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ABSTRACT
The stiffness index (SI) from quantitative ultrasound measurements is a good indicator of BMD and may be used to predict the risk of
osteoporotic fracture. We conducted a genomewide association study (GWAS) for SI using 7742 individuals from the Taiwan
Biobank, followed by a replication study in a Korean population (n¼ 2955). Approximately 6.1 million SNPs were subjected to
association analysis, and SI-associated variants were identified. We further conducted a meta-analysis of Taiwan Biobank significant
SNPs with a Korean population-based cohort. Candidate genes were prioritized according to epigenetic annotations, gene ontology,
protein–protein interaction, GWAS catalog, and expression quantitative trait loci analyses. Our results revealed seven significant
single-nucleotide polymorphisms (SNPs) within three loci: 7q31.31, 17p13.3, and 11q14.2. Conditional analysis showed that three
SNPs, rs2536195 (CPED1/WNT16), rs1231207 (SMG6), and rs4944661 (LOC10050636/TMEM135), were the most important signals
within these regions. The associations for the three SNPs were confirmed in a UK Biobank estimated BMD GWAS; these three
cytobands were replicated successfully after a meta-analysis with a Korean population cohort as well. However, two SNPs were not
replicated. After prioritization, we identified two novel genes, RAB15 and FNTB, as strong candidates for association with SI. Our study
identified three SI-associated SNPs and two novel SI-related genes. Overall, these results provide further insight into the genetic
architecture of osteoporosis. Further studies in larger East Asian populations are needed. © 2019 American Society for Bone and
Mineral Research.
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Introduction

Osteoporosis is a major medical problem worldwide that is
commonly diagnosed by measuring BMD.(1) Low BMD may

contribute to higher risk of fractures, leading to serious burdens
on healthcare providers and patients.(2) As a means to assess
heel BMD, quantitative ultrasound (QUS) is currently the most

common method, owing to its ease of use and low cost. QUS is a
reliable technique for evaluating the bone architecture of the
heel.(3–5) This method has been used to predict the risk of
fractures based on two parameters, the speed of sound (SOS)
and the broadband ultrasound attenuation (BUA),(6) which are
positively correlated with BMD measurements from DXA.(7) SOS
and BUA may also be mathematically combined to calculate
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the stiffness index (SI), according to the following formula:
SI¼ (0.67� BUA)þ (0.28� SOS) – 420.(8) Previous studies indi-
cate that SI can provide a more accurate fracture risk prediction
than BUA or SOS alone.(9,10)

Twin- and family-based studies have demonstrated that BMD,
as measured by QUS, is highly heritable (82%).(11) This high
heritability indicates the importance of identifying specific
genetic influences on heel-bone properties.(12) Previous
genome-wide association (GWA) meta-analyses have revealed
several loci that are associated with heel-bone properties.(13,14)

However, these studies focused on populations that were
mainly comprised of individuals with European ancestry.
Recently, one study identified a novel SOS-associated locus in
the Korean population(15); however, a comprehensive survey of
SI-associated variants in East Asian populations is still lacking.
Therefore, we decided to assess the genetic influences on heel-
bone SI measurements by conducting a genomewide associa-
tion study (GWAS) to identify candidate risk variants in a
Taiwanese population. After identifying candidates in the
discovery population, we compared our findings with data
from a UK Biobank (UKBB) GWAS, and then performed a
replication study using a Korean cohort. Finally, we leveraged
the risk variants to identify and prioritize additional candidate SI-
associated genes using data from publicly accessible databases.

Materials and Methods

Study population

The Taiwan Biobank is a prospective cohort with individual
genotype data and detailed clinical information.(16) The Taiwan
Biobank included 109,411 individuals without cancer from the
community and hospitals. Among them, 20,117 individuals
contained GWAS data. The DNA samples of the Taiwan Biobank
were stored at �80°C. Genetic data were obtained by using an
Affymetrix array (Axiom genomewide TWB plate; Affymetrix,
Santa Clara, CA, USA). A GeneTitan Multi-Channel instrument
(Thermo Fisher Scientific, Waltham, MA, USA) was used to
conduct automated genotyping. Axiom Analysis Suite version 3.1
(Thermo Fisher Scientific, Waltham, MA, USA) was applied to
generate genotyping output data by following the Axiom best-
practice workflow. When the SNP did not fit the quality control
criteria of the Axiom data analysis, the genotype of the SNP was
recorded as a missing value. The subjects who were older than
50 years of age with complete age, sex, BMI, and GWAS
information were included. Following GWAPower Detection
V1,(17) we decided to assess 8000 individuals at our study design
stage. When the total SNPs number equaled 6.5 million (TWB
chip), the effect size of the candidate SNP was 0.1,(18) and the
linkage disequilibrium (LD) between the causal SNP and the test
SNP was estimated as r2¼ 0.8; hence, this study needed 8000
subjects to achieve >80% statistical power. These 8000
individuals were randomly selected by the staff of the Taiwan
Biobank from all qualified samples (n¼ 8848). The SI of the
individuals was measured using a QUS system and calculated by a
GE Lunar Achilles InSight bone densitometer (GE Healthcare,
Waukesha, WI, USA) automatically. The repeat measurement
precision (% coefficient of variation [CV]) of GE Achilles InSight for
SI is 2.4%.(19) All Taiwan Biobank participants provided informed
consent. This study was conducted in accordance with guidelines
approved by the institutional review boards (IRB) of Taipei
Medical University (IRB no. 201210039) and the Taiwan Biobank,
Academia Sinica (TWBR10505-05 and TWBR10602-02).

Data quality control and SNP imputation

Quality control procedures were conducted using PLINK,(20)

which removed SNPs with a minor allelic frequency (MAF) <5%,
and a Hardy–Weinberg equilibrium (HWE) p value <1� 10�6.
Individuals with >5% missing genotypes and a genotype
heterozygosity rate out of mean� 3 SD (n¼ 88), as well as
second-degree relatives based on an identity-by-descent
threshold larger than 0.1875 (n¼ 170) were excluded. We
eliminated 258 individuals because of a quality-control
processing issue of the genotyping data. To increase the
genome coverage of assessed variants, we imputed untyped
SNPs via the Michigan imputation server using the 1000
Genomes Project phase 3 reference panel (https://
imputationserver.sph.umich.edu/.) (East Asian ancestry [EAS],
with genome coordinates of build GRCh37). After imputation,
we filtered variants with an MAF of <5%, an R2 of <0.3, and an
imputation quality score of <0.9.(21)

Genomewide association analysis

The GWAS was conducted using SNPTEST (https://mathgen.
stats.ox.ac.uk/genetics_software/snptest/snptest.html). The sta-
tistical approach of SNPTEST is based on linear regression. The
original distribution of SI was skewed; therefore, we normalized
the SI to a zero mean and unit variance before analysis to fit it to
the underlying statistic model of SNPTEST.(22) Genotype dosages
were used to conduct an analysis under the additive genetic
model. A principal component analysis (PCA) was conducted
with samples from HapMap to inspect the substructure of the
population. Four principal components (PC1 to PC4), age, sex,
and BMI were included as covariates to regress out their effects
in the linear regression model. The R package, qqman, was used
to visualize the results of associations as Manhattan and
quantile–quantile plots.

Genomic heritability

To estimate the phenotypic variance explained by autosomal
variations, we used a restricted maximum likelihood analysis
provided by a Genome-wide Complex Trait Analysis (GCTA).(23)

In addition, we used an LD score regression to estimate the
phenotypic variance proportion explained by the GWAS
summary statistics.

Linkage disequilibrium-based clumping

To evaluate LD independent signals in each locus, an LD-based
clumping procedure from PLINK was applied to the GWAS
results. This approach is based on a greedy algorithm to
select the most significant variants within 250 kb, an r2 of �0.8,
and a p value of <1� 10�5, thereby generating a list of
LD-independent SNPs.

Conditional analysis

To identify the presence of independent association signals
in each locus, we performed a conditional analysis within
a 1 Mb genomic region of each of the LD-independent
SNPs. We applied GCTA to this analysis by conditioning on
the most significant variant signal. Imputed data of all
individuals were used as an LD reference panel. Variants
which in highly LD (r2 > 0.9) with the lead SNPs were
excluded from the analysis. We applied LocusZoom(24) to
generate regional plots.
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Replication in a Korean population

The KoGES Yangpyeong is a community cohort in the Korean
Multi-Rural Communities Cohort Study (MRCohort) as a part of
the Korean Genome Epidemiology Study (KoGES). The MRCo-
hort was initiated to identify risk factors for cardiovascular
diseases. Yangpyeong is located 45 km east of Seoul, the capital
of South Korea; most of the participants were farmers or
housewives. Details of the study design and procedures are
described in a previous report.(25) From August 2005 to
August 2011, 3564 individuals, age >40 years, were recruited
in the KoGES Yangpyeong cohort. In the current study,
participants who reported a physician-diagnosed cancer
(n¼ 76) and who did not have information regarding their
BMI (n¼ 6), SOS/BUA (n¼ 67), and genotype (n¼ 420) were
excluded. In addition, we excluded participants with the lowest
and highest 0.5% of SOS/BUA to minimize potential impact of
outliers (n¼ 40). Ultimately, 2955 participants were included in
the data analysis.(15) We measured SI at the calcaneal bone using
the Sahara clinical sonometer (Hologic, Bedford, MA, USA),
whose repeat measurement precision (% CV) is 4.55 for BUA and
0.52 for SOS, respectively.(26) The genotype data for the KoGES
Yangpyeong replication set were generated by the Korean Chip
(K-CHIP), which was designed by the Center for Genome Science,
Korea National Institute of Health (KNIH) based on the UKBB
Axiom Array. IMPUTE2(27) was used to conduct imputation using
phase 1 of the 1000 Genomes Project as a reference panel.
Genotype data quality-control procedures were conducted
using PLINK. The exclusion criteria for SNPs included a
p value of HWE <1� 10�6, info score <0.8, and MAF < 0.01.
Individuals with more than 5% missing genotypes, and pairwise
identity-by-state values >.905 were excluded. To analyze the
GWAS of SI from the KoGES Yangpyeong GWAS cohort, a
multiple linear regression model was conducted; age, sex, and
BMI were included as covariates. We further conducted a meta-
analysis of summary statistics from GWAS significant (p< 5
� 10�8) SNPs of the Taiwan Biobank and KoGES Yangpyeong
GWAS cohorts. METAL (https://genome.sph.umich.edu/wiki/
METAL_Documentation) was adopted to perform the meta-
analysis under fixed effect model.

Functional annotation

The rs (reference SNP cluster ID) number of each variant was
annotated using two Bioconductor packages: GenomicRanges
and SNPlocs.Hsapiens.dbSNP144.GRCh37. We annotated the
locations and corresponding genes of SNPs by ANNOVAR(28)

based on the RefSeq hg19 reference genome according to the
National Center for Biotechnology Information. After annotating
by ANNOVAR, the output generated the genes that the queried
variants were located within or nearby. These genes were
applied to further analysis directly. To evaluate relationships
between SNPs and gene-expression profiles, we queried tissue-
specific cis-expression quantitative trait locus (cis-eQTL) evi-
dence from Haploreg.(29) When the SNP contained any cis-eQTL
signals, we considered it as a point of our scoring system. We did
not limit the signal in a specific window size of the SNP.
Therefore, the reported eQTL signals may stand for genes
different from our candidate genes. Because there are no bone
tissue data in the publicly available eQTL database, we included
all currently available data.

The ChromHMM (chromatin hidden Markov model) integrates
multiple chromatin datasets of a variety of histone modifications
from ENCODE and ROADMAP, including H3K4me1, H3K4me3,

H3K27me3, H3K9me3, H3K36me3, and H3K27ac.(30) This model
is based on a multivariate HMM, which can classify a genome
into different functional regions. We downloaded the
ChrommHMM-25-model profiles of 33 tissues and cells from
the ENCODE and ROADMAP databases (Supplementary Table
1). By matching the position in each tissue, we annotated 25
ChromHMM states (Supplementary Table 2) to candidate SNPs.
Each SNP had 33 corresponding chromatin states. The minimum
state in all tissue and cell types was selected as the state of the
SNP because the smaller state represents higher DNA accessi-
bility (ie, one, the active transcription starting site has the
highest DNA accessibility). To understand the chromatin states
within candidate genes, we assigned the state of each SNP to
within or nearby genes. Because one gene might contain several
different chromatin states from multiple SNPs mapped to the
gene, we summed the proportion of each state.

Gene ontology analysis

The corresponding genes of SI-associated variants were
characterized using the topGO package. We used the
“weight01” method, which is a mixture of the “elim” and
“weighted” algorithms as described by Alexa and colleagues(31)

and produced more-conservative results by taking the gene
ontology (GO) hierarchy into account. We used Fisher’s exact
test to identify the enrichment of our gene list in biological
processes. P values were adjusted for multiple comparisons
using the Benjamini–Hochberg method.

Knockout mice phenotype enrichment analysis

We downloaded KO mice phenotype data from the Mouse
Genome Informatics (MGI) database(32) on June 15, 2017, which
comprised MGI phenotypes annotated to genes in a human
orthologue. We then assessed the enrichment of SI-associated
genes using a gene set overrepresentation analysis (ORA). To
perform ORA, we used a one-tailed Fisher’s exact test to assess
the overrepresentation of genes in specific gene sets. We
adopted a hypergeometric test to identify enriched MGI
phenotypes, and further adjusted for multiple comparisons to
reduce the likelihood of false-positives.

Empirical evidence regarding previous GWASs

To seek supportive evidence of identified SI-associated genes,
we compared them with previously reported GWAS results using
the gwascat package, which allowed us to explore the data from
National Human Genome Research Institute–European Bioinfor-
matics Institute (NHGRI–EBI) GWAS catalog. We mapped the
SNPs to the corresponding genes provided by the GWAS catalog
and generated a gene list for each phenotype. We then used
these gene lists to conduct an ORA and analyze the enrichment
of SI-associated genes in all GWAS phenotypes. Notably, we
performed this enrichment analysis in a gene-based manner
under the consideration that previously reported variants were
not exactly the same as the identified SNPs in this study, but
their information may be captured by allocating them onto the
same gene when they were located in nearby loci to the
identified SI-associated SNPs.

Protein–protein interaction analysis

Protein–protein interaction (PPI) evidence from in vivo, in vitro,
and yeast two-hybrid experiments were queried from the
Human Protein Reference Database (HPRD) Release 9.(33) We
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linked genes with directed PPIs with SI-related genes, further
generated SI-related genes with PPI annotations, and finally
visualized the network using a Fruchterman–Reingold algorithm
implemented in the igraph package.

Gene prioritization

We scored each gene using the following criteria: (1) contained
nonsynonymous variant(s) associated with the SI; (2) contained
eQTL(s); (3) belonged to an enriched GO biological process;
(4) belonged to an enriched GWAS catalog phenotype; (5) had
PPI annotations; and (6) contained SNP(s) that had potential
within DNA-accessible region supported by the ChromHMM
25 model. Each gene that fulfilled one of the criteria was
assigned a score of 1, resulting in a final score ranging from 0 to 6
(summation). We defined genes with a score �3 as biological
SI-associated genes.

Results

GWAS revealed 78 genomewide significant SNPs
associated with SI

There were 8000 individuals included in the association analysis.
After imputation and quality control, approximately 6.1 million
common variants were analyzed in 7742 individuals (mean age
58.5� 6.2 years). Proportions of the two genders were similar
(Supplementary Table 3), and PCA revealed that there was no
detectable substructure in the population (Supplementary
Fig. 1). A quantile–quantile plot showed that there was no
severe genomic inflation of the association results (lGC¼ 1.07;
Supplementary Fig. 2). A Manhattan plot of the SI GWAS is
shown in Fig. 1. There were 78 SNPs that reached GWA
significance (p< 5� 10�8; Supplementary Table 4) as well as
620 SNPs that achieved the suggestive significance threshold
(p< 1� 10�5). Among the suggestive significant SNPs, 10 were
previously reported in the NHGRI–EBI GWAS catalog, including
those annotated for bone-related and obesity-related traits
(Supplementary Table 5). To remove redundant SNPs with high
LD (r2� 0.8) within each locus, we applied an LD-based
clumping method to the SNPs. After LD clumping, seven SNPs
reached genomewide significance and 73 SNPs achieved
suggestive significance (Supplementary Table 6). According to

a genomewide complex trait analysis, the combination of all
GWAS variants accounted for 23.1� 4% of SI heritability. This
proportion was comparable to that calculated by LD score
regression (25.2� 7%).

Independent variant loci revealed by conditional analysis

From the association analysis, we identified three cytogenetic
regions (7q31.31, 17p13.3, and 11q14.2) that were significantly
associated with SI (Fig. 1). We then conducted a conditional
analysis to determine the number of independent signals in
these regions. After conditioning on rs2536195 in the 7q31.31
locus, no SNPs reached genomewide significance (Supplemen-
tary Fig. 3). Therefore, we considered rs2536195 (CPED/WNT16)
to be the most prominent signal within this locus with a p value
of 1.41� 10�11 (Table 1). Similarly, in the other two significant
loci, we found no additional independent signals after
conditioning on the top SNPs, rs1231207 (p¼ 5.13� 10�9

,

SMG6, 17p13.3) and rs4944661 (p¼ 3.92� 10�8, LOC100506363/
TMEM135, 11q14.2).

Different ethnic populations share common risk variants

To test whether risk loci are shared across different populations,
we compared the effect sizes and values of significant SNPs from
previous GWAS reports for heel-bone properties(13–15) with the
SNPs identified in our analysis of a Taiwanese population
(Supplementary Table 7). The findings in the Taiwanese
population were similar to those from previous GWAS reports
(Supplementary Fig. 4). Recently, Kemp and colleagues con-
ducted a study of 142,487 Caucasian individuals from the UKBB
and identified 153 loci associated with heel BMD.(34) We
investigated the correlation between the effect size of 620
suggestive significant SNPs of SI and estimated BMD (eBMD).
After applying Pearson’s correlation test, the correlation
coefficient was 0.8 (p< 2.2� 10�16). All of our genomewide
significant SNPs were successfully confirmed as significant
signals in this UKBB study (Supplementary Table 4). When we
queried our LD-independent significant SNPs in the UKBB
summary statistics (UKBB eBMD GWAS), 72 SNPs were found to
be common between the studies. Notably, the effect directions
of each SNP were also similar between the two studies
(Supplementary Fig. 5). Thirty SNPs were genomewide

Fig. 1. Genome-wide association of stiffness index in a Taiwanese population. Red and blue lines correspond to p¼ 5� 10�8 and p¼ 1� 10�5,
respectively.
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significant while five SNPs showed suggestive significance
(Supplementary Table 6). All three conditional independent
variants passed the genomewide significance threshold
(6.6� 10�9) in the original study (Table 1).(34)

Replication of 78 SNP associations in a Korean
population

We further tested the 78 genomewide significant SNPs in a
Korean replication cohort. The baseline characteristics of the
Korean population are shown in Supplementary Table 8.
Because of quality controls, 59 SNPs remained subsequently
(Supplementary Table 4). Among them, 48 SNP reached GWAS
significance (5� 10�8) after meta-analysis. Because the quality-
control process excluded two of the three conditional
independent SNPs, only one independent SNP (rs1231207,
17p13.3) was replicated (pmeta¼ 1.88� 10�9). Nevertheless,
signals from the other two cytobands (7q31.31 and 11q14.2)
were successfully replicated as well.

SI-associated SNPs were mostly located in functional
regulatory regions

Beginning with the 73 identified SNPs that showed suggestive
significance (p< 1� 10�5), we first excluded those SNPs
located on the HLA region or without ANNOVAR annotation,
leaving 54 GWAS signals. We extended the variant list by
including SNPs with r2� 0.6 and a p value <0.05. As a result,
we obtained 1656 SNPs mapped to 59 genes. Most of the SNPs
on the variant list were found to be located in intronic regions
(n¼ 1149, 69.4%) or intergenic regions (n¼ 399, 24.1%;
Fig. 2A); 12 were found to be located in an exon with eight
being nonsynonymous. Because the vast majority of SI-
associated SNPs were located within intronic or intergenic
regions, we examined the epigenetic profiles of these loci.
After annotating the ChromHMM state of each variant, we
found that 649 SNPs were located in at least one weakly
accessible DNA region per tissue type (Fig. 2B). In addition, 39
genes (66.1%) contained more than one weakly transcribed
variant, and 18 genes (30.5%) were at least weakly transcribed
in 50% of tissues (Fig. 2C).

Biological roles of the SI-associated loci

There were 59 candidate genes subjected to ORAs of GWAS
catalog phenotypes, GO terms, and KO mouse phenotypes. Our
results showed significant enrichment of three highly relevant
GWAS catalog phenotypes, including bone QUS (false discovery
rate [FDR]¼ 1.59� 10�4), SOS (FDR¼ 3.72� 10�4), and bone
density (FDR¼ 0.05). These phenotypes passed stringent FDR
controls (Supplementary Table 9). Specific genes that were
enriched in these three phenotypes included GPATCH1, SPTBN1,
and WNT16. Furthermore, according to our GO term ORA, these
candidate genes were found to be enriched in 10 biological
processes (Supplementary Table 10); however, none of the GO
terms remained significant after FDR adjustment. In addition, no
significantly enriched KO mouse phenotypes were observed
(Supplementary Table 11). We also identified 20 SI-related
genes that had PPI annotations, according to the HPRD
(Supplementary Fig. 6).

Gene prioritization identified two novel SI-related genes

To prioritize candidate genes, we incorporated information
detailing nonsynonymous variants, cis-eQTL, minimumTa
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ChromHMM state, GWAS catalog enrichment, GO biological
processes, and PPI data (Fig. 3 and Supplementary Table 12).
Among the 59 genes, 5 (8.5%) had nonsynonymous variants,
24 (40.7%) contained eQTL variants in multiple tissues, 9
(15.3%) were involved in enriched biological processes, and 7
(11.9%) were significantly enriched in GWAS catalog pheno-
types. Based on these parameters, we scored and prioritized

the genes. There were 14 genes (23.7%) that were scored for at
least three criteria (Supplementary Fig. 7). After prioritization,
we considered these 14 genes to be potential biologically
relevant SI-related candidate genes (Fig. 3). We further
extracted SNPs within� 100 kb of the candidate gene region,
and compared our results with UKBB eBMD GWAS. Two genes,
RAB15 (Fig. 4A) and FNTB (Fig. 4B), did not contain any

Fig. 2. Functional annotations of 1656 single-nucleotide polymorphisms and 59 genes associated with the stiffness index in the Taiwanese Biobank
genomewide association study. (A) Functional annotations from ANNOVAR. (B) The minimum ChromHMM state across 33 tissue types. The full names of
each annotation are listed in Supplementary Table 2. (C) The proportion of the minimum ChromHMM state of each gene.

Fig. 3. Candidate genes for the stiffness index identified by in silico analyses. Fourteen genes are considered good candidates after prioritization based
on statistical and biological evidence represented as colored cells. We classified our scoring criteria into three main categories: annotation, biology, and
pathway, respectively. The color of the cells is according to the category. GO¼gene ontology; BP¼biological process; PPI¼protein–protein interaction.
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significant signals in the UKBB data. Therefore, we consider
these two genes to be novel SI-related genes.

Discussion

In this study, we used imputed genotypes of 7742 individuals to
identify SI-associated candidate loci in a Taiwanese population.
Through this analysis, we discovered that rs2536195 (7q31.31),
rs1231207 (17p13.3), and rs4944661 (11q14.2) were SI-associated
loci with conditionally independent genomewide significance.
These three SNPs were significant in the UKBB eBMD GWAS as
well. By integrating annotations from the ChromHMM, we added
further information regarding the DNA accessibility at each
candidate locus. Moreover, several ORAs, based on different
databases, were also applied to the candidate genes. After gene
prioritization, we identified 14 potential biologically relevant
SI-related candidate genes.

According to LD-based clumping, we uncovered five signifi-
cant genomewide LD-independent variants within the 7q31.31
region. Data were conditioned on rs2536195 (the most

significant signal), revealing this SNP as the independent signal
in the region. Interestingly, 7q31.31 was previously reported to
be associated with heel-bone properties by multiple
groups,(13,14) and Kemp and colleagues reported rs2536195 as
an independent significant SNP within the locus.(34) Hence, we
consider rs2536195 to be a crucial variant for heel-bone BMD in
both East Asian and Caucasian populations. The other two loci,
17p13.3 and 11q14.2, also significantly associated with eBMD in
the GWAS from the UKBB; however, the independent signals
in the previous report were different from what we discovered in
the current study. We attribute this to ethnicity-specific factors
caused by the differences in MAFs and LD structure. Indeed, the
frequency of the A allele at rs1231207 is 0.57 in the current study,
but it is 0.26 in the UKBB; the frequency in Asians is 0.62 and in
Europeans is 0.26 based on the data from 1000 Genomes Project
(Supplementary Table 13). Consistent with this, we observed
similar results for rs4944661; the frequency of the T allele is 0.63
in the current study and 0.35 in the UKBB.

In general, the directions of the SNP effects from our
Taiwanese population were comparable to genomewide
variants reported in previous studies of other ethnicities

Fig. 4. Novel stiffness index-related genes identified by comparison of the Taiwan Biobank and the UK Biobank genomewide association studies. The
X axis represents the chromosome position, and the Y axis is the negative log10 p value. Orange plots are p values of variants from the Taiwan Biobank,
and green plots from the UK Biobank. Red dashed lines represent the location of the genes. (A) RAB15. (B) FNTB.
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(Supplementary Figs. 4, 5). Furthermore, we attempted to
replicate our significant SNPs in a Korean population. The
different measurement of heel SI may be one of the potential
explanations for the difference in the beta value between the
two cohorts. For example, the beta of rs1231207 was �0.089 in
the results of the Taiwan Biobank, whereas it was �1.343 in the
Korean population. Despite having only one independent
significant SNP replicated, the other two loci were found to
contain alternative significant signals. This may because of the
different LD structure within the two populations and/or the
limited power of the replication cohort (n¼ 2,955). Because two
of the three SNPs were not replicated successfully, further
studies in larger East Asian populations are needed.

By comparing our SNPs with suggestive significance to
catalogued GWAS reports, we found that rs73039434, which is
found within an intronic region of RHPN2, also showed a
significant GWA with childhood obesity (p¼ 5.96� 10�6).(35)

Thus, this locus may exert pleiotropic effects, impacting both
heel bone and obesity-related traits.

Among the candidate genes we identified, WNT16
(7q31.31),(13,14,18,36,37) SPTBN1 (2p16.2),(13,14,38–40) GPATCH1
(19q13.11),(13,14,18) SLC8A1 (2p22.1),(34,41) and CPED1
(7q31.31)(13,14,18,42–44) have all been reported
to be significantly associated with both BMD and US
measurements.(13,14) In addition, SMG6 (17p13.3)(18) and
FAM3C (7q31.31)(43) have also been identified as BMD-associated
loci previously. Therefore, these seven genes may potentially be
involved in regulating BMD without site specificity. Aside from
BMD, many of our candidate genes are associated with other
phenotypes as well. For example, DPH1 (17p13.3) is a
susceptibility gene for short stature and craniofacial anoma-
lies.(45) TSR1 (17p13.3) and POLQ (3q13.33) have been reported to
be candidates for influencing aortic root size(46) and multiple
myeloma,(47) respectively. Importantly, FTNB and RAB15, were
identified as novel heel bone property-related genes in our
study. FNTB (14q23.3) was associated with a blood-related
trait,(48) whereas RAB15 (14q23.3) has not been reported as a
disease-associated gene so far.

Annotation of SNPs with the ChromHMM showed that about
half of the SI-associated intronic SNPs may participate in gene
regulation. This finding emphasized the importance of incorpo-
rating epigenomic data into the analysis to estimate the
influence of intronic SNPs. In bone tissue, however, epigenetics
data are currently limited; therefore, our annotations may not be
comprehensive. Additional epigenomic or functional studies of
bone cells may uncover further influences of our candidate
SNPs.

Our study had some limitations. First, we focused on analyzing
common variants (MAF � 5%). Because most effect sizes of
common variants on phenotypes are modest, increasing the
number of study participants would be crucially important to
identify rare variants and structural variations of osteoporosis.(49)

This limitation may possibly explain our low heritability
estimation (23%) compared to twin and family studies (82%).
Further studies on large populations should be conducted to
uncover the impact of rare variants on SI. Second, we only used
SI as the phenotype. Data on BUA and SOS were unavailable.
Third, the present study only considered age, sex, and BMI as
covariates, whereas a number of other factors may be associated
with SI. For example, lifestyle factors (eg, smoking, exercise,
alcohol use) and certain medications could influence bone
density.(50) Because these risk factors may also have interactions
with genes,(51) our current study did not estimate the

gene–environment interaction effect. Further studies should
consider the impact of environmental exposures.

In conclusion, our study identified 7q31.31, 17p13.3, and
11q14.2 as SI-related loci in ethnically diverse populations. By
using several biological annotations for each candidate gene,
we uncovered 14 candidate SI-associated genes. These findings
enhance our understanding of bone genetics and provide novel
insight into the genetic influences on bone-related properties.
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