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SUMMARY

Acutemyeloid leukemia (AML) is an aggressive clonal
disorder of hematopoietic stem cells (HSCs) and
primitive progenitors that blocks their myeloid differ-
entiation, generating self-renewing leukemic stem
cells (LSCs). Here, we show that the mRNA m6A
readerYTHDF2 isoverexpressed in abroadspectrum
of humanAMLand is required for disease initiation as
well as propagation in mouse and human AML.
YTHDF2 decreases the half-life of diverse m6A tran-
scripts that contribute to the overall integrity of LSC
function, including the tumor necrosis factor receptor
Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs
primescells for apoptosis. Intriguingly, YTHDF2 is not
essential for normal HSC function, with YTHDF2
deficiency actually enhancing HSC activity. Thus,
we identify YTHDF2 as a unique therapeutic target
whose inhibition selectively targets LSCs while pro-
moting HSC expansion.

INTRODUCTION

Hematopoiesis critically depends on hematopoietic stem cells

(HSCs), which possess unique self-renewal capacity and multili-

neage differentiation potential, replenishing all blood lineages

(Orkin and Zon, 2008). Acute myeloid leukemia (AML) is an

aggressive clonal disorder of hematopoietic stem and progenitor

cells (HSPCs) in which the acquisition of mutations by HSPCs re-
Cell Stem Cell 25, 137–14
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sults in a block in their myeloid differentiation and the generation

of self-renewing leukemic stem cells (LSCs) (Döhner et al., 2015).

LSCs initiate and propagate the disease, and given that they are

treatment resistant, they often fuel disease relapses. Therefore,

identification of specific therapeutic targets for LSC elimination

is an unmet clinical need.

Emerging evidence indicates an involvement of mRNA N6-

methyladenosine (m6A) modification, the most abundant inter-

nal mRNA modification (Desrosiers et al., 1974; Perry and

Kelley, 1974), in hematopoietic specification, differentiation,

and pathogenesis of AML (Barbieri et al., 2017; Li et al., 2017;

Vu et al., 2017; Weng et al., 2018; Zhang et al., 2017). The

m6A modification is deposited by the m6A methyltransferase

complex (m6A writer) composed of a METTL3 and METTL14

heterodimeric enzymatic core and their regulator, WTAP (Bokar

et al., 1997; Liu et al., 2014; Ping et al., 2014; Tuck, 1992; Wang

et al., 2014b), and reversed by m6A demethylases (FTO and

AlkBH5; Jia et al., 2011; Zheng et al., 2013) referred to as

m6A erasers. Recent studies revealed the requirement for

METTL3, METTL14, and FTO in leukemic transformation and

established the importance of m6A modification in AML (Bar-

bieri et al., 2017; Li et al., 2017; Vu et al., 2017; Weng et al.,

2018). However, while m6A modification regulates mRNA pro-

cessing, translation, and degradation (Fu et al., 2014), the

functional contributions of these m6A-dependent processes to

leukemic transformation have not been explored.

The outcome of RNA m6A modification is executed by the

YTH (YT521-B homology) domain proteins (known as readers),

including nuclear YTHDC1 (Xiao et al., 2016a; Xu et al., 2014)

and cytoplasmic YTHDF1–YTHDF3 and YTHDC2 (Shi et al.,

2017; Tanabe et al., 2016; Wang et al., 2014a, 2015). Nuclear

YTHDC1 regulates mRNA splicing and nuclear export (Xiao
8, July 3, 2019 ª 2019 The Authors. Published by Elsevier Inc. 137
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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et al., 2016a). While YTHDF1 and YTHDF3 binding to m6A

enhances mRNA translation (Shi et al., 2017; Wang et al.,

2015), YTHDF2 recognizes m6A mRNA within the GACU/A

consensus to mediate degradation of m6A transcripts (Du

et al., 2016; Wang et al., 2015). Although previous studies per-

turbing the whole m6A pathway have established its signifi-

cance in AML pathogenesis (Barbieri et al., 2017; Li et al.,

2017; Vu et al., 2017; Weng et al., 2018), the functions of spe-

cific m6A readers in leukemia remain unexplored. However,

recent studies implicated Ythdf2 in the regulation of HSC

homeostasis and hematopoietic regeneration (Li et al., 2018;

Wang et al., 2018). Here, we reveal that targeting YTHDF2 ex-

tends the half-life of m6A-modified transcripts to selectively

compromise AML initiation and propagation without derailing

normal hematopoiesis.

RESULTS

Ythdf2 Is Essential for LSC Development and AML
Initiation
We found that YTHDF2 was expressed significantly higher

across AML samples with diverse cytogenetic abnormalities

compared to non-leukemic controls (Figure 1A), and YTHDF2

protein was highly expressed in primary AML samples (Fig-

ure 1B). We next compared YTHDF2 expression in datasets

from AML cells with LSC activity and AML cells without LSC

activity validated by xenotransplantation (Ng et al., 2016) and

found that YTHDF2 expression correlated with LSC activity

(Figure 1C). Given that the majority of CD34+ and a minority

of CD34� fractions have LSC activity (Eppert et al., 2011; Sarry

et al., 2011), we also compared YTHDF2 expression between

these fractions and found that YTHDF2 was expressed at

higher levels in CD34+ fractions (Figure S1A). To investigate

the requirement for YTHDF2 in leukemogenesis, we employed

conditional genetics and a mouse AML model in which Meis1

and Hoxa9, oncogenes frequently overexpressed in human

AML (Drabkin et al., 2002; Lawrence et al., 1999), drive leuke-

mogenesis. In this model (Figure 1D), HSPCs are transduced

with retroviruses co-expressing Meis1 and Hoxa9 and serially
Figure 1. YTHDF2 Is Upregulated in Different AML Subtypes and Is Es

(A) YTHDF2 gene expression in control (CTL) and different cytogenetic subgroups

expression values. Horizontal line in the boxplots indicates median. CNG, cytolog

prognosis; CAO, cytologically abnormal not otherwise specified.

(B) Western blot of YTHDF2 in normal human CD34+ cells and AML samples (karyo

loading control. Quantification of YTHDF2 normalized to H3 expression is presen

(C) YTHDF2 gene expression in primitive AML cell compartments with (LSC+) an

(D) Control Ythdf2fl/fl (Ythdf2CTL) and Ythdf2fl/fl;Vav-iCre (Ythdf2CKO) fetal liver (FL)

replated. c-Kit+ preleukemic cells were transplanted into recipient mice (n = 12–

(E) A representative histogram showing GFP-YTHDF2 protein expression in Ythd

LSK cells.

(F) Percentage of GFP-positive cells in the 14.5 days post coitum (dpc) FL LSK c

(G) CFC counts at each replating (n = 3).

(H) Percentage of CD11b+Gr-1�, CD11b+Gr-1+, and c-Kit+ cells in the preleukem

(I) Percentage of CD45.2+ leukemic cells in the PB of recipient mice (n = 12–14 p

(J) Survival curve of recipients transplanted with preleukemic cells (n = 12–14).

(K) Percentage of GFP-positive cells in the CD45.2+ cell population from moribu

(L) Limiting dilution assay (LDA). Secondary recipients (n = 5–8) were transplante

(M) Ythdf2CTL and Ythdf2CKO FL c-Kit+ cells were transduced withMOZ-TIF2 or P

shown (n = 3).

Data represent mean ± SEM; *p < 0.05; **p < 0.01; ****p < 0.0001.
replated, generating preleukemic cells, which upon transplan-

tation to recipient mice generate self-renewing LSCs, causing

AML (Guitart et al., 2017; Kroon et al., 1998; Vukovic et al.,

2015). We utilized the conditional and reporter Ythdf2fl mouse

allele in which exon 2 of Ythdf2 was flanked by loxP sites

and GFP was inserted after the start codon of Ythdf2 in

exon 1, generating a fully functional GFP-YTHDF2 fusion

protein (Ivanova et al., 2017). We combined the Ythdf2fl allele

with Vav-iCre (de Boer et al., 2003) to generate Ythdf2fl/fl;

Vav-iCre (Ythdf2CKO) mice in which Ythdf2 is specifically

deleted in the hematopoietic system shortly after the emer-

gence of HSCs (Figures 1E and 1F). Ythdf2CKO and control

Ythdf2fl/fl (Ythdf2CTL) mice showed normal Mendelian distribu-

tion (Ythdf2fl/fl 3 Ythdf2fl/fl;Vav-iCre matings resulted in 65

Ythdf2CTL and 47 Ythdf2CKO mice at weaning; p = 0.28) and

had comparable survival. We transduced Ythdf2CKO and

Ythdf2CTL HSPCs with Meis1-Hoxa9 retroviruses and found

that while Ythdf2CKO cells produced significantly lower colony

numbers upon serial replating (Figure 1G), they had unaffected

expression of c-Kit, CD11b, and Gr-1 (Figure 1H). Notably,

Ythdf2-deficient preleukemic cells generated AML with sub-

stantially longer latency compared to control cells (Figures 1I

and 1J). The loss of YTHDF2 expression was confirmed in

Ythdf2CKO cells isolated from moribund recipient mice (Fig-

ure 1K). To enumerate LSCs in the leukemic recipients of

Meis1-Hoxa9-transduced Ythdf2CKO and Ythdf2CTL cells, we

performed a limiting dilution assay with donor-derived

CD45.2+ bone marrow (BM) cells isolated from primary recipi-

ents. We found that LSC frequency in recipients of Ythdf2CKO

cells was significantly decreased (Figure 1L). Therefore, Ythdf2

is required for LSC development and AML initiation.

To test whether Ythdf2 is required for leukemic transformation

driven by other oncogenes, we used PML-RARA, which causes

acute promyelocytic leukemia, and MOZ-TIF2, which is associ-

ated with AML with inv(8)(p11q13). Serial replating assays

revealed that Ythdf2CKO c-Kit+ cells transduced with either

PML-RARA or MOZ-TIF2 retroviruses failed to efficiently

generate colonies (Figure 1M). Thus, Ythdf2 is essential for

leukemic transformation driven also by other oncogenes.
sential for AML Development

of human AML bone marrow samples. Violin plots show the distribution of log2
ically normal with good prognosis; CNI, cytologically normal with intermediate

type details are shown in STARMethods) (left). a-Histone 3 (H3) was used as a

ted (right).

d without (LSC�) leukemic engraftment potential.

c-Kit+ cells were co-transduced withMeis1 and Hoxa9 retroviruses and serially

14).

f2CTL FL LSK cells and the lack of GFP-YTHDF2 expression in Ythdf2CKO FL

ell population from FLs of Ythdf2CTL and Ythdf2CKO embryos (n = 5).

ic cell compartment (n = 4–5).

er genotype).

nd recipients of Ythdf2CTL and Ythdf2CKO cells (n = 5–6).

d with indicated doses of CD45.2+ BM cells from primary recipients.

ML-RARA retroviruses and serially replated. CFC counts at each replating are
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Ythdf2 Is Critical for AML Propagation
We next asked whether acute deletion of Ythdf2 from estab-

lished LSCs using Mx1-Cre impacts LSC maintenance and leu-

kemia propagation. We generated experimental Ythdf2fl/fl;

Mx1-Cre (Ythdf2iCKO) and control Ythdf2fl/fl (Ythdf2CTL) mice,

transduced HSPCs with Meis1-Hoxa9 retroviruses, and trans-

planted them into lethally irradiated primary recipients (Fig-

ure 2A). Upon leukemia development, c-Kit+ cells (a population

enriched for LSCs; Somervaille and Cleary, 2006) were isolated,

and given the leakiness of Mx1-Cre upon transplantation (Ve-

lasco-Hernandez et al., 2016), the population was further sorted

for GFP+ cells to enrich for those expressing YTHDF2 (Fig-

ure 2B). While Ythdf2CTL c-Kit+GFP+ cells showed significant

engraftment and caused aggressive AML in secondary recipi-

ents (Figures 2C and 2D), Ythdf2iCKO c-Kit+GFP+ cells lost

YTHDF2 expression (Figure 2E) due to spontaneous Mx1-Cre

activation (even without the administration of polyinosinic-poly-

cytidylic acid [pIpC]) and failed to efficiently engraft and propa-

gate the disease (Figures 2C and 2D). Therefore, YTHDF2 is

critical for LSC maintenance.

Targeting YTHDF2 Disables Human AML Cells
To investigate the requirement for YTHDF2 in human leukemic

cells, we knocked down the expression of YTHDF2 in human

AML THP-1 cells harboring MLL-AF9 translocation using two

independent short hairpins targeting YTHDF2. YTHDF2 knock-

down (Figure 2F) inhibited their proliferative capacity (Figure 2G)

and increased their apoptosis (Figure 2H) but had no impact on

their myeloid differentiation (Figure 2I). This finding was corrob-

orated in NOMO-1 AML cells harboring MLL-AF9 translocation

(Figures S1B and S1C). THP-1 cells with YTHDF2 knockdown

had compromised capacity to engraft AML (Figure 2J) and dis-

played impaired ability to cause fatal AML (Figure 2K). Finally,

we performed knockdown experiments in independent human

primary AML samples and found that YTHDF2 depletion signifi-

cantly decreased the clonogenic potential of AML cells in col-

ony-forming cell (CFC) assays (Figures 2L and 2M). Thus,

YTHDF2 is necessary for human AML cell survival and leukemic

cell engraftment.
Figure 2. Loss of YTHDF2 from Established LSCs and Human AML Ce

(A) Ythdf2fl/fl (Ythdf2CTL) and Ythdf2fl/fl;Mx1-Cre (Ythdf2iCKO) FL c-Kit+ cells we

transplanted into primary recipients. GFP+c-Kit+CD45.2+ cells sorted from le

(n = 14–16).

(B) Percentage of GFP-expressing cells as a measure of YTHDF2 expression in

(C) Percentage of CD45.2+ leukemic cells in the PB of the secondary recipient m

(D) Survival curve of mice transplanted with Ythdf2CTL and Ythdf2iCKO leukemic c

(E) Percentage of GFP-expressing cells in PB CD45.2+ cell compartment of seco

(F) Left: relative levels of YTHDF2mRNA (normalized to HPRT1) in human AML TH

(shRNA) (CTL) and two independent shRNAs targeting YTHDF2 (KD1 and KD2); n

(H3) was used as a loading control.

(G) Proliferation assays with THP-1 cells with CTL, KD1, and KD2 shRNAs.

(H) Percentage of Annexin V+DAPI� cells.

(I) Percentage of CD11b�CD14�, CD11b+CD14�, CD11b+CD14+, and CD11b�C
(J) NSGmice were injected with THP-1 cells transduced with CTL (n = 4) or KD (n =

cells in the BM, liver, spleen, and PB of the recipient mice is shown.

(K) Survival curve of mice transplanted with 10,000 (n = 6) and 1,000 (n = 3) THP

(L) Three independent human primary AML samples (AML1–AML3; detailed in ST

shows AML-CFC frequencies after 7 days of culture (n = 3 technical replicates p

(M) Representative colony images from (L).

Data represent mean ± SEM in (A)–(K) or mean ± SD in (L)–(M); *p < 0.05; **p < 0
Ythdf2 Deletion Does Not Derail Normal Hematopoiesis
We next investigated whether Ythdf2 deletion has any detri-

mental effects onHSC functionsandmultilineagehematopoiesis.

To determine the YTHDF2 expression at different levels of the he-

matopoietic differentiation hierarchy, we employed Ythdf2fl/fl

mice harboring the GFP-YTHDF2 fusion protein (Ivanova et al.,

2017). All hematopoietic cells in adult BM expressed GFP-

YTHDF2 (Figures 3A and S2A). YTHDF2 was highly expressed

in Lin�Sca-1+c-Kit+ (LSK) stem and/or progenitor cells, HSCs,

multipotent progenitors (MPPs), primitive hematopoietic progen-

itors (HPC-1 and HPC-2 populations), and myeloid progenitors,

and its expressionwas decreased in differentiated Lin+ cells (Fig-

ures 3A and S2A).

Peripheral blood (PB) analyses of Ythdf2CKO mice revealed

modest decreases in numbers of white blood cells (WBCs), red

blood cells (RBCs), B cells, andCD8+ T cells andelevated platelet

levels (Figure 3B). Apart from a decrease in CD8+ T cells,

Ythdf2CKOmice had essentially normal numbers of differentiated

cells in their spleens (Figure S2B). We found unaffected numbers

of granulocyte/macrophage progenitors (GMPs), increased

numbers of pre-megakaryocyte/erythroid progenitors (pre-

MegEs) and megakaryocyte progenitors (MkPs) and an imbal-

ance between pre-colony forming unit-erythroid (pre-CFU-E)

and colony forming unit-erythroid (CFU-E) (Figure S2C). CFC

assays showed normal differentiation potential of Ythdf2CKO

BMcells (Figure 3C). Thus, YTHDF2 is not critical for steady-state

hematopoiesis.

Ythdf2 Loss Results in HSC Expansion
We next investigated the impact of Ythdf2 deletion on stem and

progenitor cells. Adult Ythdf2CKO mice displayed expansion

of LSK cells, HSCs, and HPC-1 and HPC-2 progenitor cells

compared to Ythdf2CTL mice (Figures 3D and 3E). We also indu-

cibly ablated Ythdf2 using Mx1-Cre, which upon pIpC injection

acutely deletes Ythdf2 in Ythdf2iCKO adult mice (Figure 3F).

Acute Ythdf2 deletion (Figure 3G) had no impact on mouse sur-

vival (data not shown) or multilineage hematopoiesis (Figures

3H and 3I; Table S1) and resulted in increased numbers of

LSK cells, but not myeloid progenitor cells (Figure 3J). Thus,
lls Compromises Their Ability to Propagate AML

re co-transduced with Meis1 and Hoxa9 retroviruses, serially replated, and

ukemic primary recipients were re-transplanted into secondary recipients

Ythdf2CTL and Ythdf2iCKO leukemic cells prior to secondary transplantation.

ice 3 weeks after transplantation (n = 14–16 recipients).

ells (n = 14–16 mice).

ndary recipient mice.

P-1 cells transduced with lentiviruses expressing scrambled short hairpin RNA

= 3. Right: western blot of YTHDF2 in THP-1 cells shown on the left. a-Histone 3

D14+ cells in cultures shown in (G) and (H).

4) lentiviruses and analyzed 1month later. Percentage of human CD45+CD33+

-1 cells.

AR Methods) were transduced with CTL, KD1, and KD2 lentiviruses. The graph

er sample).

.01; ***p < 0.001; ****p < 0.0001.
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hematopoiesis-specific Ythdf2 ablation during development or

acute deletion in adult mice leads to an expansion of the prim-

itive cell compartment at the top of the hematopoietic hierarchy

and does not derail normal hematopoiesis.

To reveal the repopulation capacity of Ythdf2-deficient HSCs,

we competitively transplanted HSCs from Ythdf2CKO and

Ythdf2CTL mice into lethally irradiated recipients. HSCs of both

genotypes gave equal overall long-term reconstitution (Fig-

ure 3K). However, while Ythdf2CKO HSCs had enhanced myeloid

lineage reconstitution capacity, they had normal B cell and

compromised T cell reconstitution potentials (Figure 3K). Strik-

ingly,Ythdf2CKOHSCs displayed significantly increased capacity

to contribute to the BM HSC and progenitor cell compartments

and differentiated cell compartments (Figures 3L and 3M). The

analyses of donor-derived compartment of the recipients re-

vealed increased frequencies of Ythdf2CKO LSK, HPC-1, and

HPC-2 cells (Figure S2D). The myeloid bias of Ythdf2-deficient

HSCs and its connection to a shift in balance among the HSCs,

MPP, and HPC populations upon Ythdf2 deletion merit future

investigation. Therefore, targetingYthdf2promotes stemorprim-

itive progenitor cell expansion and enhances their reconstitution

and myeloid differentiation potentials.

YTHDF2 Decreases m6A RNA Stability in AML
Wenext sought to understand themechanism bywhich YTHDF2

loss impedes LSC function. YTHDF2 is known to promote tran-

script decay through deadenylation (Du et al., 2016; Wang

et al., 2014a). Indeed, the loss of YTHDF2 resulted in deregulated

gene expression with 754 upregulated and 528 downregulated

genes; p < 0.05) in Ythdf2CKO compared to Ythdf2CTL preleuke-

mic cells (Figure 4A). Gene Ontology analysis of deregulated

genes in preleukemic cells revealed generic metabolic pro-

cesses in the upregulated genes and immune response pro-

cesses in the downregulated genes (Figure S3A). To understand

which of the deregulated transcripts could be direct targets of

YTHDF2, we determined transcriptome-wide mRNA m6A in

Ythdf2CTL and Ythdf2CKO preleukemic cells. This revealed the

expected m6A consensus motif as well as distribution of m6A

within the transcriptome and enrichment around the stop codon

within transcripts in both genotypes (Figures S3B–S3D). Further-
Figure 3. Ythdf2 Deletion Results in HSC and Progenitor Cell Expansio

(A) GFP expression in the BM cell populations from 8- to 12-week-old Ythdf2fl/fl (Y

cells, LSKCD48�CD150+ HSCs, LSKCD48�CD150� multipotent progenitors (MP

and LSKCD48+CD150+ HPC-2 populations), and Lin�Sca-1�c-Kit+ (LK) myeloid

represent mean fluorescence intensity (MFI) ± SEM (n = 4).

(B) PB counts of Ythdf2CTL and Ythdf2CKO in 8- to 10-wk-old mice (n = 8–9).

(C) CFU assays performed with BM cells from 8- to 10-wk-old mice. CFU-Red, C

monocyte/macrophage; CFU-GM, CFU–granulocyte and monocyte/macrophag

macrophage, and megakaryocyte (n = 4).

(D) FACS profiles showing frequencies (± SEM) of BM LSK, HSC, MPP, HPC-1, a

(E) Total number of BM cell populations presented in (D).

(F) Ythdf2fl/fl;Mx1-Cre (Ythdf2iCKO) and control Ythdf2fl/fl (Ythdf2CTL) mice were in

(G) Graph showing the percentage of GFP-positive cells in BM of pIpC-treated Y

(H) Total BM cellularity of pIpC-treated Ythdf2iCKO and Ythdf2CTL mice.

(I) Total cell numbers of BM monocytes, granulocytes, and B cells.

(J) Total cell numbers of BM LSK and LK cell populations.

(K) HSCs were transplanted into lethally irradiated recipient mice (n = 6–9) toge

overall in the PB and in the monocyte, granulocyte, B cell, and T cell compartme

(L and M) Percentage of CD45.2+ cells in the Lin+, Lin�, LK, LSK, and HSC (L) an

Data represent mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
more, Ythdf2 deficiency did not alter any of these parameters

(Figures S3B–S3D). YTHDF2 loss is expected to result in the up-

regulation of direct target transcripts; indeed, we observed an

enrichment for m6A occupancy in the significantly upregulated

genes (p < 0.05; 754 genes) in Ythdf2CKO preleukemic cells

compared to the corresponding unchanged or downregulated

gene sets (Figure 4B). Reciprocally, we analyzed the transcrip-

tome based on RNAm6Amodification and found that transcripts

that contain m6A show increased expression in Ythdf2CKO pre-

leukemic cells (Figures 4C and 4D). To understand if these obser-

vations are extended to the AML in vivo, we isolated LSCs from

mice with AML derived from Ythdf2CTL and Ythdf2CKO preleuke-

mic cells and performed gene expression analysis (Figure S3E).

The relationship between m6A occupancy and increased tran-

script dosage was also observed in Ythdf2CKO LSCs (Figures

S3F–S3H). The upregulation of m6A-containing transcripts in

the absence of YTHDF2 may arise from an increase in their

half-life. We therefore measured mRNA half-life transcriptome-

wide in preleukemic cells using thiol(SH)-linked alkylation for

the metabolic sequencing of RNA (SLAM-seq; Herzog et al.,

2017), which revealed an overall modest increase in mRNA

half-life in Ythdf2CKO cells (Figure 4E). Interestingly, m6A-con-

taining transcripts displayed overall shorter half-lives than non-

m6A transcripts in Ythdf2CTL cells (Figure 4F). YTHDF2 loss

extended the half-life of m6A-containing transcripts (Figures 4F

and 4G). We next employed ribosome profiling (RIBO-seq;

Reid et al., 2015) to measure translational efficiency that did

not grossly alter between the respective genotypes

(Figure 4H). YTHDF2 deficiency did not alter the translational

efficiency of either m6A or non-m6A-containing transcripts (Fig-

ure 4I). These data indicate that m6A-directed YTHDF2-medi-

ated mRNA decay contributes to the regulation of the leukemic

transcriptome.

Next, we sought to determine if the m6A-modified transcripts

deregulated upon Ythdf2 deletion in mouse AML are relevant to

human AML. We found that transcripts significantly upregulated

in the Ythdf2CKO preleukemic cells are preferentially methylated

in human AML cell lines (Figure 4J). To understand the molecular

pathways underpinned by upregulated transcripts methylated

both in mouse and human, we performed ConcensusPathDB
n and Enhanced HSC Reconstitution Potential

thdf2CTL) mice. YTHDF2 is uniformly expressed in BM Lin�Sca-1+c-Kit+ (LSK)
Ps), primitive hematopoietic progenitor cells (i.e., LSKCD48+CD150� HPC-1

progenitors, and its expression is decreased in differentiated Lin+ cells. Data

FU-erythroid and/or megakaryocyte; CFU-G, CFU-granulocyte; CFU-M, CFU-

e; CFU-Mix, at least three of the following: granulocyte, erythroid, monocyte/

nd HPC-2 cell populations from Ythdf2CTL and Ythdf2CKO mice (n = 6–7 mice).

jected with pIpC and analyzed 3 months after the last injection.

thdf2iCKO and Ythdf2CTL mice (n = 10–12).

ther with competitor BM cells. Graph shows the percentage of CD45.2+ cells

nts of the PB of primary recipients.

d differentiated (M) cell compartments in the BM of recipient mice.
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(CPDB) network analysis and found enrichment for RNA process-

ing,mitochondrial function, ubiquitination aswell as tumor necro-

sis factor (TNF) signaling (Figures 4K and S3I). To reveal why the

loss of YTHDF2 is correlatedwith aweak leukemogenic potential,

we interrogated gene sets from human AML samples associated

with different leukemogenic potential in vivo (Ng et al., 2016). The

upregulated transcripts in Ythdf2CKO preleukemic cells that

contain m6A in both mouse and human AML cells were divided

into groups whose expression positively or negatively correlates

with YTHDF2 expression in 1,732 human AML samples (Fig-

ure S3I). We found that transcripts that negatively correlate with

YTHDF2 expression are highly associated with the loss of leuke-

mogenic potential (Figure 4L). In this way, when an AML sample

expresses low amounts of YTHDF2, transcripts associated with

the loss of leukemogenic potential have greater expression. In

contrast, transcripts whose expression correlates with that of

YTHDF2 are depleted from transcripts associated with weak

LSC activity (Figure S3J). Thus, YTHDF2 negatively regulates

transcripts whose expression limits LSC activity.

Ythdf2 Deletion Sensitizes AML Cells to TNF
Inspecting the genes that negatively correlate with YTHDF2

expression in human AML, contain m6A in both mouse and hu-

man AML, are upregulated in Ythdf2CKO LSCs, and are associ-

ated with weak LSC function, we found TNF receptor 2

(TNFR2) encoded by Tnfrsf1b gene (Figure 4L). We focused on
Figure 4. YTHDF2 Targets m6A-Methylated Transcripts for Degradatio

(A) Transcript expression scatterplot from Ythdf2CTL and Ythdf2CKO preleukemic

lighted in red (p < 0.05).

(B)m6A peak false discovery rate (FDR) (�log10Q) in Ythdf2CTL preleukemic cells fo

Ythdf2CKO preleukemic cells is shown (down, genes significantly downregulat

Ythdf2CKO; up, genes significantly upregulated in Ythdf2CKO [p < 0.05]). The upp

(C) Violin plots showing expression change between Ythdf2CTL and Ythdf2CKO pr

and highly methylated (m6A high, �log10Q > 25) transcripts. The upper and lowe

(D) Cumulative distributions of transcript expression change in Ythdf2CTL and Ythd

transcripts as in (C).

(E) Mode decay curves for Ythdf2CTL (black) and Ythdf2CKO (red) preleukemic cell t

decay curves range for each genotype. Transcript half-life modes for each genotyp

(F) Cumulative distributions of transcript half-life in Ythdf2CTL (left) and Ythdf2CKO

methylated transcripts as in (C). The half-life change significance between methy

(G) Cumulative distributions of relative stability change between Ythdf2CTL and Yth

methylated transcripts as in (C). The relative stability change significances betwe

(H) Volcano plot of translational efficiency change between Ythdf2CTL and Ythd

transcripts defined as in (C) are shown in black, green, and red, respectively.

(I) Cumulative distributions of translational efficiency of not-methylated (right), m

shown for Ythdf2CTL (black) and Ythdf2CKO (red) preleukemic cells.

(J) Violin plots of m6A peak FDR (�log10Q) in MA9.3ITD and NOMO-1 cells for t

Ythdf2CKO preleukemic cells as in (B) are shown. The upper and lower quartiles

(K) CPDB analysis of genes significantly upregulated in Ythdf2CKO preleukemic ce

also methylated in human AML cell lines.

(L) GSEA using LSC signature gene set for genes defined in (K) and that negativ

(M) m6A immunoprecipitation (IP) read coverage (blue) from Ythdf2CTL preleukem

NOMO-1, and MA9.3ITD cells along the TNFRSF1B genomic locus (bottom) are

(N) Tnfrsf1b enrichment in YTHDF2 immunoprecipitates from Ythdf2CTL preleukem

preleukemic cells (n = 3).

(O) Decay curves for Trnfrs1b in Ythdf2CTL (top) and Ythdf2CKO (bottom) preleukem

time point indicate the conversion rate mean and SD, respectively. The conversion

is also shown.

(P) FACS plots showing the expression of TNFR2 on the cell surface of Ythdf2CTL

TNFR2 expression (n = 4).

(Q) Percentage of Annexin V+DAPI� preleukemic cells treated with TNF-a at 0-h

Data in (N), (P), and (Q) represent mean ± SEM. In (B), (C), (J), (N), (P), and (Q) *p
TNFR2, as TNF signaling was also identified as a node in the

CPDB network analysis (Figure 4K) and TNFR2, together with

TNFR1, restricts the accumulation of leukemic cells (Höckendorf

et al., 2016). TNFRSF1B expression is significantly decreased in

AML samples compared to non-leukemic controls (Figure S3K),

and its expression negatively correlates with LSC activity (Fig-

ure S3L). Notably, TNFRSF1B is highly methylated in mouse

preleukemic cells and human AML cells (Figure 4M). RNA immu-

noprecipitation (RIP)-qPCR revealed co-precipitation of the

Tnfrsf1b transcript with YTHDF2 (Figure 4N). Concurrent with

the increased half-life of Tnfrsf1b transcript (Figure 4O), the sur-

face expression of TNFR2 is upregulated on Ythdf2CKO preleuke-

mic cells (Figure 4P). We therefore tested if TNF stimulation had

differential impact on Ythdf2CTL and Ythdf2CKO preleukemic cells.

YTHDF2 loss rendered cells more sensitive to TNF-induced

apoptosis (Figure 4Q). This highlights at least one molecular

mechanism by which YTHDF2 loss negatively impacts AML.

DISCUSSION

Through the analysis of mRNA m6A methyltransferases and de-

methylase, a key role for mRNA m6A has been shown in AML

pathogenesis (Barbieri et al., 2017; Li et al., 2017; Vu et al.,

2017; Weng et al., 2018). The modification of mRNA with m6A

can have multiple outcomes on the respective transcript (Zhao

et al., 2017), but herewe demonstrate that the YTHDF2-mediated
n

cells (n = 5). Significantly upregulated or downregulated transcripts are high-

r transcripts grouped according to expression changes between Ythdf2CTL and

ed in Ythdf2CKO [p < 0.05]; unchanged, genes not significantly changing in

er and lower quartiles and the median are shown for each group.

eleukemic cells for not-methylated (no m6A), methylated (m6A, �log10Q % 25),

r quartiles and the median are indicated for each group.

f2CKO preleukemic cells for not-methylated, methylated, and highly methylated

ranscriptomes are shown. The shaded areas indicate the first and third quantile

e are indicated with horizontal dotted lines and are also shown at the panel top.

(right) preleukemic cells are shown for not methylated, methylated and highly

lated and not-methylated transcripts is indicated.

df2CKO preleukemic cells are shown for not-methylated, methylated, and highly

en the methylated and not methylated transcripts are indicated.

f2CKO preleukemic cells. Not-methylated, methylated, and highly methylated

ethylated (middle), and highly methylated transcripts (left) defined as in (C) are

ranscripts grouped according to expression changes between Ythdf2CTL and

and the median are indicated for each group.

lls (p < 0.05) with highm6A levels (�log10Q > 25) in mouse preleukemic cells and

ely correlate with YTHDF2 expression in human AML samples.

ic cells along the Trnfrs1b genomic locus (top) and m6A IP read coverage from

shown. Input coverage is shown in green.

ic cells is shown. Tnfrsf1b background levels were determined using Ythdf2CKO

ic cells transcriptomes are shown. The center value and the error bars at each

rates for each biological replicate are indicated with dots. The Trnfrs1b half-life

and Ythdf2CKO preleukemic cells. The inner graph displays the quantification of

and 6-h time points (n = 3).

< 0.05; **p < 0.01.
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component of the pathway is also critical for cancer stem cells in

AML.We find that inhibition of YTHDF2 specifically compromises

LSC development and propagation. Given the more severe

impact of Ythdf2 deletion or knockdown on established AML

compared to disease development, AML propagation may be

even more dependent on YTHDF2 than disease initiation.

Furthermore, consistent with recent findings in mouse and

human HSCs (Li et al., 2018; Wang et al., 2018), we demonstrate

that targeting Ythdf2 expands HSCs and enhances their myeloid

reconstitution. These are unique properties of YTHDF2, which,

coupled with the fact that the loss of YTHDF2 is permissive in

adult mice, underscores the therapeutic potential of YTHDF2

inhibition as a strategy for AML treatment. Such an intervention

would have the dual benefits of eradicatingmalignant LSCs while

bestowing a competitive advantage to normal HSCs. Given that

isolation of HSCs in sufficient quantities is a limiting factor for

the usage of HSC transplantation for a variety of diseases, inhibi-

tion of YTHDF2 could be employed to expand HSCs in vitro or

in vivo to circumvent this challenge. In summary, we revealed

the m6A reader YTHDF2 as a critical mediator of LSCs whose

inhibition selectively compromises AML implying its future appli-

cations in treatment of this hematological malignancy.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD4 (Biotin conjugated, clone H129.19) BD Biosciences Cat#553649; RRID: AB_394969

Anti-Mouse CD5 (Biotin conjugated, clone 53-7.3) BD Biosciences Cat#553019; RRID: AB_394557

Anti-Mouse CD8a (Biotin conjugated, clone 53-6.7) BD Biosciences Cat#553029; RRID: AB_394567

Anti-Mouse CD11b (Biotin conjugated, clone M1/70) BD Biosciences Cat#553309; RRID: AB_394773

Anti-Mouse CD45R/B220 (Biotin conjugated, clone RA3-6B2) BD Biosciences Cat#553086; RRID: AB_394616

Anti-Mouse Ter119 (Biotin conjugated, clone TER-119) BD Biosciences Cat#553672; RRID: AB_394985

Anti-Mouse Gr-1/Ly-6G/C (Biotin conjugated, clone RB6-8C5) BD Biosciences Cat#553125; RRID: AB_394641

Anti-Mouse c-Kit/CD117 (APC-Cy7 conjugated, clone 2B8) Biolegend Cat#105826; RRID: AB_1626278

Anti-Mouse c-Kit/CD117 (APC conjugated, clone 2B8) Biolegend Cat#105812; RRID: AB_313221

Anti-Mouse Sca-1 (PB conjugated, clone E13-161.7) Biolegend Cat#122520; RRID: AB_2143237

Anti-Mouse Sca-1 (APC-Cy7 conjugated, clone D7) Biolegend Cat#108125; RRID: AB_10639725

Anti-Mouse CD48 (PE conjugated, clone HM48-1) Biolegend Cat#103406; RRID: AB_313021

Anti-Mouse CD150 (PE-Cy7 conjugated, clone 12F12.2) Biolegend Cat#115914; RRID: AB_439797

Anti-Mouse CD45R/B220 (PerCP conjugated, clone RA3-6B2) Biolegend Cat#103236; RRID: AB_893354

Anti-Mouse CD19 (APC-Cy7 conjugated, clone 6D5) Biolegend Cat#115530; RRID: AB_830707

Anti-Mouse CD11b (PB conjugated, clone M1/70) Biolegend Cat#101224; RRID: AB_755986

Anti-Mouse CD11b (PE conjugated, clone M1/70) Biolegend Cat#101208; RRID: AB_312791

Anti-Mouse CD11b (APC conjugated, clone M1/70) Biolegend Cat101211; RRID: AB_312794

Anti-Mouse Gr-1/Ly-6G/C (PE-Cy7 conjugated, clone RB6-8C5) Biolegend Cat#108416; RRID: AB_313381

Anti-Mouse CD8a (APC conjugated, clone 53-6.7) Biolegend Cat#100712; RRID: AB_312751

Anti-Mouse CD8a (PE conjugated, clone 53-6.7) Biolegend Cat#100708; RRID: AB_312747

Anti-Mouse CD4 (PE conjugated, clone H129.19) Biolegend Cat#130310; RRID: AB_2075573

Anti-Mouse CD45.1 (BV711 conjugated, clone A20) Biolegend Cat#110739; RRID: AB_2562605

Anti-Mouse CD45.2 (PB conjugated, clone 104) Biolegend Cat#109820; RRID: AB_492872

Anti-Mouse Ter119 (APC conjugated, clone TER-119) eBiosciences Cat#17-5921; RRID: AB_469473

Anti-Mouse CD120b/TNFRII (PE conjugated, clone TR75-89) Biolegend Cat#113405; RRID: AB_2206942

Anti-human CD45 (PE conjugated, clone 2D1) Biolegend Cat#368509; RRID: AB_2566369

Anti-human CD33 (APC conjugated, clone WM53) Biolegend Cat#303407; RRID: AB_314351

Anti-human CD11b (APC conjugated, clone ICRF44) Biolegend 301309; RRID: AB_314161

Anti-human CD14 (PE conjugated, clone 63D3) Biolegend 367103; RRID: AB_2565887

Annexin-V (PE conjugated) BD Biosciences 556421

TO-PRO-3 Life Technologies Cat#T3605

DAPI Life Technologies Cat#D1306; RRID: AB_2629482

Streptavidin (PerCP conjugated) Biolegend Cat#405213

Fc Block (clone 2.4G2) BD Biosciences Cat#553142; RRID: AB_3946587

Western blotting a-YTHDF2 Proteintech Cat#24744-1-AP; RRID: AB_2687435

Western blotting a-Histone 3 (H3) abcam Cat#ab1791; RRID: AB_302613

Bacterial and Virus Strains

MSCV-Meis1a-puro Gift from Tim Somerville Sommerville et al., 2015

MSCV-Hoxa9-neo Gift from Tim Somerville Sommerville et al., 2015

MSCV-PML-RARA Gift from Eric So Esposito et al., 2015

MSCV-MOZ-TIF2 Gift from Brian Huntly Huntly et al., 2004

pLKO.1-puro Empty Vector Control Plasmid DNA Sigma-Aldrich Cat#SHC001

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Primary human AML samples Manchester Cancer Research

Centre Tissue Biobank

N/A

Chemicals, Peptides, and Recombinant Proteins

Polyinosinic-polycytidylic acid (pIpC) GE Healthcare Cat#C27-4732-01

TRIzol Thermo Fisher Scientific Cat#15596026

Micrococcal nuclease (MNase) Roche Applied Science Cat#10107921001

PNK New England Biolabs Cat#M0201S

TNF-a PeproTech Cat#315-01A-5

IL-6 Biolegend Cat#575706

G-CSF Biolegend Cat# 578602

TPO Biolegend Cat#593306

IL-3 Biolegend Cat#575506

SCF Biolegend Cat#579708

GM-SCF Biolegend Cat#576306

SuperSignal West Dura Extended Duration Substrate Thermo Fisher Scientific Cat#34075

Critical Commercial Assays

Ambion WT Expression kit Ambion Cat#4491974

Affymetrix, WT Terminal and Control Kits Affymetrix Cat#901524

Lexogen Catabolic kit Lexogen Cat#062.24

Lexogen QuantSeq 30 mRNA-Seq Library Prep Kit Lexogen Cat#015.24

NEBNext� Multiplex Small RNA Library Prep Set New England Biolabs Cat#E7580S

Epicenter Ribo-zero kit Epicenter Cat#MRZH116

SENSE Total RNA-Seq Library Prep Kit Lexogen Cat#009.08

15% Novex TBE-Urea Gel Thermo Fisher Scientific Cat#EC6885BOX

Bolt 4-12% Bis-Tris Plus Gel Thermo Fisher Scientific Cat#NW04120BOX

Deposited Data

Affymetrix This paper E-MTAB-6783; E-MTAB-7782

m6A meRIP-Seq datasets This paper E-MTAB-6791; E-MTAB-7783

RIBO-seq This paper E-MTAB-7785

SLAM-seq This paper E-MTAB-7784

Experimental Models: Cell Lines

THP-1 ATCC Cat#TIB-202

NOMO-1 DSMZ Cat#ACC 542

Experimental Models: Organisms/Strains

Ythdf2fl/fl mice Ivanova et al., 2017 N/A

Vav-iCre mice The Jackson Laboratory Stock No: 008610

Mx1-Cre mice The Jackson Laboratory Stock No: 003556

NOD scid gamma The Jackson Laboratory Stock No: 005557

Oligonucleotides

HPRT1 Taqman Gene Expression Assays ThermoFisher Scientific Cat#Hs02800695_m1

YTHDF2 Taqman Gene Expression Assays ThermoFisher Scientific Cat#Hs00212357_m1

shRNA KD1, 50-TACTGATTAAGTCAGGATTAA-30 Sigma-Aldrich Cat#TRCN0000254410

shRNA KD2, 50- CGGTCCATTAATAACTATAAC �30 Sigma-Aldrich Cat#TRCN0000254336

shRNA CTL, 50-TTCTCCGAACGTGTCACGTT-30 Custom cloned pLKO.1-puro N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Bioconductor Limma Package Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

Bioconductor topGO package Bioconductor https://bioconductor.org/packages/

release/bioc/html/topGO.html

Bioconductor Simpleaffy package Wilson and Miller, 2005 https://bioconductor.org/packages/

release/bioc/html/simpleaffy.html

Bioconductor arrayQualityMetrics package Kauffmann et al., 2009 http://bioconductor.org/packages/

release/bioc/html/arrayQualityMetrics.

html

deepTools package Ramı́rez et al., 2014 https://deeptools.readthedocs.io/

en/develop/

ConsensusPathDB (CPDB) software. Kamburov et al., 2013 http://cpdb.molgen.mpg.de/

Bioconductor GVIZ package Hahne and Ivanek, 2016 https://bioconductor.org/packages/

release/bioc/html/Gviz.html

stats R package R project http://www.R-project.org/

GraphPad Prism 6 software GraphPad Software, Inc. N/A

HISAT2 Kim et al., 2015 https://ccb.jhu.edu/software/hisat2/

index.shtml

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

HOMER http://homer.ucsd.edu/homer/motif/

BEDtools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/

latest/

SlamDunk https://github.com/t-neumann/slamdunk

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

Xtail Xiao et al., 2016b https://github.com/xryanglab/xtail

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

RMAexpress software http://rmaexpress.bmbolstad.com/

Other

MethoCultTM M3434 STEMCELL Technologies Cat#M3434

MethoCultTM M3231 STEMCELL Technologies Cat#M3231
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, andwill be fulfilled by the LeadContact, Kamil Kranc (kamil.kranc@

qmul.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experiments on animals were performed under UK Home Office authorisation. All mice were on the C57BL/6 genetic background.

Ythdf2fl/fl mice were described previously (Ivanova et al., 2017). Vav-iCre (de Boer et al., 2003),Mx1-Cre (K€uhn et al., 1995), and NOD

scid gammamicewere purchased from the Jackson Laboratory. All transgenic and knockoutmicewere CD45.2+. Congenic recipient

mice were CD45.1+/CD45.2+.

Human tissue & ethical approvals
Use of human tissue was in compliance with the ethical and legal framework of the United Kingdom’s Human Tissue Act, 2004.

Primary human AML samples were fromManchester Cancer Research Centre’s Tissue Biobank (institutedwith approval of the South

Manchester Research Ethics Committee). Their use was authorized following ethical review by the Tissue Biobank’s scientific

sub-committee, and with the informed consent of the donor. Normal CD34+ HSPCs surplus to requirements were from patients

undergoing autologous transplantation for lymphoma or myeloma. Their use was authorized by the Salford and Trafford Research

Ethics Committee and, for samples collected since 2006, following the written informed consent of donors.
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METHOD DETAILS

Flow cytometry
All BM and FL cells were prepared and analyzed as described previously (Guitart et al., 2017; Guitart et al., 2013; Kranc et al., 2009;

Mortensen et al., 2011; Vukovic et al., 2016). BM cells were isolated by crushing tibias and femurs using a pestle and mortar. FL cells

were prepared by mashing the tissue and passing through a 70mm strainer. Single cell suspensions from BM, FL or PB were

incubated with Fc block and then stained with antibodies. For HSC and progenitor cell analyses, following incubation with Fc block,

unfractionated BMcells were stainedwith lineagemarkers containing biotin-conjugated anti-CD4, anti-CD5, anti-CD8a, anti-CD11b,

anti-B220, anti-Gr-1 and anti-Ter119 antibodies together with APC-Cy7-conjugated anti-c-Kit, Pacific Blue-conjugated anti-Sca-1,

PE-conjugated anti-CD48 and PE-Cy7-conjugated anti-CD150 antibodies. Biotin-conjugated antibodies were then stained with

PerCP-conjugated streptavidin. For analyses of differentiated cells, following incubation with Fc block, spleen or BM cell suspen-

sions were stained with PerCP-conjugated anti-B220 and APC-Cy7-conjugated anti-CD19 antibodies for B cells; Pacific Blue-con-

jugated anti-CD11b and PE-Cy7-conjugated anti-Gr-1 for myeloid cells; APC-conjugated anti-CD8 antibodies and PE-conjugated

anti-CD4 antibodies for T cells.

To distinguish CD45.2+-donor derived cells in PB or BM of transplanted mice, BV711-conjugated anti-CD45.1 and Pacific Blue-

conjugated anti-CD45.2 antibodies were used. For HSC and progenitor staining in transplanted mice, APC-conjugated anti-c-Kit,

and APC-Cy7-conjugated anti-Sca-1 were used; the remainder of the staining was as described above. For analyses of differentiated

cells in BM of transplanted mice, myeloid cells were stained with PE-conjugated anti-CD11b, PE-Cy7-conjugated anti-Gr-1 and

APC-conjugated anti-Ter119 for erythroid cells. Lymphoid cells were stained separately, as described above. PB of transplanted

mice was stained with BV711-conjugated anti-CD45.1, Pacific Blue-conjugated anti-CD45.2, PE-conjugated anti-CD4 and-CD8a,

PE-Cy7-conjugated anti-Gr-1, APC-conjugated anti-CD11b, and APC-Cy7-conjugated anti-CD19. TO-PRO-3 or DAPI were used

for dead cell exclusion.

Flow cytometry analyses were performed using a LSRFortessa (BD). Cell sorting was performed on a FACSAria Fusion (BD).

Colony forming cells (CFC) assays
CFC assays were carried out using MethoCultTM M3434 (STEMCELL Technologies) methylcellulose medium. Two technical

replicates were used per each biological replicate in each experiment. Colonies were tallied at day 10. Human primary AML samples

were enumerated after 7 days of culture in semisolid medium in the presence of recombinant IL-6, G-CSF and TPO (20ng/ml) using

puromycin as the selectable marker.

Leukemic transformation
c-Kit+ cells were prepared from FLs of 14.5 dpc embryos using c-Kit (CD117) enrichment with MACS columns (Miltenyi Biotec).

200,000 c-Kit+ cells were co-transduced with MSCV-Meis1a-puro and MSCV-Hoxa9-neo retroviruses. Transduced cells were sub-

jected to three rounds of CFC assays in MethoCultTMM3231 (STEMCELL Technologies) supplemented with 20ng/ml SCF, 10ng/ml

IL-3, 10ng/ml IL-6 and 10ng/ml GM-SCF. Colonies were counted 5 days after plating, and 2,000 cells were re-plated.

Syngeneic transplantation assays
CD45.1+/CD45.2+ recipient micewere lethally irradiated using a split dose of 11 Gy (two doses of 5.5 Gy administered at least 4 hours

apart) at an average rate of 0.58 Gy/min using a Cesium 137 GammaCell 40 irradiator.

For primary transplantations 200 LSKCD48-CD150+ HSCs (per recipient) sorted from BM of the donor mice were mixed with

200,000 support CD45.1+ BM cells and transferred into lethally irradiated CD45.1+/CD45.2+ recipients. For secondary transplanta-

tions 2,000-3,000 CD45.2+ LSK cells sorted from BM of primary recipients were mixed with 200,000 support CD45.1+ wild-type BM

cells and re-transplanted. All recipient mice were culled and analyzed 16-20 weeks post-transplantation.

For transplantations of leukemic cells, 50,000-100,000Meis1/Hoxa9-transduced c-Kit+ cells were transplanted into lethally irradi-

ated CD45.1+/CD45.2+ recipient mice (together with 200,000 unfractionated support CD45.1+ wild-type BM cells). For secondary

transplantation, 10,000 CD45.2+c-Kit+ cells sorted from BMof primary recipients were transplanted into lethally irradiated secondary

CD45.1+/CD45.2+ recipient mice (together with 200,000 unfractionated support CD45.1+ wild-type BM cells).

Xenotransplantation experiments
THP-1 cells transduced with CTL or KD lentiviruses were tail vein injected into non-irradiated 12 week-old female non-obese diabetic

(NOD)/LtSz-severe combined immune-deficiency (SCID) IL-2Rgcnull (NSG) mice (1x106 cells per 200 mL per mouse). Mice were killed

one month after transplantation. For survival curve analyses, 10,000 or 1,000 cells per NSG mouse were injected. To assess human

AML burden, cells were stained with anti-human PE-conjugated anti-CD45 and APC-conjugated anti-CD33.

pIpC administration
Mice were injected intraperitoneally every other day with 300 mg pIpC (GE Healthcare) for a total of 6 doses, as previously described

(Guitart et al., 2017; Guitart et al., 2013; Kranc et al., 2009).
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shRNA-mediated YTHDF2 knockdown
THP-1 cells were transduced with lentiviruses expressing shRNAs (shRNA KD1, 50-TACTGATTAAGTCAGGATTAA-30

[TRCN0000254410, Sigma-Aldrich]; shRNA KD2, 50- CGGTCCATTAATAACTATAAC �30 [TRCN0000254336, Sigma-Aldrich]; and

shRNACTL, 50-TTCTCCGAACGTGTCACGTT-30; GEHealthcare). Selection of efficiently transduced cells was achieved by treatment

with puromycin (2 mg/mL final concentration).

Cell proliferation, cell death and cell differentiation analyses
Lentivirus-transduced THP-1 were seeded at 15x104/mL after puromycin selection. Viable cells were counted by trypan blue

exclusion at the indicated time points. To analyze cells undergoing apoptosis, cells were suspended in binding buffer containing

Annexin V-PE and DAPI. To assess myeloid differentiation, cells were stained with PE-conjugated anti-CD14 and APC-conjugated

anti-CD11b antibodies.

Primary human AML patient derived samples
For western blotting shown in Figure 1B, the following samples were used: 70 (karyotype 46,XY,del(7)(q22q32)[20]), 104 (karyotype

46,XX,t(6;9;11)(p2?1;p22;q23)[6]/45,idem,der(15)t(15;17)(p11.2;q11.2),-17[4] [variant of t(9;11)]0, 108 (karyotype 46,XX,t(6;11)

(q27;q23)[10]), 149 (karyotype 46,XX,t(15;17)(q22;q11.2)[7]/46,sl,-6,add(16)(q12),+mar[3]/46,XX[3]), 163 (karyotype 45,X,-Y,t(8;21)

(q22;q22)[8]/46,XY[2]), 191 (karyotype 46,XX [20]), 205 (karyotype 44,XX,add(3)(p25),-5,-7[12]), 419 (karyotype 46,XX,t(1;22)

(p21;p11.2),ins(10;11)(p12;q23q1?4)[10] nb variant of t(10;11) MLL-MLLT10 fusion), 539 (karyotype 46,XY [20]), 685 (karyotype

46,XX,t(6;9)).

For CFC assays shown in Figures 2L and 2M, the following samples were used: 160 (AML1) (karyotype 46,XX,t(9;11)

(p22;q23),der(21;22)(q10;q10),+der(21;22)[cp10]; MLL-MLLT3 rearrangement; clonal evolution with add(Xp); add(4q); add(7q); +21

at relapse), 292 (AML2) (karyotype 46,XX,t(15;17); PML-RARA rearrangement [no cyto report available]), 251 (AML3) (karyotype

46,XY,t(6;9)(p22;q34)[9]/46,XY,der(6)t(6;9),der(9)t(6;9)del(9)(q21q34)[2]).

Western blotting
Proteins extracted fromCTL, KD1 andKD2 THP-1 cells were subjected to SDS–PAGE (Bolt 4%–12%Bis-Tris PlusGel, ThermoFisher

Scientific, NW04120BOX) and then transferred onto a polyvinylidene fluoride membranes. Membranes were blocked in 10%

milk-PBST (PBS with 0.1% Tween20) and probed with anti-YTHDF2 (1:5000, ON at 4�C) and anti- Histone3 (1:5000, 1h at room

temperature). After incubation with appropriate horseradish peroxidase-coupled secondary antibody, proteins were detected with

SuperSignal West Dura Extended Duration Substrate (ThermoFisher Scientific, 34075) and acquired on the Amersham Imager 600

(GE Healthcare life Sciences).

Affymetrix
RNA extraction from Meis1/Hoxa9-transduced c-Kit+ cells was performed using TRIzol (Thermo Fisher Scientific). Total RNA was

used to synthesize Biotinylated cDNA with the Ambion WT Expression kit (Ambion, 4491974). cDNA was fragmented and labeled

with the Affymetrix,WT Terminal andControl Kits (Affymetrix, 901524) and then hybridized for 16 hours at 45�Con aGeneChipMouse

Gene 2.0 ST Array. The chip was later washed and stained with the Affymetrix Fluidics Station 450. Data were processed and

analyzed using the Bioconductor Limma Package (Ritchie et al., 2015). Samples were normalized using the rma function and

differential expression was assessed using linear modeling. Log2-fold-changes and moderated t-statistics were calculated using

the contrasts.fit function. To determine the gene ontology (GO) enrichment of differentially expressed genes, we used the topGO

R package. Fisher’s exact test was used to assess enrichment for the biological process ontology.

Analyses of YTHDF2 expression in human AML samples
To generate Figure 1A the following publicly available datasets were used: GSE10358, GSE52891, GSE61804, GSE68833,

GSE12417, GSE13159, GSE15061, GSE15434, GSE16015, GSE19577, and GSE22845 (Bachas et al., 2015; Haferlach et al.,

2009, 2010; Klein et al., 2009; Metzeler et al., 2008; Metzelder et al., 2015; Mills et al., 2009; Pigazzi et al., 2011; Taskesen et al.,

2011; Tomasson et al., 2008). Exclusion criteria included datasets with less than 20 samples, samples with undefined tissue of origin,

cell type and karyotype, in addition to RAEB samples. Only BM samples, with a total of 1732 samples were retained for further

analysis. The Simpleaffy package from Bioconductor was used to extract quality measurement of microarrays (Gentleman et al.,

2004; Wilson and Miller, 2005). RNA degradation was assessed based on 30 to 50 ratio of GAPDH and ACTNB genes. Samples

with NUSE < 1.05 and relative log expression (RLE) < 0.15 were excluded from further analysis (McCall et al., 2011). The retained

samples were assessed for their homogeneity using the Bioconductor arrayQualityMetrics package (Kauffmann et al., 2009). Low

quality RNA and outlier samples were excluded, while high quality samples retained after quality control were background corrected

and normalized using RMAexpress software (http://rmaexpress.bmbolstad.com/). Pairwise comparisons between each karyotype

and control were performed using Student’s t test.

m6A meRIP-Seq
m6AmeRIP-Seq library preparation was performed as previously described (Lin et al., 2016) from Ythdf2CTL pre-leukemic cells. Three

biological replicates for each condition were used. Reads were aligned to the mouse or human reference genome using HISAT2 (Kim
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et al., 2015) and peaks were called using MACS2 (Zhang et al., 2008). To analyze the distribution of peaks along the transcripts,

bedgraph files were converted to bigWig format and used as input for the computeMatrix function of the deepTools package

(Ramı́rez et al., 2014). Motif enrichment was done using HOMER selecting a motif length of 6 nucleotides. Background regions

were generated by shuffling peaks along the transcriptome using the shuffleBed tool from the BEDtools suite (Quinlan and Hall,

2010). Network analysis was performed using the ConsensusPathDB (CPDB) software (Kamburov et al., 2013). For gene set

enrichment analysis (GSEA), the GSE76008 dataset (Ng et al., 2016) was used to rank genes according to the engraftment potential

of pre-leukemic cells. The GVIZ bioconductor package was used for peak visualization (Hahne and Ivanek, 2016).

Correlation with YTHDF2 was measured to determine robust YTHDF2 targets after the knockout (Månsson et al., 2004). Briefly,

Pearson correlation between YTHDF2 and the identified YTHDF2 targets was calculated using the 1732 AML samples previously

described. Correlation significance was measured using parametric test with length (genes)-2 degrees of freedom (cor.test function,

stats package, R project, http://www.R-project.org/), and adjusted for multiple comparisons using Benjamini & Hochberg method

(Benjamini and Hochberg, 1995). Genes with negative coefficients and adjusted p value < 0.05 were considered strong targets of

YTHDF2.

SLAM-seq
SLAM-seq libraries were prepared using the Lexogen catabolic kit (cat. no. 062.24) and the Lexogen QuantSeq 30 mRNA-Seq Library

Prep Kit FWD for Illumina (cat. no. 015.24) in both cases following manufacturers’ instructions. S4U was used at 2.9 mM, as

determined by the cell viability titration assay. Medium with 4SU was used for pre-leukemic cells labeling for 12 hours and was later

replaced with 4SU-free medium (time 0). Cells were collected immediately after medium change and at 1, 3, and 9 hours. Libraries

were sequenced using an Illumina HiSeq platform in a 50 bp single-end mode. Biological triplicates for both Ythdf2CTL and Ythdf2cKO

pre-leukemic cells were used to generate the different libraries sets. SLAM-seq libraries were analyzed as previously described

(Herzog et al., 2017). Briefly, T to C conversion rates were obtained using the SlamDunk pipeline. Conversion rates across different

time points were normalized to time 0 for each gene and were used to fit a first order decay reaction with the R stats package nls

function.

RIBO-seq
RIBO-seq libraries were prepared as previously described (Reid et al., 2015). Briefly, pre-leukemic cells were lysed with CaCl2 4 mM,

MgCl 10 mM, K-HEPES pH 7.2 25 mM, KOAc 200 mM and NP-40 1%. The lysate was cleared from cell debris, diluted 1:1 in water,

and digested withMNase 10 mg/ml for 30minutes at 37�C. Digested RNAwas extracted with QIAzol and later treated with PNK (NEB)

for 30minutes at 37�C. To isolate ribosome-protected mRNA fragments (RPFs), the PNK-treated RNAwas resolved on a 15%Novex

TBE-Urea Gel (EC6885BOX), and RPFs 25 to 40 nucleotides long were excised and purified. Libraries were then prepared using the

NEBNext�Multiplex Small RNA Library Prep Set for Illumina following manufacturer’s instructions. For input controls, total RNAwas

extracted from the pre-leukemic cell lysates before MNase digestion using QIAzol. Samples were then depleted of ribosomal RNA

using the Epicenter Ribo-zero kit (cat. no. MRZH116), and libraries were generated using the SENSE Total RNA-Seq Library Prep Kit

(cat no. 009.08) following manufacturer’s instructions. Libraries were sequenced with the Illumina HiSeq platform in a 50 bp single-

end mode. Biological triplicates were used to generate libraries for both Ythdf2CTL and Ythdf2cKO pre-leukemic cells. For the RIBO-

seq analysis, we used Kallisto (Bray et al., 2016) to obtain read counts per gene for the RPF and mRNA libraries. Read counts were

then used to calculate the differential translational efficiency between Ythdf2CTL and Ythdf2cKO pre-leukemic cells with Xtail (Xiao

et al., 2016b). To estimate the relative translational efficiency for genes in each condition, we compared RPF and mRNA read counts

using DESeq2 (Love et al., 2014).

DATA AND SOFTWARE AVAILABILITY

Accession
Affymetrix, m6A meRIP-Seq, RIBO-seq and SLAM-seq datasets were deposited in ArrayExpress under the following accession

numbers: E-MTAB-6783, E-MTAB-7782, E-MTAB-6791, E-MTAB-7783, E-MTAB-7785 and E-MTAB-7784. Data from NOMO-1

and MA9.3ITD human cell lines were obtained from previously published work (Su et al., 2018) through the following accession

number: GSE87190.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad Prism 6 software (GraphPad Software, Inc.). P values were calculated using a

two-tailed Mann–Whitney U test unless stated otherwise. Kaplan-Meier survival curve statistics were determined using the Log-rank

(Mantel Cox) test.
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