
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019 1993

A Real-Time, 1.89-GHz Bandwidth, 175-kHz
Resolution Sparse Spectral Analysis

RISC-V SoC in 16-nm FinFET
Angie Wang , Member, IEEE, Woorham Bae , Member, IEEE, Jaeduk Han , Member, IEEE,

Stevo Bailey, Member, IEEE, Orhan Ocal, Student Member, IEEE, Paul Rigge, Student Member, IEEE,
Zhongkai Wang, Student Member, IEEE, Kannan Ramchandran, Fellow, IEEE, Elad Alon, Fellow, IEEE,

and Borivoje Nikolić , Fellow, IEEE

Abstract— A 1.89-GHz bandwidth, 175-kHz resolution spectral
analysis system-on-chip (SoC), integrating a subsampling analog-
to-digital converter (ADC) frontend with a digital reconstruc-
tion backend and implementing a 21 600-point sparse Fourier
transform based on the fast Fourier aliasing-based sparse trans-
form (FFAST) algorithm has been co-designed by using the
Constructing Hardware in a Scala Embedded Language (Chisel)
and Berkeley Analog Generator (BAG) circuit generator frame-
works in 16-nm CMOS. Three sets of 25×, 27×, and 32× sub-
sampling successive approximation register (SAR) ADCs acquire
signal with ∼5.4–6.3 effective number of bits (ENOB)/slice. The
digital backend consists of mixed-radix 864-, 800-, and 675-point
fast Fourier transforms (FFTs), a signal location estimator, and
a peeling decoder that recovers aliased signals from a sparsely
populated spectrum. A single-issue, in-order, fifth-generation
reduced instruction set (RISC-V) Rocket processor interacts
with the spectrum analyzer for post-processing and calibration.
The ADC consumes 49.8 mW with a 3.78-GHz reference clock.
At 400 MHz and 0.7-V digital supply voltage (VDD), the Rocket
core and the FFAST digital signal processing (DSP) together
consume 133.5 mW.

Index Terms— Analog-to-digital converters (ADCs), Berkeley
Analog Generator (BAG), Constructing Hardware in a Scala
Embedded Language (Chisel), fast Fourier transform (FFT),
hardware generators, fifth-generation reduced instruction set
computer (RISC-V), spectrum sensing.

I. INTRODUCTION

AS WITH radar and radio spectrometry, wideband spec-
trum sensing for the detection of unknown signals

Manuscript received November 5, 2018; revised February 20, 2019;
accepted April 9, 2019. Date of current version June 26, 2019. This paper
was approved by Guest Editor Stefan Rusu. This work was supported in part
by the Defense Advanced Research Projects Agency’s Circuit Realization
at Faster Timescales (DARPA CRAFT) Program under Grant HR0011-16-
C-0052, in part by the National Science Foundation’s Graduate Research
Fellowship Program under Grant DGE-1106400, in part by the Berkeley Wire-
less Research Center, and in part by ADEPT (Intel Science and Technology
Center for Agile Hardware Design). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies. (Corresponding
authors: Woorham Bae; Angie Wang.)

A. Wang, J. Han, S. Bailey, O. Ocal, P. Rigge, Z. Wang, K. Ramchandran,
E. Alon, and B. Nikolić are with the Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, Berkeley,
CA 94720 USA (e-mail: angie.wang@eecs.berkeley.edu).

W. Bae is with Ayar Labs, Santa Clara, CA 95054 USA (e-mail:
wrbae@berkeley.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2913099

typically requires either a high sampling rate, high-power
analog-to-digital converter (ADC), or scanning and tuning a
narrowband filter across a wide (>GHz) frequency range,
making real-time operation challenging. Because particular
bands are only monitored for a small fraction of time [1],
the scanning approach potentially misses short-duration sig-
nals. In practice, there are many applications that:

1) deal with signals that are sparse in the frequency
domain;

2) greatly benefit from data compression early in the
processing chain; and

3) do not require perfect spectrum reconstruction, tolerating
probabilistic errors on the order of a percent.

Recently, compressed sensing techniques [2], [3] have been
used to reduce the ADC sampling rate and analog power, but
the complexity and overhead of hardware reconstruction have
not been adequately addressed [4]. Compressed sensing typ-
ically requires analog mixing at gigahertz speeds [1], which,
given stringent jitter requirements, results in power numbers
comparable to those of high-speed ADCs. An on-chip, all-
digital, sparse fast Fourier transform (FFT) accelerator [5],
based on the algorithms in [6] and [7], reconstructs signals
sparse in frequency. However, it targets a sparsity of only
0.1% and does not address algorithm degradation at low
signal-to-noise ratios (SNRs), making it impractical for use
in many applications. Agarwal et al. [8] and López-Parrado
and Velasco-Medina [9] also present field-programmable gate
array (FPGA) implementations of sparse FFT algorithms.

We demonstrate an analog/digital co-designed sparse spec-
tral analysis system-on-chip (SoC) supporting real-time signal
detection for frequency spectra with sparsities up to 3.2% and
input SNRs down to 9.7 dB. The overall 1.89-GHz bandwidth
signal acquisition and analysis time is 17.5 μs. This represents
a significant improvement over the capabilities of commercial
spectrum monitors like RFeye or off-the-shelf Universal Soft-
ware Radio Peripheral (USRP) devices, which scan smaller
bandwidths over the course of tens of milliseconds [1]. The
SoC’s output data are compressed to 4.4%, accounting for the
storage of bin indices.

The premise of this chip is similar to that of MIT’s
BigBand [1]. Low-speed ADCs are used for uniform
subsampling, saving power. Generated mixed-radix FFTs are
used for spectrum reconstruction. In addition, the chip is

0018-9200 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5767-301X
https://orcid.org/0000-0002-9274-0182
https://orcid.org/0000-0002-2292-7670
https://orcid.org/0000-0003-2324-1715

1994 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

capable both of detecting occupied frequency bands and also
decoding the signals within them, assuming a sufficiently
sparse spectrum. Unlike BigBand, which uses off-the-shelf
components, the ADCs and digital reconstruction backend
are fully integrated on-chip. Whereas BigBand is capable of
sensing signals within a 900-MHz bandwidth, this chip is able
to observe signals within a 1.89-GHz bandwidth.

II. FFAST ALGORITHM OVERVIEW

A. Noiseless FFAST

The fast Fourier aliasing-based sparse transform (FFAST)
algorithm [10] relies on controlled aliasing via Chinese-
remainder-theorem-guided (CRT) subsampling to: 1) reduce
the effective input sampling rate, simplifying ADC design;
2) reduce the computational complexity of large FFTs; and
3) minimize data storage and memory bandwidth requirements
via data compression, while still supporting a high probability
of spectrum recovery for sufficiently sparse spectra. For a k-
sparse spectrum, denoting that only k frequency bins contain
non-zero data, where k � n, the computational complexity is
reduced from O(n log n) to O(k log k), corresponding to FFT
computation on O(k) subsampled time-domain data.

The CRT can be used to show that a frequency bin j ∈
{0, . . . , n − 1} is uniquely mapped to subsampled frequency
bins b1 and b2 such that j ≡ b1 mod n1 and j ≡ b2 mod n2
for n = n1 n2. n1 and n2, either the subsampling factor and
length of the resulting spectrum or vice versa in this simple
example, are coprime. Subsampling typically poses a problem:
because signals at various frequency locations may fold on
top of each other, they cannot be distinguished. Aliasing is
governed by the equation

Yni [b] =
∑

j≡b mod ni

X[j] (1)

where �Yni represents the subsampled ni -point spectrum. How-
ever, as shown in Fig. 1, when a spectrum is sufficiently
sparse, most subsampled frequency bins will contain either
noise (zeroton bins) or a signal at a single frequency (singleton
bins), and only a few bins will contain multiple aliased signals
(multiton bins).

Consider the n = 20 time-domain sequence �x shown
in Fig. 2. Its frequency-domain representation �X has sparsity
k = 5, where the non-zero signals are X[3], X[7], X[9],
X[12], and X[14] (Fig. 1). Fig. 3 illustrates a frontend
consisting of d pairwise-coprime subsampling stages that use
the CRT to guide the collection of time-domain samples. The
aliased frequency spectra of the subsampled data are calculated
by ni -point FFTs, for i ∈ {1, . . . , d}. Fig. 1 shows the FFT
outputs—after subsampling by 5 (left) and 4 (right)—of a
d = 2 frontend. Although simple, it highlights how coprime
subsampling decreases the likelihood that a specific frequency
collision in one stage (e.g., the X[3] and X[7] collision in
stage 1) occurs in the other stage. In general, the number
of signals recoverable by FFAST is of the same order of
magnitude as the sum of the sub-FFT ni s:

∑d
i=1 ni . Hence,

the number of stages d and the ni used per stage (where ni s

Fig. 1. Signal recovery from subsampled inputs, where n1 = 4 and n2 = 5
are coprime. The j = 12 signal recovered from the red singleton bin in
stage 1 is peeled off (i.e., subtracted) from the associated multiton bin in
stage 2 (blue, location determined by j ≡ b2 mod n2), such that the multiton
bin becomes a recoverable singleton bin when processing the next stage (or on
the next peeling iteration). Zeroton bins, which can be determined via simple
thresholding, are not included in the graph, because they are already known.

Fig. 2. n = 20 time-domain sequence, subsampled by 4 (ni = 5). A unit
delay τ = 1 is applied to the subsampling clock to disambiguate singletons
from multitons.

do not have to be pairwise coprime) need to be chosen to
accommodate for the targeted k. d = 3 and ni s of 864,
800, and 675 are chosen to recover up to ∼1000 non-zero
frequency bins from an n = 21 600 point spectrum. These
ni s correspond to subsampling factors of 25, 27, and 32,
respectively.

The pairwise-coprime subsampling scheme described in the
previous paragraph leads to “peeling-friendly” aliasing pat-
terns that aid in multiton recovery. Assume that singleton bins
can be distinguished from multiton bins and that the location
and value of a signal in a singleton bin can be easily identified.
As these signal properties are iteratively discovered, they can
be “peeled off” of the bipartite graph resulting from FFAST
subsampling to recover additional signals (Fig. 1) [10]. The
bipartite graph contains “variable nodes,” which are associated
with unknown, non-zero frequency bins in the n-length �X .
It also includes “check nodes” with unresolved singleton
and multiton bins that contain aliased discrete Fourier trans-
form (DFT) coefficients. If, after subsampling, a particular bin
j in �X (variable node) contributes to a subsampled singleton
or multiton bin b in �Yni (check node), the corresponding
variable node and check node are connected. Singleton bins
only have a single associated variable node, whereas multiton
bins are connected to multiple variable nodes. In a “peeling

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 1995

Fig. 3. High-level FFAST architecture supporting k-sparse spectra and
consisting of delayed frontend subsampling, O(k log k) complexity sub-
FFTs, and an O(k) peeling reconstruction backend. Subsampling ADCs are
generated using the BAG framework, and DSP blocks are written in Chisel.

step,” a variable node attached to a singleton bin is identified.
The variable node’s signal contribution is removed from all
connected check nodes, effectively severing the connections
while potentially uncovering new singletons. The number of
peeling iterations needed to resolve �X is dependent on the
input sparsity; additional iterations are needed with increas-
ing k. However, above a particular k threshold dictated by
user-selected FFAST parameters, peeling becomes stuck and
signals become irrecoverable, as shown in Fig. 6.

To differentiate between singleton and multiton bins, the fol-

lowing relationship is used: given x[a] F−→ X[j], a time shift
by τ results in:

x[a + τ] F−→ X[j]eiωτ . (2)

Ignoring phase wrapping, ω = 2π j/n, and the phase rotation
associated with τ is θ = ωτ . Without accounting for noise,
if only a single tone is present in a subsampled frequency
bin b, the magnitude in that bin should remain unchanged,
regardless of whether the sampling time of the associated
time-domain input is delayed. This does not hold true for
multiton bins, since aliased frequency components rotate by
different amounts before folding. Therefore, to resolve single-
ton bins from multiton bins, each FFAST subsampling stage
contains D delay chains. In the noiseless case, D = 2 can
be used. The delay chains of a given stage use the same
subsampling rate. However, as shown in Figs. 2 and 3, prior to
subsampling, the signal is circularly time-shifted by a different
amount—achieved by delaying the sampling clock—at the
input of each chain.

In Fig. 2, Yni ,b,0 corresponds to the DFT coefficient at
subsampled bin b ∈ {0, . . . , ni − 1} for the original input,
and Yni ,b,1 corresponds to the DFT coefficient at the same
bin b for the sample-delayed input. Therefore, an estimate of
the phase rotation of a singleton bin due to the delay can be
determined via

θest = � [Yni ,b,1Yni ,b,0]. (3)

From (3), a location estimate can be calculated as jest =
θestn/(2πτ). Since τ = 1, phase wrapping can be ignored.

B. Noise-Robust FFAST

1) Problem Setup: In practical systems, time-domain
samples are corrupted by white Gaussian noise [10].
The actual observation is then given by �y = �x + �z, although
only �x is desired. To improve the robustness of the FFAST
algorithm to noise, the subsampling stages’ delay chains
use a number of pseudo-random time shifts rather than
singular consecutive shifts. Random delay shifts are used,
so that, as in compressed sensing [11], the sensing matrix
satisfies the restricted isometry property (RIP) [12] and has
reasonable mutual incoherence [10]. This implies that the
subsampling clock is delayed by a random (but fixed, for
ease of hardware implementation) amount per delay chain.
Because of hardware limitations, in practice, redundant time
samples are collected, making the sample complexity worse
than the theoretical best case.

Assume that the time-domain input in Fig. 2 is now cor-
rupted by noise and D > 2 delay chains are used. From
the Fourier relationship described in Section II-A, the signal
contribution X[j] from frequency bin j is “steered” by the
vector

�a j = [ei2πτ0 j/n · · · ei2πτD−1 j/n]T, (4)

resulting in a set of phase-shifted signals that contribute to
measurements associated with subsampled bin b if j ≡ b
mod ni . The set of observations associated with a zeroton bin
like Yni ,b = Y5,0 (in stage 2 shown in Fig. 1) is given by
�zni ,b = [zni ,b,τ0 · · · zni ,b,τD−1]T, whose elements are mostly
uncorrelated—owing to the use of different delay chains—
and result from noise at higher frequencies folding down
due to subsampling. The set of observations associated with
the singleton bin Y5,3 is given by �Y5,3 = �a3 X[3] + �z5,3.
Finally, the set of observations associated with the multiton
bin Y5,2, containing two aliased tones, is given by �Y5,2 =
�a7 X[7] + �a12 X[12] + �z5,2.

2) FFAST Peeling Decoding: Algorithm 1 presents
hardware-adapted pseudocode for the noise-robust FFAST
algorithm, which is used to recover the non-zero X[j]s from
noise-corrupted observations. In an actual hardware implemen-
tation, each check_nodesi is implemented as an O(k) circular
buffer (CB) that keeps track of the non-zeroton bin locations b
found in stage i . Observed bins are used for peeling—one-at-
a-time—and early termination is implemented to save energy.
Fig. 4 illustrates how this is accomplished. A CB’s read pointer
is updated for each b read. When a zeroton or singleton bin b
is discovered, it is removed from the corresponding CB. If a
subsampled bin is determined to be an unresolvable multiton,
the write pointer is updated, replacing bin location b back
into the CB for a decoding attempt during the next peeling
iteration. In this example, the stage 2 CB is empty at the end
of iteration 0 so peeling can be terminated early.

The noise-robust FFAST algorithm is able to reconstruct
a sparse frequency spectrum with a probability of at least
1 − O(1/k) using O(k log3 n) time-domain samples [10].
The noise-robust algorithm has a computational complexity
of O(k log4 n).

3) Singleton Estimator: To outline the function of the
singleton estimator, first consider a set of evenly spaced

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

1996 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Algorithm 1: Noise-Robust FFAST [10], [13] with Early
Termination and Optimizations for Hardware
Input : Noise-corrupted singleton and multiton bin

observations �Yni ,b whose locations b are stored
in check_nodesi per subsampling stage i .

Input : Noise threshold Tnoise. Bins with power levels
below this only contain noise.

Output: Estimate �X of the n-point FFT compressed to
O(k).

	 Continue if signal information was recovered on the
previous peeling iteration and no CBs are empty.
while length of any check_nodesi was updated do

for each subsampling stage i ∈ {1, . . . , d} do
for each bin b in check_nodesi do

if ‖ �Yni ,b‖2 < Tnoise then
bin b is a zeroton
remove b from check_nodesi

else
	 v j is the zero-delay signal estimate at
X[j].
(isSingleton, v j , j) =

SingletonEstimator(�Yni,b, Tnoise)
if isSingleton then
	 Peel the signal off at all stages.
Assumes all stages use the same delays.
�Yni ,b ← �0
for l ∈ {1, . . . , d}, l �= i do

j ≡ q mod nl

if ‖ �Ynl ,q‖2 < Tnoise then
�Ynl ,q ← �0

else
�Ynl ,q ← �Ynl ,q − v j �a j

end
end
add X[j] = v j to the output FIFO
remove b from check_nodesi

else
	 No new information from bin b.
bin b is a multiton

end
end

end
if check_nodesi is empty then
	 Done.
break out of while loop

end
end

end
return �X , compressed

observations of a single complex sinusoid corrupted by
white Gaussian noise. When the input SNR is suffi-
ciently high (i.e., ≥ 5–7 dB) [14], the observations can be
approximated as

y(t) ≈ Aei(ωt+φ+u(t)). (5)

Fig. 4. Peeling using CBs. Read pointer = RP (brown). Write pointer = WP
(white).

The amplitude A, angular frequency ω, and phase φ are
fixed but unknown, and u(t) represents the zero-mean white
Gaussian noise sampled at time t . The phase of y(t) is
thus � y(t) = ωt + φ + u(t). When N = 2 samples with a
delay of τs between them are used, ωτs can be estimated via

� y(t + τs)− � y(t) = ωτs + u(t + τs)− u(t). (6)

Since u(t + τs) and u(t) come from different delay chains
in the hardware FFAST implementation, they are minimally
correlated. Thus, the minimum mean square error (MMSE)
estimate of the potentially phase-wrapped ωs = 〈ωτs〉2π (note:
〈x〉n denotes x mod n) can be directly obtained from θest in (3)
(where τs , which we consider the new “unit delay,” is factored
into ωs), even with a noise-corrupted input.

As described in Section II-B1, each stage uses D > 2 delay
chains. For noise robustness, D is split into C clusters. Single-
ton estimation occurs in two steps. First, the MMSE frequency
estimator generates estimates of ωs , for s ∈ {0, . . . , C − 1},
from sets of N = 2 bin observations with delays of τs between
observation pairs (D = 2C). In the presence of noise, the range
around the estimate ωs,est containing the true 〈ωτs〉2π with
high probability is given by

�s =
(
ωs,est − π

c
, ωs,est + π

c

)
(7)

for some constant c [10]. The length of the interval is denoted
as |�s | = 2π/c. When τ0 = 1, an estimate of ω can be directly
obtained within some region of uncertainty. More generally,
all ω + 2πa/τs, a ∈ Z map to the same frequency after
multiplication by τs . That is,

〈(ω + 2πa/τs)τs〉2π = 〈ωτs〉2π , a ∈ Z. (8)

Therefore, if noise across observations is uncorrelated and
relatively insignificant (i.e., c is sufficiently large), the true ω
may be isolated to τs regions of smaller interval size |�s |/τs

using the calculated ωs,est, for τs > 1. Ambiguity around
which of the smaller regions may be mapped to ω can be
resolved by looking only at regions of overlap for different τss:

∣∣∣∩C−1
s=0 �s/τs

∣∣∣ ≤ 2π

cτC−1
, (9)

where τC−1 = max τs . As more delay clusters using larger
τss are added, the estimate of ω is isolated to an ever smaller

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 1997

Fig. 5. (a) Successive refinement of ωest for τs = 2s [15]. (b) Successive
refinement of ωest using τ0 = 1, τ1 = 3, and τ2 = 7. The ω estimate is
improved over (a), despite higher noise uncertainty.

region (Fig. 5) [10], illustrating the successive refinement of
ωest . Although the final region of uncertainty is determined
by max τs , intermediate τss are required to handle noise large
enough such that �0 overlaps with > 1 regions of �C−1.

For typical software implementations, τs = 2s , which
monotonically increases with increasing s. However, to reduce
wiring congestion and ease ADC layout [Fig. 8(b)], instead of
powers of two, τ0 = 1, τ1 = 3, and τ2 = 7 are chosen for
hardware implementation. Successive approximation is able to
produce refined estimates of ω, even when non-power-of-two
τss are used. Fig. 5 illustrates how it is possible to produce
a better estimate of ω using τss that increment at a faster
rate than 2s (as in our implementation), despite higher input
uncertainty.

Finally, the 0th delay chain in each cluster delays the sub-
sampling clock by an amount ds , a number pseudo-randomly
chosen between 0 and n−1−max τs to satisfy RIP. Therefore,
the r th delay chain (r = 0, 1) in the sth cluster has a
total sample delay of ds + rτs . In our C = 3 hardware
implementation, d0 = 0, d1 = 6, and d2 = 12, and a total
of D = 6 delay chains are used per stage, with sample delays
of 0, 1, 6, 9, 12, and 19.

Hardware to perform successive refinement and obtain an
estimate of a potential signal location jest is described in
Section IV-D and illustrated in Fig. 15(a). Once jest is found
for a given stage i and bin b, a signal estimate is obtained by
rotating the time-shifted bin observations back and averaging;
that is,

v j = �a†
jest
�Yni ,b/D , (10)

where † indicates the conjugate transpose. Finally, the bin
contains a singleton if

‖ �Yni ,b − v j �a jest‖2 < Tnoise. (11)

Otherwise, it is a multiton, because the location estimate does
not explain the actual bin observations.

4) Simulated Algorithm Limits: When the FFAST archi-
tecture is fixed, the designer must provision for the
worst case sparsity. To support a more realistic sparsity
of ∼3.6% for n = 21 600, n1 = 25×33 = 864, n2 = 25×52 =
800, and n3 = 33×52 = 675 are used. A floating-point FFAST
was implemented in MATLAB to determine upper bounds
on algorithm performance. The results using noisy inputs are

Fig. 6. (a) Percentage of false negatives versus input sparsity (% of occupied
spectrum), averaged across 200 trials. (b) Average number of peeling iterations
required to decode the frequency spectrum as a function of input sparsity.
In both (a) and (b), noisy inputs with a DR of 20 dB are used.

shown in Fig. 6. The percentage of false negatives remains
at a reasonable level for input sparsities below 8.5%. Above
8.5% sparsity, the percentage of false negatives dramatically
increases due to the FFAST architecture’s inability to further
resolve multiton bins. The subsampling factor can be reduced
to improve this metric, at greater hardware cost. In addition,
as more tones are introduced, the number of frequency col-
lisions increases, requiring more peeling iterations to decode
the spectrum. However, above the ∼8.5% sparsity “cliff,” the
number of peeling iterations rapidly drops off, because the
algorithm has been written to terminate early when no addi-
tional multiton bins can be resolved.

III. SYSTEM-LEVEL GENERATOR METHODOLOGY

A. Parameterized Hardware Templates

The noise-robust FFAST algorithm described in Section II-B
is mapped onto a fixed-function hardware accelerator for
a general-purpose processor by using a generator-based
design methodology. Digital hardware generators are built
using the Constructing Hardware in a Scala Embedded Lan-
guage (Chisel) hardware construction language [16], A Chisel
Environment for DSP (ACED) library for hardware signal
processing [17], and the Flexible Intermediate Representation
for RTL (FIRRTL) compiler [18], whereas analog genera-
tors are built using the Berkeley Analog Generator (BAG)
framework [19].

Designing an accelerator for a complex algorithm involves
an iterative procedure of tuning the software-mapped algo-
rithm and its hardware realization, trading off supported oper-
ating conditions and performance (e.g., compute time and
false positive/negative rates per Fig. 24) for hardware com-
plexity. With a traditional design methodology, this involves
a cumbersome process of design-space exploration, requiring
the manual creation of a series of design instances to match
different algorithm realizations. In contrast, this endeavor
uses hardware generators, which are highly parameterized
models of building blocks, to rapidly explore the design space,
validate performance, and verify the designed instance. FFAST
is modeled in software to determine the system’s operating
conditions [e.g., input bandwidth, sparsity, dynamic range
(DR), noise, and so on, as shown in Fig. 7(a)], which are
used to tune hardware parameters at compile time to meet

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

1998 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 7. (a) Hierarchically constructed FFAST hardware generator, consisting of a software model, analog ADC and clock divider templates, Chisel-based
DSP generators, and the Rocket processor generator. (b) An analog simulation of clock divider inputs/outputs is used to generate a Chisel clock divider model.

performance goals. For FFAST, such parameters include the
ADC reference clock frequency, ADC bitwidth, sub-FFT ni s,
and the number of tapped delays required to achieve noise
robustness.

Fig. 7(a) indicates that top-level model parameters and
generic hardware parameters (e.g., pipeline depth) are prop-
agated down to templates of key hardware blocks: clock
dividers, ADCs, mixed-radix FFTs, coordinate rotation digital
computer (CORDIC) units, and so on for hardware generation.
To prevent infinite loops in the generated instance, Fig. 6(b)
sets the maximum number of peeling iterations to attempt
before the input spectrum is deemed unrecoverable. The
number of ADCs is a function of the number of tapped
delays and sub-FFT ni s, where ni s are chosen to support
the expected input sparsity (Section II-A). The number of
memory banks used for digital signal processing (DSP) and the
banks’ corresponding depths are calculated from the number
of parallel memory accesses required by the sub-FFTs [20].
The data width along a processing chain is determined by
the corresponding ADC bitwidth and FFT processing gain,
such that quantization does not significantly affect the system’s
ability to recover sparse spectra. Finally, as mentioned in
Section II-B3, particular tapped delay values are chosen for
noise resiliency and set by floorplan and routing constraints.

While many system parameters can be defined at compile
time, some “runtime” parameters can only be defined after
characterizing the fabricated silicon. For example, ADC
calibration codes are computed after implicitly measuring the
nonlinearity and gain/offset error—affected by the fabrication
process—of each ADC. Similarly, instead of attempting to
simulate routing-induced lane-to-lane skew between ADC
clocks (affected by parasitics and process variations), the
relative delays of known signals are measured and used
to tune peeling parameters. Finally, the noise threshold
used by the singleton estimator can be adapted to different
runtime operating conditions. The ability to support these

parameters is provided by mapping the DSP templates’
runtime configuration options to the Rocket processor’s [21]
status and control registers (SCRs), which are automatically
generated.

B. Propagation of Designer Intent

When developing complex mixed-signal systems, it is
important to propagate designer intent down the design
hierarchy in a way that minimizes algorithm-to-hardware
mismatches [17]. This is achieved with a unified generator
framework that supports the automatic generation of Verilog
and Synopsys Design Constraints (SDC) for timing from
system parameters. Generated products are directly used by
synthesis tools or applied in post-silicon verification. As an
example, C header files that describe SCR address mappings
are used to expedite the verification process.

To ensure the compatibility of analog and digital blocks,
Chisel modules that model the behaviors of the ADCs, clock
dividers, and static random access memory (SRAM) are
used in simulation. Parameterization and a FIRRTL compiler
pass [18] allow the simulation models to be replaced by black-
box analog/SRAM layouts during place and route. Individual
successive approximation register (SAR) ADCs are modeled
by simple sample-delayed quantizers. The quantizer is created
from an ACED floating-point-to-fixed-point converter [17]
that wraps simulation-only SystemVerilog constructs.
As shown in Fig. 13, to trigger data capture and coordinate
ADC-to-DSP data alignment, a FIFO (first-in, first-out buffer)
alignment circuit generates “valid” signals using inputs/outputs
to/from the associated analog clock divider. Fig. 7(b) shows
that the outputs of the flip-flop-based clock divider share the
reference clock’s pulsewidth. Because the FIFO alignment
circuit shown in Fig. 13 only uses the clocks’ rising edges, the
Chisel model is able to directly use the flip-flop outputs (with
twice the reference clock’s pulsewidth) while guaranteeing

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 1999

Fig. 8. (a) Example FFAST analog frontend layout when ÷7 and ÷5 subsampling factors are used, and delays 0, 1, and 4 are tapped out. (b) Floorplan of
the FFAST analog frontend, which is designed to minimize routing congestion. A layout is automatically generated using delay cell orderings provided by
the designer.

downstream functional correctness and timing compatibility.
In addition, the Chisel clock divider model accounts for the
fact that clkx,0 oscillates at the reference clock frequency
during reset. Although the analog and digital blocks are
designed independently, Chisel models enable the verification
of the entire analog and digital processing chain.

C. Unified System Validation and Verification

To verify that designer intent is properly passed down,
the FFAST generator framework supports the same set of
tests at all phases of design. Input stimuli used in the initial
system modeling can be applied to the functional verification
of the generated hardware. System- or block-level verification
is performed using a custom DSP testing interface [17]
that interprets the inputs/outputs of Verilog modules with
non-synthesizable floating point constructs. By changing
a single top-level parameter, the generator framework and
testing infrastructure can also produce and simulate Verilog
with fixed-point signals, helping to validate or tune the
choice of DSP data widths. The Chisel DSP tester generates
a stand-alone Verilog test bench that mirrors sequentially
applied data inputs and output verification steps for post-place-
and-route gate-level verification. Because top-level hardware
tests involve reading from and writing to SCRs, the tests can
be directly replicated in C programs using the generated SCR
header file and C write/read-verify helper functions. The C
programs are loaded onto the Rocket processor for pre-silicon
digital verification on an FPGA—using a block-RAM-centric
hardware instance—or chip testing.

IV. IMPLEMENTATION DETAILS OF GENERATOR-BASED

HARDWARE BLOCKS

A. Analog Generator Design Considerations

Section III highlights the ease of algorithm-to-hardware
translation, design-space exploration, and system verification
afforded by a generator-based design methodology. An addi-
tional benefit of generator design—given sufficiently granular
hardware templates—is the ability to “evolve hardware” by
quickly re-customizing various levels of hierarchy to accom-
modate new features or mitigate discovered design flaws and
non-idealities. For example, the generator approach supports

the optimization of analog floorplanning late into the design
cycle.

As described in Section II-B3 and illustrated in Fig. 10,
to improve the noise resiliency of the FFAST architecture,
ADC subsampling is performed with sampling delays of 0,
1, 6, 9, 12, and 19. These delays are obtained by tapping
outputs of various delay cells in a flip-flop-based clock
divider. Although the choice of sampling delays constrains
the divider’s floorplan to eliminate wiring congestion and
simplify routing, an optimal floorplanning strategy is not
immediately obvious. If the illustration shown in Fig. 10 is
naively used to direct floorplanning, a delay mismatch penalty
would be incurred, and a suboptimal clock divider bandwidth
would be achieved. Although wires connecting delay cells
in the forward direction have equal length, the return wire is
significantly longer. For a simpler example with delay offsets
of 0, 1, and 4, Fig. 8(a) shows how the divider’s delay cells can
be rearranged to improve circuit performance. Wire lengths
within a loop can be (roughly) equalized by folding and
interleaving high- and low-offset delay cells and shifting the
lower set of delay cells horizontally, while clock distribution
wires from the tapped outputs remain congestion-free.

A BAG analog template encapsulates complex physical
design rules (e.g., in a 16-nm FinFET process), so that
analog cells—such as ADCs and delay elements—may be
automatically placed on a grid and signal wires can be routed
to/from them [22]. The placements of the cells and lengths of
the routing wires are automatically calculated when the cells’
dimensions are known and a placement strategy is provided.
The dimensions of the ADC slices and delay elements are
determined by an application’s input resolution and bandwidth
requirements. However, because the placement order of the
clock divider’s delay cells is a tunable parameter, a naive
floorplan can be easily replaced to mitigate design issues.
The analog generator automatically produces the final layout
illustrated in Fig. 8(b).

The flip-flop-based delay cells in the FFAST analog tem-
plate are derived from those used in [22], although sev-
eral FFAST-specific changes have been made to the clock
divider architecture. Fig. 7(b) shows that, as in [22], tapped
delays are not taken directly from the flip-flop outputs.
Instead, the flip-flops control transmission gates that pass the

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

2000 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 9. Since non-ideal sampling delays are not tuned at the analog frontend
(and are compensated for directly in the FFAST backend), delay tuners used
in [22] are not needed. The generator can programmatically replace the tuners
with dummies and remove corresponding control wires to reduce routing
congestion and save area.

reference clock through when enabled. This reduces the flip-
flops’ jitter contributions at the divider outputs. The circuit
in [22] uses a double data rate (DDR) divider structure that
supports a differential reference clock running at half the
effective ADC sampling frequency. In order to accommodate
odd delay offsets, the FFAST clock divider instead uses a
single-ended, full-rate reference clock. The performance of the
time-interleaved ADC in [22] is improved with custom cir-
cuitry that finely tunes out delay mismatch across ADC lanes.
As shown in Fig. 9, the delay tuner is roughly 1.5× larger than
the nominal delay cell, and control wires add approximately
0.5 μm of routing headroom per cell. If the tuners are used
in the FFAST clock dividers, the overall routing penalty
for a ÷32 clock divider would be 16 μm. Because delay
mismatches are compensated digitally rather than corrected at
the analog frontend, as alluded to in Section III-A, delay tuners
are replaced with unconnected dummy cells—for alignment
purposes—at all but the D0 delay cell, resulting in a routing
overhead of only 0.5 μm and reduced wiring congestion.

Like the aforementioned delay cells, individual ADC slices
are reused from the generator in [22]; however, the FFAST
design has a lower input bandwidth, because 18 ADCs load
the input, compared with 8 ADCs in [22]. In general, because
of the sheer number of ADCs used by the FFAST architecture,
the variation in distances between input sources (the refer-
ence clock driver, ADC input, and bias generator) and the
clock divider/ADC blocks contributes more significantly to the
spread of the ADCs’ effective number of bits (ENOBs) and
delay mismatches. As an example, the ADCs furthest from
the bias generator have noticeably lower ENOBs than ADCs
closest to it.

B. Analog Frontend From a System Perspective

In the analog frontend illustrated in Fig. 10, a flip-flop-
based clock divider generates three different clock frequencies
from a 3.78-GHz reference for CRT-guided subsampling. Six
unique phase offsets are used per clock frequency for single-
ton/multiton disambiguation and noise resilience. The clock
frequencies have (pairwise-coprime) ÷25, ÷27, and ÷32 rela-
tionships with the reference frequency. The τ0, τ1, and τ2 delay
deltas create the three delay clusters (themselves containing
two delays) used for the successive approximation procedure
in singleton estimation. These clocks run 18 lanes of asyn-
chronous, constant common mode (VCM), switched-capacitor

SAR ADC slices generated using the BAG template [19]
(Fig. 11) described in Section IV-A. The ADCs have 9-wire
outputs, where <radix-2 is used for the 3 most significant
bits (MSBs) to provide redundancy against missing decision
levels, which can only be corrected in the analog domain
with capacitor tuning. The resultant missing output codes,
corresponding to the discontinuities in the mean input versus
raw ADC code plot in Fig. 12(a), are corrected digitally by
re-weighing the output bits [23]. To calibrate the ADCs, cali-
bration lookup tables (LUTs) are initially programmed so that
data and address values have a 1:1 correspondence. A known
sinusoidal input is fed into the FFAST analog frontend, and
sampled outputs are passed through to the DSP memory.
In the calibration mode, the sequence of ADC subsampling→
running sub-FFTs→ reconstruction is interrupted immediately
after ADC readout, so that the Rocket processor can collect
ADC outputs for analysis. Coefficients that maximize the
signal-to-noise-and-distortion-ratio (SNDR), determined via a
least-squares fit to the sinusoidal input, are then used to
generate calibration LUT parameters. Thus, during normal
operation, mismatch corrections (in addition to gain/offset
corrections between ADC slices) can be performed on-the-fly
before padded 8-bit data are stored into memory. The 9-bit raw
ADC outputs address the LUTs (totaling 10.4 kB of SRAM),
and 8-significant-bit remapped outputs with the improved
mean input versus calibrated ADC code characteristics shown
in Fig. 12(b) are captured. Note that calibration accuracy can
be improved if more memory is allocated for data averaging.

Because the divided clocks are aligned once every
21 600 cycles—the least common multiple (LCM) of the
subsampling factors—an alignment circuit (Fig. 13) generates
valid signals which control the asynchronous FIFOs at the
18 subsampling-clock-to-core-clock boundaries. The digital
core clock runs at 400 MHz regardless of the ADC clock
frequencies, necessitating data transfer across the FIFOs. The
state of the alignment circuit stabilizes sometime after the
initial ADC reference clock reset without regard for the DSP
state, so handshake bits are used to ensure that downstream
processing is able to receive properly aligned frames of ADC
data. The data are mapped to SRAM banks and addresses via
a LUT version of the index vector generator described in [20].
Accounting for delay redundancy added to enhance noise
robustness (i.e., the six delay shifts), the ADC set samples 35%
fewer time-domain points compared to a 3.78-Gs/s full-rate
ADC. There is a tradeoff between the number of delay offsets
used for noise robustness and performance degradation due to
mismatches in bandwidth from process, voltage, and temper-
ature (PVT) variations and spatial locality design limitations
spanning the ADC lanes.

C. Sub-FFTs

The subsampled ADC outputs are fed into complex
(20, 20)-bit, mixed-radix, 864-, 800-, and 675-point FFTs,
corresponding to n1, n2, and n3, respectively. Due to delay
redundancy and the bitwidth growth (to 10 integer bits and
additional fractional guard bits) needed to accommodate
FFT processing gains, 70.2 kB of memory are required.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 2001

Fig. 10. Analog frontend with shift-register-based clock dividers that generate (non-50% duty cycle) 151.2, 140, and 118.125-MHz subsampling clocks with
delay offsets of 0, 1, 6, 9, 12, and 19 from a 3.78-GHz source. Data from associated 9-wire, <radix-2, SAR ADC slices are time synchronized and stored in
memory using 8 significant bits, following capacitor mismatch, offset, and gain correction.

Fig. 11. Asynchronous SAR ADC slice. The slice design is described
in [22] and reused as the unit cell in the FFAST subsampling ADC template.

Fig. 12. (a) Fitted input (and its standard deviation) versus raw ADC code.
Missing codes are due to reduced-radix capacitor weights. Gain and offset
mismatches across different ADC slices are evident. (b) Fitted input (and its
standard deviation) versus calibrated ADC code. The post-processed output
has 8 significant bits, and missing codes are mostly eliminated. A 0.875-MHz
sinusoidal input and a 3.78-GHz reference clock are used for calibration.

The decimation-in-frequency, non-2n sub-FFTs are generated
via a Chisel DSP [16], [17] FFT generator [20]. As shown
in Fig. 14, each sub-FFT stage utilizes a conflict-free memory
access scheme supporting one iterating processing element

Fig. 13. ADC-to-core FIFO alignment circuit (aligned every 21 600 ADC
reference clock cycles). The subsampling factor for stage i is denoted x =
n/ni .

(PE) per FFT lane. Each lane’s runtime reconfigurable
butterfly unit reallocates hardware blocks to support multiple
radices (e.g., 4, 2, and 3 for the 864-point FFT). Control
logic is shared between the six lanes associated with a
subsampling stage, and memory banks are calculated via
mixed-radix counters and simple subtract/mux-based modulo
units. FFT input–output unscrambling (i.e., the index-to-
memory-bank/address mapping) is done by muxing between
LUTs whose values are associated with in-order inputs and
outputs indexed in quasi-digit-reversed order, as described
in [20]. The fixed-point representations of the complex
outputs are normalized by the sub-FFT size and reinterpreted
(so that the location of the binary point is changed, but the
bitwidth stays the same). Therefore, rather than dividing by
ni for re-normalization, the location of the binary point is
shifted to the left by 9 places (corresponding to a divide
by 512), and the output is instead multiplied by 512/ni .
Normalization is necessary for digital reconstruction.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

2002 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 14. Memory-based, decimation-in-frequency, 864-, 800-, and 675-point FFT blocks with shared control logic and runtime-reconfigurable butterflies,
derived from the generator in [20]. Abusing notation, b = kni corresponds to the current sub-FFT bin; the same bin is also represented as ku , where u
indicates the bin’s position in the CB associated with stage i .

Fig. 15. (a) Successive approximation used to improve the singleton estimator’s signal location estimate jest from the angle deltas (obtained via CORDIC [24])
of time-shifted input samples. Data are retrieved from sub-FFT ni memories for all clock delays. (b) Peeling reconstruction backend with a singleton estimator.
�Yni ,b used by the singleton estimator comes from the bin location b = kni associated with sub-FFT stage i .

D. Singleton Estimation and Peeling Reconstruction
Sub-FFT output bins that only contain noise are pre-

determined via thresholding and discarded from future analy-
sis. The locations of the remaining bins, which may either
be singleton or multiton, are stored in per-sub-FFT-stage CBs
(as ku in Fig. 14, where u represents the bin’s index in a
stage’s CB). In total, the CBs occupy 2.9 kB of SRAM.
As described in Section II, because signals at different fre-
quencies do not rotate by the same amount when delayed

(〈θ〉2π = 2π〈 jτ 〉n/n), time-shifted versions of the input are
collected to distinguish between singleton bins and multiton
bins. As shown in Fig. 15(a), a vectoring CORDIC is used
to estimate the phase difference θs = 1ωs between two
versions of the subsampled signal with a delay delta of τs .
Successively larger non-power-of-two τss are used to obtain a
better estimate of the phase rotation θ0 = ω associated with
τ0 = 1 and, thus, the signal’s potential frequency location j .
As shown in Fig. 15(a), the estimated frequency location

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 2003

Fig. 16. Note—For plots where FFT and delay are labeled (where each
ADC output is associated with an FFT and delay offset), darker shades of
the same color correspond to larger unit delay offsets in the set {0, 1, 6, 9,
12, 19} used by a single FFT stage. (a) Measured sample delay offsets across
different ADC slices and input frequencies using a 3.78-GHz ADC reference
clock. Backend delay correction is required, as dc lane-to-lane skew shifts
the delays away from ideal. (b) Gains across different ADC slices and input
frequencies (including frequencies above an ADC slice’s sampling rate) using
a 3.78-GHz ADC reference clock.

is refined with knowledge of the subsampled bin location
b = kni (= ku). The estimate, whose accuracy is affected
both by thermal noise and quantization in the ADC/DSP chain,
is snapped to the nearest feasible j , as dictated by aliasing.
Fig. 15(b) shows that, subsequently, a set of rotation-mode
CORDICs undoes the sampling-delay-based phase rotations
applied to the observation set, so that the observations can be
averaged to obtain a signal estimate. Finally, singletons are
determined by a runtime-reconfigurable decision threshold.

As illustrated in Figs. 4 and 15(b) and described in
Section II-B2, singletons discovered in stage i are iteratively
peeled off by removing their bin locations b from the i th
stage CB and subtracting their contributions from associated
bins in other sub-FFT stages. If a subsampled bin is still
unresolvable after singleton estimation, b is placed back into
the CB. This peeling process is terminated early when any
CB is empty or no new signal information is uncovered
(i.e., when the lengths of all CBs have not changed after
a peeling iteration). As singletons are found, their locations
j and signal values are output into FIFOs readable by the
processor via SCR. FIFO depths are sized to accommodate
up to 9% sparsity, requiring 13.4 kB of SRAM. The unsorted
frequency location/data output is compressed to the same order
of magnitude as the input sparsity (4.4% for an input spectrum
with 3.2% sparsity, accounting for the storage of 15-bit-wide
j indices not required for normal FFTs).

Singleton estimation and peeling decoding do not require
skew-specific layout optimization or timing calibration at the
ADC outputs, because the (dc) lane-to-lane skew can be empir-
ically determined after chip fabrication, as shown in Fig. 16(a).
Lane-to-lane skew is compensated digitally via adjustments
to the absolute delay shifts (ds + rτs) and τss stored in the
Rocket processor’s SCRs [see Fig. 15(a)]. A sine fit is used to
calculate the real sample delay offsets given limited bandwidth
mismatch between ADC slices. Note that the accuracy of an
estimated delay offset is limited by thermal noise (mitigated
by averaging) and quantization in the fixed-point processing
steps used to calculate the offset. In addition, the amount of
bandwidth mismatch is estimated by observing the gain differ-
ences between the 18 FFT outputs across the input bandwidth,

Algorithm 2: CORDIC [24]
Input : x , n bits, signed.
Input : y, n bits, signed.
Input : θ , n bits. The signed interpretation is

θs ∈ [−π, π). It is equivalently represented as
unsigned θu ∈ [0, 2π).

Input : isRotation. If not, then in vectoring mode.
Output: x , y, θ

	 CORDIC can rotate an input by a maximum of ±π/2.

if (isRotation and
π

2
< θu <

3π

2
) or (!isRotation and

x < 0) then
x ←−x
y ←−y
θs ← θs − π

end
for i ← 0 to n − 1 do

if (isRotation and θs ≥ 0) or (!isRotation and y < 0)
then

d = +1
else

d = −1
end
x ′ ← x − 2−i dy
y ← y + 2−i dx
x ← x ′
	 Angle constant properly normalized to bitwidth.
θs ← θs − round(2n arctan(2−i)/2π)d

end
return x , y, θ

as shown in Fig. 16(b). Gains do not monotonically decrease
with higher input frequency, since they are not completely
determined by the input samplers’ bandwidths, and signals
above individual subsampling frequencies are folded down.

1) Calculating x mod n: Modulo operations are used exten-
sively in the singleton estimator and peeling decoder. When
x ≤ 2n − 1, minimal hardware can be used:

x mod n = Mux(x − n < 0, x, x − n). (12)

However, if x is arbitrarily large and n is a constant, x mod n
can be calculated using Barrett reduction [25]. Barrett reduc-
tion is suitable for hardware, since a divider is not needed.
Instead, multiplication is performed with a pre-computed 1/n.
Barrett reduction is heavily used in the peeling reconstruction
backend.

2) CORDIC: CORDIC is an iterative algorithm—requiring
only additions, subtractions, and bit shifts—used by the single-
ton estimator and peeling decoder to determine the phase dif-
ference between two delayed samples (in vectoring mode) and
rotate observations for signal estimation (in rotation mode). Its
computation converges to the desired value at a rate of 1 bit
per iteration. n-bit signed angles used by CORDIC span the
full [−π, π) interval, although they can likewise be interpreted
as unsigned [0, 2π). The pseudocode for CORDIC is found
in Algorithm 2.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

2004 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 17. Rocket RISC-V processor & Xilinx Zynq FPGA testing setup.
FFAST status/control registers and data outputs are mapped to the memory
space of the Rocket processor. C programs for analyzing data and testing
the chip are uploaded to the processor through the Xilinx FPGA. Because
main memory is limited to 1 MB of SRAM, compiled C code must also
be < 1 MB.

Fig. 18. (a) ENOB comparison using 3.24-GHz and 3.78-GHz reference
clocks. ENOB degrades at higher clock frequencies. (b) ENOBs calibrated
at different input frequencies (with a 3.78-GHz reference clock) for different
ADC slices. ENOBs are higher at lower sample delay offsets due to lower
Vref noise. An ADC cell’s ENOB is correlated with the distance between the
cell and the bias generator, as shown in Fig. 8(b). In both (a) and (b), phase
imbalance is tuned during testing.

E. Rocket Processor

To interact with the FFAST accelerator, the SoC includes
a 64-bit fifth-generation reduced instruction set (RISC-V)
Rocket core [21] with 1 MB of main memory and a
128-kB L2 cache (Fig. 17). In addition to supplying calibration
and control information for adapting to the input environment
and chip non-idealities, the Rocket core also post-processes
data. It is simple to write a C program that collects and sorts
the compressed FFAST frequency information and organizes
it for human consumption (e.g., outputting signal bandwidths
and locations). The processor can also aid the spectral analysis
engine: if latency requirements are relaxed, the processor can
window the ADC data to suppress spectral leakage. Finally,
because Rocket has visibility into the sparse FFT memories,
individual blocks in the signal processing chain like the SAR
ADC slices and sub-FFTs can be repurposed for general
applications.

The Rocket core interfaces with the FFAST DSP via
memory-mapped SCRs. Interfaces heavily rely on the TileLink
on-chip interconnect fabric. Although the main memory is
on-chip for this application, the ARM frontend server on the
Xilinx Zynq FPGA is used to asynchronously communicate
with the chip (via a serial adapter) and load C tests.

V. MEASUREMENT RESULTS

The ENOB was measured for ADC slices corresponding
to different ni s and sampling delays using 3.24-GHz and

Fig. 19. (a) ENOBs with a 3.78-GHz reference clock, using calibration
parameters taken with a single 0.875-MHz input. (b) Frequency spectrum
at a sub-ADC output (0.875-MHz input). In (a) and (b), tuning the ADC’s
differential P and N phase imbalance reduces HD2.

Fig. 20. (a) ENOBs with a 3.78-GHz reference clock, using calibration
parameters taken with a 0.875-MHz input. A balun with ∼5◦ of phase
imbalance is used to measure SNDR at higher input frequencies. (b) Frequency
spectrum at a sub-ADC output (0.875-MHz input). HD2 caused by the external
balun’s phase imbalance degrades SNDR.

3.78-GHz reference clocks [Fig. 18(a)]. Initially, calibration
LUT parameters were updated to maximize SNDR at individ-
ual input frequencies [Fig. 18(b)]. In addition, the positive and
negative ADC inputs were tuned to remove phase imbalance
and maintain a 180◦ phase offset.

Fig. 18(a) indicates that there is an ENOB degradation of
approximately 0.2 bits at lower unit delays when using the
higher frequency reference clock. This ENOB degradation is
worse at higher unit delays, which are associated with ADC
slices farther away from the reference supply. In general,
as indicated in Fig. 18(b), ENOBs are better at lower delay
offsets due to the corresponding ADCs’ spatial proximity to
Vref, resulting in reduced noise.

Optimal calibration parameters are frequency-dependent,
so SNDR can only be maximized at one frequency point in
practice. To understand system performance in a real applica-
tion setting, the ADCs are calibrated at an input frequency
of 0.875 MHz. The calibration values are stored and used
to determine ENOBs across the desired input bandwidth.
Fig. 19(a) shows that the ENOB/SNDR is maximized around
a 0.875-MHz input.

As in a real system, the analog frontend is characterized
using a balun with approximately 5◦ of phase imbalance,
resulting in SNDR degradation from the second harmonic
distortion (HD2). The ENOBs achieved with a discrete balun
are shown in Fig. 20(a). Fig. 19(b) shows the frequency
spectrum at the output of one ADC when a balun is not used,
whereas Fig. 20(b) shows the spectrum with a balun. In the

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 2005

Fig. 21. Recovered spectra (blue) over time for 3- (left) to 37-tone (right,
dense) vector signal generator outputs. The tones are spread out across an
approximately 80-MHz bandwidth and have center frequencies ranging from
300 MHz to 1.2 GHz. Gray regions indicate observation “dead zones,” when
the FFAST hardware is busy analyzing the previous frame of data and unable
to observe the current ADC input. A full signal acquisition and analysis cycle
for up to 37 tones takes ∼13.3 μs.

Fig. 22. Multi-tone signal at each FFAST stage. (a) 37 tones (corresponding
to 0.35% sparsity), centered at 700 MHz, with a 1.925-MHz spacing, are
generated from a vector signal generator. The time-domain waveform is sub-
sampled 25× in the stage corresponding to an 864-point FFT. (b) Subsampled
frequency domain result at the output of the 864-point FFT. Tones have been
folded down to different bin locations due to aliasing. (c) FFAST is able to
reconstruct 100% of the spectrum in 13.3 μs (including signal capture and
analysis). The data are compressed to 0.48%, including 15-bit signal locations.

first FFT plot, the second harmonic of the input frequency
is not readily observable, but it is one of the dominant
contributors to the approximately 2.3-dB SNDR degradation
seen in the latter plot.

Fig. 21 shows that functionality across the entire ADC/DSP
chain has been verified by successfully recovering the spec-
trum of ∼80-MHz bandwidth, 3- to 37-tone inputs generated
by a vector signal generator at 300-MHz to 1.2-GHz center
frequencies. The ADC input is not observed when analysis
on a previous frame is being performed, corresponding to the
gray periods in Fig. 21. The multi-tone signal at various stages
of analog/digital processing is illustrated in Fig. 22(a)–(c).
The subplots correspond to the time-domain output of one
of the 18 ADC slices, the frequency-domain representation of
the previous result (after the FFT), and the fully reconstructed

Fig. 23. FFAST versus normal FFT for C test vectors with 33.5-dB SNR
and 0.79% sparsity. Reconstruction with 0% false negatives and 0.5% false
positives. Note that although there are no false negatives, the magnitudes of
two recovered points differ significantly from ideal.

Fig. 24. Digital reconstruction false negative and false positive rates. (a) False
negatives (worst case) remain below 5% for sparsities < 2.7%. With respect to
the number of false negatives, FFAST supports input SNRs > 9.7 dB for less
populated spectra. (b) False positives remain below 5% for sparsities < 5.0%.
With respect to the number of false positives, FFAST supports input SNRs
> 8.4 dB for less populated spectra.

sparse spectrum. Approximately 7.6 μs elapse between the end
of signal acquisition and the start of spectrum availability. With
37 tones, the output is compressed to 0.48% when compared
to the output of a full-length FFT.

The analysis of a synthesized 3.2% sparse spectrum (achiev-
ing 4.5% false negatives and 0.8% false positives) has been
benchmarked. Approximately 4700 400-MHz Rocket core
clock cycles elapse before the processor sees valid reconstruc-
tion data, corresponding to 11.75 μs of “real-time” processing.
Approximately 1500 cycles are allocated for the sub-FFTs,
and the remainder is used during peeling. The worst case
number of clock cycles required by the sub-FFTs corresponds
to the calculation of 864-point FFTs with single iterating but-
terflies (although 2 radix-2 butterflies operate simultaneously
per FFT). The peeling time (and the number of iterations
required) is a function of sparsity and increases when there
are more frequency collisions. The total reconstruction time
is 17.5 μs; signal acquisition accounts for 5.71 μs on top
of the aforementioned processing time. This determines the
minimum signal duration to guarantee SoC observability.
An example of a spectrum generated from C test vectors is
shown in Fig. 23. In this case, although the FFAST hardware
is able to recover all real signals, some noise bins are also
interpreted to be low-magnitude signal bins, resulting in false
positives. These false positives can be cleaned up with an
additional thresholding step during post-processing.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

2006 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 25. (a) Die photo with key hardware blocks highlighted. (b) Summary
of FFAST hardware capabilities, area, and power consumption.

Fig. 26. (a) Power versus frequency/supply with an FFAST workload.
A 0.7-V, 400-MHz digital operating point was chosen to reduce power
consumption while maintaining a sufficiently fast compute time. (b) Post-
place-and-route power breakdown, simulated with representative test vectors.
The Rocket core and FFAST DSP consume similar amounts of power.

The percentages of false negatives and false positives
for inputs with different sparsities and SNRs are illustrated
in Fig. 24(a) and (b), respectively. In general, the system is
more susceptible to false negatives, which remain below 5%
for sparsities < 2.7% and SNRs > 9.7 dB. Unfortunately,
false negatives tend to be the more application-critical metric.
Therefore, further tuning of noise/signal thresholds can be
performed to trade off a decrease in false negatives for an
acceptable increase in false positives (which currently remain
below 5% for sparsities < 5%).

VI. CHIP SUMMARY

The described instance has been fabricated in a 16-nm
FinFET process. Fig. 25(a) shows the chip die photo
with key blocks highlighted, and Fig. 25(b) summarizes
the FFAST hardware’s capabilities, area, and power con-
sumption. Fig. 26(a) has been used to choose a digital
operating point of 400 MHz at a 0.7-V digital supply
voltage (VDD), which allows for low power consumption
and real-time operation. As highlighted in Fig. 26(b), the
RISC-V Rocket core consumes 65.2 mW, and the FFAST
DSP consumes 68.3 mW. The set of ∼6 ENOB ADCs
(at 0.85 V) and associated clock dividers (at 0.95 V) consumes
49.8 mW/48.1 mW with a 3.78-GHz/3.24-GHz reference
clock. At 3.78 GHz, the SAR ADC cores consume a total
of 33.8 mW, while the clock dividers consume 16 mW.

TABLE I

COMPARISON WITH THE STATE OF THE ART

VII. DISCUSSION

Measurement results in Section V show that the supported
sparsity in hardware is only ∼3.2%, although a floating-point
MATLAB implementation achieves ∼8.5%. The ADCs and
fixed-point arithmetic incur a quantization noise penalty. When
noise is sufficiently high, k is effectively increased and sparsity
degrades. However, this is not the primary source of the
discrepancy.

Because of the computational complexity of the singleton
estimator, individual operations are heavily pipelined. Since
pipeline stalls were not implemented, occasionally, the value
of a bin b = kni , associated with a stage i , is requested
before it has been updated in memory. The probability that this
occurs increases as sparsity degrades, limiting the supportable
sparsity of the system. Additional tones can be supported if
pipeline stalls are properly inserted, although the addition of
the stalls will slightly increase the analysis time. Eliminating
the data hazard in the sparse FFT’s reconstruction backend
should roughly double the number of signals detectable in
real time, as per Fig. 6.

To support more realistic, off-grid signals—which also
effectively degrade sparsity—in real time, windowing can be
performed at the frontend (either digitally or in the ana-
log domain, using an architecture similar to that reported
in [27]). Again, this requires accurate measurement of the dc
lane-to-lane skew.

VIII. CONCLUSION

As described in [28] and [29], a set of highly para-
meterized analog and digital hardware generators enabled
the design exploration and rapid 16-nm implementation of
the FFAST algorithm in ∼2 months. This is, to the best
of the authors’ knowledge, the first automatically gener-
ated, fully integrated, sparse spectral analysis SoC, with a
BAG-designed custom SAR ADC frontend, generated mixed-
radix FFTs, digital reconstruction backend based off of the
FFAST algorithm [30], and a RISC-V processor. The system
targets realistic spectral sparsities and SNR, and the < 20-μs
runtime enables real-time adaptation in closed-loop systems.
Table I shows the comparison of this work to a purely
digital 746 496-point sparse FFT hardware implementation [5]
and a recently published application-specific integrated cir-
cuit (ASIC) spectrometer using an 8192-point FFT [26].

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: REAL-TIME, 1.89-GHz BANDWIDTH, 175-kHz RESOLUTION SPARSE SPECTRAL ANALYSIS RISC-V SoC 2007

REFERENCES

[1] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, “GHz-wide
sensing and decoding using the sparse Fourier transform,” in Proc. IEEE
Conf. Comput. Commun. (IEEE INFOCOM), May 2014, pp. 2256–2264.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[3] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 2, pp. 375–391, Apr. 2010.

[4] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candès, and
A. Emami-Neyestanak, “A 100MHz–2GHz 12.5x sub-Nyquist rate
receiver in 90 nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits
Symp., Jun. 2012, pp. 31–34.

[5] O. Abari et al., “27.4 A 0.75-million-point fourier-transform chip
for frequency-sparse signals,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 458–459.

[6] P. Indyk, M. Kapralov, and E. Price, “(Nearly) sample-optimal sparse
fourier transform,” in Proc. 25th Annu. ACM-SIAM Symp. Discrete
Algorithms, Jan. 2014, pp. 480–499,

[7] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical
algorithm for sparse Fourier transform,” in Proc. 23rd Annu. ACM-SIAM
Symp. Discrete Algorithms, Philadelphia, PA, USA: SIAM, Jan. 2012,
pp. 1183–1194.

[8] A. Agarwal, H. Hassanieh, O. Abari, E. Hamed, D. Katabi, and Arvind,
“High-throughput implementation of a million-point sparse Fourier
transform,” in Proc. 24th Int. Conf. Field Program. Logic Appl. (FPL),
Sep. 2014, pp. 1–6.

[9] A. López-Parrado and J. Velasco-Medina, “SoC-FPGA implementation
of the sparse fast Fourier transform algorithm,” in Proc. IEEE 60th Int.
Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 120–123.

[10] S. Pawar and K. Ramchandran, “R-FFAST: A robust sub-linear time
algorithm for computing a sparse DFT,” IEEE Trans. Inf. Theory, vol. 64,
no. 1, pp. 451–466, Jan. 2018.

[11] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, Aug. 2006.

[12] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[13] F. Ong, S. Pawar, and K. Ramchandran, “Fast sparse 2-D DFT compu-
tation using sparse-graph alias codes,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Mar. 2016, pp. 4059–4063.

[14] S. Kay, “A fast and accurate single frequency estimator,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 37, no. 12, pp. 1987–1990,
Dec. 1989.

[15] X. Li, S. Pawar, and K. Ramchandran, “Sub-linear time compressed
sensing using sparse-graph codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 1645–1649.

[16] J. Bachrach et al., “Chisel: Constructing hardware in a Scala embed-
ded language,” in Proc. DAC Design Automat. Conf., Jun. 2012,
pp. 1212–1221.

[17] A. Wang, P. Rigge, A. Izraelevitz, C. Markley, J. Bachrach, and
B. Nikolić, “ACED: A hardware library for generating DSP systems,”
in Proc. 55th Annu. Design Autom. Conf., New York, NY, USA: ACM,
Jun. 2018, Art. no. 61.

[18] A. Izraelevitz et al., “Reusability is FIRRTL ground: Hardware con-
struction languages, compiler frameworks, and transformations,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,
pp. 209–216.

[19] E. Chang et al., “BAG2: A process-portable framework for generator-
based AMS circuit design,” in Proc. IEEE Custom Integr. Circuits Conf.
(CICC), Apr. 2018, pp. 1–8.

[20] A. Wang, J. Bachrach, and B. Nikolié, “A generator of memory-based,
runtime-reconfigurable 2N3M5KFFT engines,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2016, pp. 1016–1020.

[21] K. Asanović et al., “The rocket chip generator,” Dept. Elect.
Eng. Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online]. Available: http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[22] J. Han et al., “A generated 7 GS/s 8 b time-interleaved SAR ADC with
38.2 dB SNDR at Nyquist in 16 nm CMOS FinFET,” in Proc. IEEE
CICC, Apr. 2019, pp. 1–4.

[23] D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6 mW time-interleaved
ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth
of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 4,
pp. 971–982, Apr. 2013.

[24] R. Andraka, “A survey of CORDIC algorithms for FPGA based comput-
ers,” in Proc. ACM/SIGDA 6th Int. Symp. Field Program. Gate Arrays,
Feb. 1998, pp. 191–200.

[25] P. Barrett, “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”
in Advances in Cryptology—CRYPTO, A. M. Odlyzko, Ed. Berlin,
Germany: Springer, 1987, pp. 311–323.

[26] S. Bailey et al., “A 28nm FDSOI 8192-point digital ASIC spectrometer
from a Chisel generator,” in Proc. IEEE CICC, Apr. 2018, pp. 1–4.

[27] D. Bankman and B. Murmann, “An 8-bit, 16 input, 3.2 pJ/op switched-
capacitor dot product circuit in 28-nm FDSOI CMOS,” in Proc. IEEE
Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2016, pp. 21–24.

[28] A. Wang et al., “A real-time, analog/digital co-designed 1.89-GHz
bandwidth, 175-kHz resolution sparse spectral analysis RISC-V SoC in
16-nm FinFET,” in Proc. ESSCIRC–IEEE 44th Eur. Solid State Circuits
Conf. (ESSCIRC), Sep. 2018, pp. 322–325.

[29] B. Nikolic, E. Alon, and K. Asanovic, “Generating the next wave
of custom silicon,” in Proc. IEEE 44th Eur. Solid State Circuits
Conf. (ESSCIRC), Sep. 2018, pp. 6–11.

[30] S. Pawar and K. Ramchandran, “FFAST: An algorithm for computing
an exactly k-sparse DFT in O(klogk) time,” IEEE Trans. Inf. Theory,
vol. 64, no. 1, pp. 429–450, Jan. 2018.

[31] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[32] Y. Duan and E. Alon, “A 12.8 GS/s time-interleaved ADC with 25 GHz
effective resolution bandwidth and 4.6 ENOB,” IEEE J. Solid-State
Circuits, vol. 49, no. 8, pp. 1725–1738, Aug. 2014.

Angie Wang (S’11–M’18) received the B.S.
degree in electrical engineering from the California
Institute of Technology, Pasadena, CA, USA,
in 2012 and the Ph.D. degree from the University of
California at Berkeley, Berkeley, CA, USA, in 2018,
where she was supported by the National Science
Foundation’s Graduate Research Fellowship.

Her research interests include
algorithm/architecture co-design for intelligent
systems and design methodologies that enable agile
ASIC and FPGA prototyping of next-generation

software-defined radios, multisensor fusion, and beyond.

Woorham Bae (S’14–M’16) received the B.S. and
Ph.D. degrees in electrical and computer engineering
from Seoul National University, Seoul, South Korea,
in 2010 and 2016, respectively.

In 2016, he was with the Inter-University Semicon-
ductor Research Center, Seoul National University,
Seoul, South Korea. From 2017 to 2019, he was with
the University of California at Berkeley, Berkeley,
CA, USA, as a Post-Doctoral Researcher. He is
currently a Senior SerDes Engineer with Ayar Labs,
Santa Clara, CA, USA. His current research interests

include integrated circuits for silicon photonics, high-speed I/O circuits
and architectures, non-volatile memory systems, and agile hardware design
methodology.

Dr. Bae was a recipient of the IEEE Circuits and Systems Society Outstand-
ing Young Author Award in 2018, the Distinguished Ph.D. Dissertation Award
from the Department of Electrical and Computer Engineering, Seoul National
University in 2016, the IEEE Circuits and Systems Society Pre-Doctoral
Scholarship in 2016, the IEEE Solid-State Circuits Society STG Award
in 2015, and the Best Poster Award at the IC Design Education Center Chip
Design Contest, International SoC Design Conference, in 2014.

Jaeduk Han (S’15–M’17) received the B.S. and
M.S. degrees in electrical engineering from Seoul
National University, Seoul, South Korea, in 2007
and 2009, respectively, and the Ph.D. degree in
electrical engineering and computer sciences from
the University of California at Berkeley, Berkeley,
CA, USA, in 2017.

His research interests include high-speed analog
and mixed-signal circuits, power electronics, and
automatic generation of analog and mixed-signal
circuits.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

2008 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Stevo Bailey (S’11–M’18) was born in Richmond,
VA, USA, in 1989. He received the B.S. degree in
engineering science and the B.A. degree in physics
from the University of Virginia, Charlottesville, VA,
USA, in 2012, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Cali-
fornia at Berkeley, Berkeley, CA, USA, in 2014 and
2018, respectively.

He was a Summer Research Intern with the
Jet Propulsion Laboratory, Pasadena, CA, USA,
in 2014, and Nvidia Corporation, Santa Clara, CA,

USA, in 2015. He is currently working in the area of San Jose, CA, USA.
His research interests include digital integrated circuit design methodologies,
digital signal processing and algorithms, and machine learning.

Orhan Ocal (S’14) received the M.Sc. degree
in communication systems from the École
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, in 2014, and the B.Sc. degree in
electrical engineering from Boğaziç̧i University,
Istanbul, Turkey, in 2012. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering and Computer Sciences (EECS),
University of California at Berkeley, Berkeley, CA,
USA.

His current research interests include signal
processing, information theory and coding, and machine learning.

Paul Rigge (S’09) received the B.S. degree in
electrical engineering and in computer science from
the University of Michigan, Ann Arbor, MI, USA,
in 2012. He is currently pursuing the Ph.D. degree
with the University of California at Berkeley,
Berkeley, CA, USA.

He held an internship position with the NASA Jet
Propulsion Laboratory, Pasadena, CA, USA, where
he was involved in signal processing for spectrome-
ters. He also held an internship position at Google,
Sunnyvale, CA, USA, where he was involved in

digital logic design. His current research interests are agile hardware method-
ologies for wireless systems.

Zhongkai Wang (S’16) received the B.S. degree
in electrical engineering from Northwestern Poly-
technical University, Xi’an, China, in 2011, and the
M.S. degree in electrical engineering from Fudan
University, Shanghai, China, in 2014. He is currently
pursuing the Ph.D. degree in electrical engineering
with the University of California at Berkeley, Berke-
ley, CA, USA.

His current research interests include mixed-signal
circuits, high-speed wireline communication circuits,
and analog circuit design automation.

Kannan Ramchandran (F’05) received the Ph.D.
degree from Columbia University, New York, NY,
USA, in 1993.

From 1993 to 1999, he was a Faculty Member
with the University of Illinois at Urbana-Champaign,
Champaign, IL, USA. Since 1999, he has been a
Professor of electrical engineering and computer
science with the University of California at Berkeley,
Berkeley, CA, USA. He has published extensively in
his field, and holds over a dozen patents. His current
research interests are at the intersection of coding

theory, statistical signal processing, and machine learning, with a particular
emphasis on the use of sparse-graph coding theory for distributed machine
learning, spectrum sensing, and imaging, and peer-to-peer content delivery
for distributed video-on-demand systems.

Dr. Ramchandran was a recipient of the 2017 IEEE Kobayashi Computers
and Communications Award for his pioneering contributions to the theory
and practice of distributed storage coding and distributed compression. He
has received several awards for his research and teaching including the IEEE
Information Theory Society and Communication Society Joint Best Paper
Award in 2012, the IEEE Communication Society Data Storage Best Paper
Award in 2010, two Best Paper awards from the IEEE Signal Processing
Society in 1993 and 1999, the Okawa Foundation Prize for outstanding
research at Berkeley in 2001, and the Departmental Outstanding Teaching
Award at Berkeley in 2009.

Elad Alon (M’06–SM’12–F’19) received the B.S.,
M.S., and Ph.D. degrees in electrical engineer-
ing from Stanford University, Stanford, CA, USA,
in 2001, 2002, and 2006, respectively.

He has held advisory, consulting, or visiting posi-
tions at Ayar Labs, Locix, Lion Semiconductor,
Cadence, Xilinx, Qualcomm, Oracle, Intel, AMD,
Rambus, Hewlett Packard, and IBM Research, where
he worked on digital, analog, and mixed-signal inte-
grated circuits for computing, test and measurement,
power management, and high-speed communica-

tions. He is currently a Professor of electrical engineering and computer
sciences with the University of California at Berkeley, Berkeley, CA, USA,
and a Co-Director of the Berkeley Wireless Research Center (BWRC),
Berkeley, CA, USA. He is also a Co-Founder and Chief Scientist at Blue
Cheetah Analog Design, which is commercializing generator technologies
in order to enable analog/mixed-signal solutions at lower barrier to entry.
His research focuses on energy-efficient integrated systems, including the
circuit, device, communications, and optimization techniques used to design
them.

Dr. Alon was a recipient of the IBM Faculty Award in 2008, the 2009 Hell-
man Family Faculty Fund Award, and the 2010 and 2017 UC Berkeley
Electrical Engineering Outstanding Teaching Awards, and has coauthored
papers that received the 2010 ISSCC Jack Raper Award for Outstanding
Technology Directions Paper, the 2011 Symposium on VLSI Circuits Best
Student Paper Award, the 2012 and the 2013 Custom Integrated Circuits
Conference Best Student Paper Awards, and the 2010–2016 Symposium on
VLSI Circuits Most Frequently Cited Paper Award.

Borivoje Nikolić (S’93–M’99–SM’05–F’17)
received the Dipl.Ing. and M.Sc. degrees in
electrical engineering from the University of
Belgrade, Belgrade, Serbia, in 1992 and 1994,
respectively, and the Ph.D. degree from the
University of California at Davis, Davis, CA, USA,
in 1999.

In 1999, he joined the Department of Electrical
Engineering and Computer Sciences, University
of California at Berkeley, Berkeley, CA, USA,
where he is currently a National Semiconductor

Distinguished Professor of Engineering. He has coauthored the book Digital
Integrated Circuits: A Design Perspective (Prentice-Hall, 2nd ed., 2003).
His research activities include digital, analog, and RF integrated circuit
design and VLSI implementation of communications and signal processing
systems.

Dr. Nikolić was a recipient of the NSF CAREER Award in 2003,
the College of Engineering Best Doctoral Dissertation Prize and the Anil
K. Jain Prize for the Best Doctoral Dissertation in Electrical and Computer
Engineering at University of California at Davis in 1999, and the City
of Belgrade Award for the Best Diploma Thesis in 1992. For work with
his students and colleagues, he was a recipient of the best paper awards
at the IEEE International Solid-State Circuits Conference, Symposium on
VLSI Circuits, IEEE International SOI Conference, European Solid-State
Device Research Conference, European Solid-State Circuits Conference, S3S
Conference, and the ACM/IEEE International Symposium of Low-Power
Electronics. He was a Distinguished Lecturer of the IEEE Solid-State
Circuits Society from 2014 to 2015.

Authorized licensed use limited to: Hanyang University. Downloaded on December 02,2021 at 08:22:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

