2

‖x‖r (4.2)

for all x ∈ A.
If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) and

‖ f ◦ f (xy)− f (x) f (y)‖ � θ (‖x‖r +‖y‖r), (4.3)

‖ f (x∗)− f (x)∗‖ � θ‖x‖r (4.4)

for all x,y ∈ A, then the mapping f is a partial multiplier.

Proof. Let μ = 1 in (4.1). By Theorem 2.2, there is a unique additive mapping
P : A → A satisfying (4.2) defined by

P(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ A .
Letting y = z = 0 in (4.1), we get

‖ f (μx)− μ f (x)‖ � θ‖x‖r

for all x ∈ A and all μ ∈ T1 . So

‖P(μx)− μP(x)‖= lim
n→∞

2n
∥∥∥ f

(
μ

x
2n

)
− f

(
μ

x
2n

)∥∥∥ � lim
n→∞

2n

2rn θ‖x‖r = 0

for all x ∈ A and all μ ∈ T1 . Hence P(μx) = μP(x) for all x ∈ A and all μ ∈ T1 .
By the same reasoning as in the proof of [13, Theorem 2.1], the mapping P : A → A is
C-linear.
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If f (2x) = 2 f (x) for all x ∈ A , then we can easily show that P(x) = f (x) for all
x ∈ A . It follows from (4.3) that

‖ f ◦ f (xy)− f (x) f (y)‖ = ‖P◦P(xy)−P(x)P(y)‖
= lim

n→∞
4n

∥∥∥ f ◦ f
( xy

2n ·2n

)
− f

( x
2n

)
f
( y

2n

)∥∥∥
� lim

n→∞

4nθ
2rn (‖x‖r +‖y‖r) = 0

for all x,y ∈ A . Thus
f ◦ f (xy) = f (x) f (y)

for all x,y ∈ A .
It follows from (4.4) that

‖ f (x∗)− f (x)∗‖ = ‖P(x∗)−P(x)∗‖ = lim
n→∞

2n

∥∥∥∥ f

(
x∗

2n

)
− f

( x
2n

)∗∥∥∥∥
� lim

n→∞

2nθ
2nr (‖x‖r +‖x‖r) = 0

for all x ∈ A . Thus
f (x∗) = f (x)∗

for all x ∈ A . Hence the mapping f : A → A is a partial multiplier. �

THEOREM 4.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P : A → A such that

‖ f (x)−P(x)‖ � 2θ
2−2r ‖x‖r (4.5)

for all x ∈ A.
If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.3)

and (4.4), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.1. �
Similarly, we can obtain the following results.

THEOREM 4.3. Let r > 2 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping such that

‖ f (μ(x− y))+ f (μ(y− z))− μ f (x− z)‖ � ‖s( f (x+ y− z)− f (x)− f (y)+ f (z))‖
+θ (‖x‖r +‖y‖r +‖z‖r) (4.6)

for all μ ∈T1 and all x,y,z ∈ A. Then there exists a unique C-linear mapping P : A→
A such that

‖ f (x)−P(x)‖ � 2θ
2r −2

‖x‖r (4.7)
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for all x ∈ A.
If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.3)

and (4.4), then the mapping f is a partial multiplier.

THEOREM 4.4. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P : A → A such that

‖ f (x)−P(x)‖ � 2θ
2−2r ‖x‖r (4.8)

for all x ∈ A.
If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.3)

and (4.4), then the mapping f is a partial multiplier.

From now on, assume that A is a unital C∗ -algebra with norm ‖ · ‖ and unitary
group U(A) .

THEOREM 4.5. Let r > 2 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P : A → A satisfying (4.2).

If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A and

‖ f ◦ f (uv)− f (u) f (v)‖ � 2θ , (4.9)

‖ f (u∗)− f (u)∗‖ � θ (4.10)

for all u,v ∈U(A) , then the mapping f is a partial multiplier.

Proof. By the same reasoning as in the proof of Theorem 4.1, there is a unique
C-linear mapping P : A → A satisfying (4.2) defined by

P(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ A .
If f (2x) = 2 f (x) for all x ∈ A , then we can easily show that P(x) = f (x) for all

x ∈ A .
By the same reasoning as in the proof of Theorem 4.1, f ◦ f (uv) = f (u) f (v) and

f (u∗) = f (u)∗ for all u,v ∈U(A) .
Since f is C-linear and each x ∈ A is a finite linear combination of unitary ele-

ments (see [7]), i.e., x = ∑m
j=1 λ ju j (λ j ∈ C, u j ∈U(A)) ,

f (x∗) = f (
m

∑
j=1

λ ju
∗
j) =

m

∑
j=1

λ j f (u∗j ) =
m

∑
j=1

λ j f (u j)∗ = (
m

∑
j=1

λ j f (u j))∗ = f (
m

∑
j=1

λ ju j)∗

= f (x)∗

for all x ∈ A .
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Since f and f ◦ f are C-linear and each x,y ∈ A is a finite linear combination of
unitary elements, i.e., x = ∑m

j=1 λ ju j (λ j ∈ C, u j ∈U(A)) and y = ∑n
k=1 βkvk (βk ∈ C,

vk ∈U(A)) ,

f ◦ f (xy) = f ◦ f (
m

∑
j=1

n

∑
k=1

λ jβku jvk) =
m

∑
j=1

n

∑
k=1

λ jβk f ◦ f (u jvk) =
m

∑
j=1

n

∑
k=1

λ jβk f (u j) f (vk)

= f (
m

∑
j=1

λ ju j) f (
n

∑
k=1

βkvk) = f (x) f (y)

for all x,y ∈ A .
Therefore, the mapping f : A → A is a partial multiplier. �

THEOREM 4.6. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.1). Then there exists a unique C-linear mapping
P : A → A satisfying (4.8).

If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.9)
and (4.10), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.5. �
Similarly, we can obtain the following results.

THEOREM 4.7. Let r > 2 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P : A → A satisfying (4.7).

If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.9)
and (4.10), then the mapping f is a partial multiplier.

THEOREM 4.8. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be an odd mapping satisfying (4.6). Then there exists a unique C-linear mapping
P : A → A satisfying (4.8).

If, in addition, the mapping f : A → A satisfies f (2x) = 2 f (x) for all x ∈ A, (4.9)
and (4.10), then the mapping f is a partial multiplier.
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