
Open Access.© 2019 Park et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0
License.

Open Math. 2019; 17:423–438

Open Mathematics

Research Article

Choonkil Park, Nasir Shah*, Noor Rehman, Abbas Ali, Muhammad Irfan Ali, and
Muhammad Shabir

Soft covering based rough graphs and
corresponding decision making
https://doi.org/10.1515/math-2019-0033
Received December 7, 2017; accepted June 27, 2018

Abstract: Soft set theory and rough set theory are two new tools to discuss uncertainty. Graph theory is a nice
way to depict certain information. Particularly soft graphs serve the purpose beautifully. In order to discuss
uncertainty in soft graphs, some new types of graphs called soft covering based rough graphs are introduced.
Several basic properties of these newlyde�nedgraphs are explored.Applications of soft covering based rough
graphs in decision making can be very fruitful. In this regard an algorithm has been proposed.
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1 Introduction
Many real world situations appearing in various spheres of life, such as physical sciences, chemistry,
communications, computer sciences and several other areas, involve graphs. Graphs and operations on
graphs are extensively studied by computer scientists. The main reason behind this is because graphs can
be used to represent many real world problems in computer science that are otherwise abstract. The swiss
mathematician Leonhard Euler [1] known as the father of graph theory is universally credited with having
produced the �rst paper in 1736, when he settled a famous unsolved problem known as Königsburg Bridge
problem by constructing the Eulerian graph. The subject of graph theory which is motivated by recreational
mathematics and study of games may be considered as a part of combinatorial mathematics. The theory
has greatly contributed to our understanding of programming, civil engineering, communication theory,
switching circuits, operational research, economics and psychology.Many applications of graphs can be seen
in [2, 3] (and the references in that respect).
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In real situations, complexity and complications usually originate from uncertainty in the form of
ambiguity. There are several real life problems involving uncertainty and vagueness where the classical
mathematics is not successful and not absolutely prosperous. Most of our traditional and conventional
mechanism of modeling, reasoning and computing are crisp, precise in character and deterministic. The
dilemma and situations connecting with uncertainty are being handled by ancient and e�ective tools of
probability. The drawback of probability theory is that it is applicable only when the occurrence of events
is strictly determined by chance. In conjunction with probability theory, many other theories like fuzzy set
theory, intuitionistic fuzzy set theory, rough set theory, neutrosophic set theory, soft set theory and blend of
some of these theories to handle uncertaintywhich arises due to vagueness, have been introduced (for further
details see [4, 5]).
It is believed that an important epoch in the evolution of modern theory of uncertainty arising due to
vagueness was the publication of the pioneering paper by Zadeh [7] in 1965. He has de�ned fuzzy sets with
an aspect to study, describe and develop mathematically those situations which are imprecise and de�ned
vaguely. Pawlak [6] introduced the concept of rough sets which is an excellent mathematical tool to handle
with the given information and an access to ambiguity and equivocalness. Themain signi�cance of rough set
theory is that it does not involve any additional information about the data, like membership in fuzzy sets.
The rough sets theory is based on equivalence relations, which are now extended to the notion of covering
based rough sets [8, 9]. Probability theory, fuzzy set theory and rough set theory are di�erent accessions
to handle uncertainty, vagueness and imprecision. Each of these theories have their own restrictions and
limitation. Many applications of these theories in datamining, pattern recognition, knowledge discovery and
machine learning can be seen in [10–17]. While dealing with such theories, a question arises how to handle
multi-attributes? Molodtsov [5] introduced the notion of soft sets to overcome the problem of dealing with
attributes. This concept not only changed the role of above said theories as the sole representative of multi-
attributes but also recti�ed in some disciplines to tackle many problems of uncertainty [18–20]. A number
of applications, utilizations and practices have made with respect to multi-attributes modeling and decision
making problems [24–28].
A useful and drastic theory has been established in [29–31] by connecting the covering soft sets to rough sets.
Huge number of applications have been presented by many researchers in multi-attributes decision making
problems, attributes reduction problems, data labeling problems, data mining problems and knowledge
based systems [32–46].
The concept of soft graphs and their di�erent operations can be seen in [47]. These concepts were required
to tackle multi-attributes problems related to the theory of graphs. A number of generalizations of soft
graphs are available in the literature [48–53]. To strengthen and enhance the applicability of soft graphs,
an innovative approach by combining rough set with soft graphs, called soft covering based rough graphs
are introduced. In the present paper we initiate the study of new types of graphs called soft covering based
rough graphs. Several properties of these graphs are explored. As an application of soft covering based rough
graphs in decision making problems an algorithm is proposed.

The rest of the paper is organized as follows: In Section 2, some basic concepts are revised. Section 3 is
about basic de�nitions and characterization of soft covering based rough graph, lower/upper S-soft vertex
covering approximations, lower/upper Q-soft edge covering approximations, S-soft rough vertex covering
graph, Q-soft rough edge covering graph, soft covering based rough graphs, and basic theory is discussed
with examples. Section 4 is devoted to present an application of soft covering based rough graphs in real life.
To compute the e�ectiveness of some diseases amongst colleagues working in same factory, an algorithm
is developed in a realistic way, using simple digraph with vertices as 20 colleagues and the edges as the
interaction of these colleagues. Marginal fuzzy sets are de�ned with the help of lower and upper soft rough
approximations of the given graph and using marginal fuzzy sets as weights, persons at high risk of having
given diseases are found. Conclusion of the paper is presented in Section 5.
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2 Preliminaries
In this section the basic ideas regarding the graphs, soft sets, soft graphs and soft rough sets are given which
will help in the rest of sections.

De�nition 1. [2] A graph G* is a pair (V , E) of sets, where V is a �nite non-empty set whose members are
called vertices (also called points or nodes) and E is a set of unordered pairs of distinct vertices called edges
(also called lines or arcs). A graph is usually denoted as G* = (V , E). Let G* be a graph and {u, v} be an edge of
G*. It is oftenmore convenient to represent this edge by uv or vu. The vertex set is usually denoted by V

(
G*
)
and

the edge set by E
(
G*
)
. An edge of a graph that joins a node to itself is called loop or self loop. In a multigraph

no loops are allowed but more than one edge can join two vertices and these edges are called multiple edges or
parallel edges. A graph G* is called simple if it has no loops or multiple edges.

De�nition 2. [2] A directed graph or digraph G* containing a vertex set V
(
G*
)
, and an edge set E

(
G*
)
whose

elements are ordered pairs of elements of V
(
G*
)
called the directed edges. The �rst element of the ordered pair

is called the tail of the edge and the second is called the head, together, they are the endpoints.

De�nition 3. [20] Let T be the set of parameters. A pair (k, T) is called a soft set over the set U of universe,
where k : T → P (U) is a set valued mapping and P (U) is the power set of U.

De�nition 4. [47] A quadruple G =
(
G*, λ, µ,T

)
is called a soft graph, where

(1) G* = (V , E) is a simple graph,
(2) (λ,T) is a soft set over V,
(3) (µ,T) is a soft set over E,
(4) (λ (a) , µ (a)) is a subgraph of G* for all a ∈ T .

De�nition 5. [25] Let S = (k, T) be a soft set over U . Then the pair P = (U, S) is called soft approximation
space. Based on the soft approximation space P, we de�ne

appr
P
(X) = {u ∈ U : ∃ a ∈ T, [u ∈ k (a) ⊆ X]} ,

apprP (X) = {u ∈ U : ∃ a ∈ T, [x ∈ k (a) , k (a) ∩ X = ̸ ∅]}

assigning to any set X ⊆ U, the sets appr
P
(X) and apprP (X) and are called soft P-lower approximation and

soft P-upper approximation of X, respectively.
The sets

Pos (X) = appr
P
(X) ,

Neg (X) = −appr
P
(X) ,

and Bnd (X) = apprP (X) − appr
P
(X)

are called the softP-positive region, the softP-negative region, and the softP-boundary region of X, respectively.
If apprP (X) = appr

P
(X) then X is said to be soft P-de�nable, otherwise X is called a soft P-rough set.

3 Soft Covering Based Rough Graphs
Based upon the properties and usefulness of both rough sets and soft sets, a hybrid soft covering based rough
graphs are de�ned in this section. Basic properties and results related to soft covering based rough graphs
are discussed.

De�nition 6. Let G =
(
G*, λ, µ,T

)
be a soft graph over the simple graph G* = (V , E). Then G is called



426 | C. Park et al.

(i) full soft vertex graph if ⋃
α∈T

λ (α) = V .

(ii) full soft edge graph if ⋃
α∈T

µ (α) = E.

(iii) full soft graph if

G* =
(⋃

α∈T
λ (α) ,

⋃
α∈T

µ (α)

)
.

(iv) covering soft vertex graph if λ (α) = ̸ ∅ for all α ∈ T . In this case (λ,T) is called covering soft set over V,
denoted by CV.

Denote by S = (V , CV) and call it soft vertex covering approximation space.

De�nition 7. Let S = (V , CV) be a soft vertex covering approximation space and v ∈ V . Then the set

MdesS (v) =
{

λ (α) : α ∈ T ∧ v ∈ λ (α)∧
(for all β ∈ T ∧ v ∈ λ (β) ⊆ λ (α) implies λ (α) = λ (β))

}
is called soft minimal vertex description of v ∈ V .

De�nition 8. Let S = (V , CV) be a soft vertex covering approximation space. Based on S = (V , CV) , the sets
de�ned by

appr
S
(X) =

⋃
α∈T
{λ (α) : λ (α) ⊆ X} ,

and
apprS (X) =

⋃
{MdesS (v) : v ∈ X}

for the subset X ⊆ V , are called the lowerS-soft vertex covering andupperS-soft vertex covering approximations
of X, respectively.
Furthermore

PostS (X) = apprS (X) ,

NegtS (X) = V − apprS (X)

and BndS (X) = apprS (X) − apprS (X) .

are called S-soft positive vertex covering region, S-soft negative vertex covering region and S-soft boundary
vertex covering region respectively. If apprS (X) = apprS (X) , for X ⊆ V , then X is called S-soft vertex covering
de�nable set and GS = (V , E) is called S-soft vertex covering de�nable graph. On the other hand if apprS (X) ≠
appr

S
(X) then X is called S-soft vertex covering based rough set and GS is called an S-soft rough vertex covering

graph. De�ne and denote the lower and upper S-soft vertex covering approximations of GS by

GS =
(
appr

S
(X) , E

)
and

GS = (apprS (X) , E)

for any X ⊆ V .

De�nition 9. Let GS be an S-soft rough vertex covering graph. Then the S-roughness membership function of
X ⊆ V is given by

ξGS
(X) = 1 − 1

2

1 +
∣∣∣appr

S
(X)
∣∣∣

|apprS (X)|

 .
Thus if apprS (X) = appr

S
(X) then ξGS

(X) = 0, and the graph GS is soft vertex covering de�nable, i.e., no
roughness.
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Figure 1

Table 1

v1 v2 v3 v4 v5 v6 v7
α1 0 0 1 1 1 1 0
α2 1 1 0 0 0 0 0
α3 0 0 1 0 1 1 0
α4 0 0 1 1 0 0 0
α5 1 1 1 0 0 0 1
α6 1 1 0 0 1 1 0

Example 1. Consider a simple graph G* = (V , E), where V = {v1, v2, v3, v4, v5, v6, v7} is set of ver-
tices and E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} is the set of edges as shown in �gure below. Let T =
{α1, α2, α3, α4, α5, α6} be the set of parameters and G =

(
G*, λ, µ,T

)
be a soft covering vertex graph over

the simple graph G*. The covering soft set (λ,T) over V is given in Table 1 such that λ (α1) = {v3, v4, v5, v6} ,
λ (α2) = {v1, v2} , λ (α3) = {v3, v5, v6} , λ (α4) = {v3, v4} , λ (α5) = {v1, v2, v3, v7} , λ (α6) = {v1, v2, v5, v6}

Then S = (V , CV) is a soft vertex covering approximation space. Let X = {v1, v2, v4} ⊆ V . Then

appr
S
(X) =

⋃
α∈T
{λ (α) : λ (α) ⊆ X} = {v1, v2}

apprS (X) =
⋃
{MdesS (v) : v ∈ V} = {v1, v2, v3, v4}

Since appr
S
(X) ≠ apprS (X) . So X is a soft vertex covering based rough set and GS := (V , E) is an S-soft rough

vertex covering graph, where

GS =
(
appr

S
(X) , E

)
= ({v1, v2} , {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}) ,

GV = (apprV (X) , E) = ({v1, v2, v3, v4} , {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}) and

ξGS
(X) = 1 − 1

2

1 +
∣∣∣appr

S
(X)
∣∣∣

|apprS (X)|

 = 0.25.

Note if X = {v1, v2} ⊆ V , then X is S-soft vertex covering based de�nable because appr
S
(X) = apprS (X) =

{v1, v2} and GS := (V , E) is an S-soft vertex covering de�nable graph, where

GS =
(
appr

S
(X) , E

)
= ({v1, v2} , {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10})

= GV = (apprV (X) , E)
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ξGS
(X) = 1 − 1

2

1 +
∣∣∣appr

S
(X)
∣∣∣

|apprS (X)|

 = 0.

Thus there is no roughness.

De�nition 10. Let G =
(
G*, λ, µ,T

)
be a full soft edge graph. Then G is called covering soft edge graph if

µ (α) = ̸ ∅ for all α ∈ T . In this case (µ,T) is called covering soft edge set over E, denoted by CE. Denote by
Q = (E, CE) and call it a soft edge covering approximation space.

De�nition 11. Let Q = (E, CE) be a soft edge covering approximation space and e ∈ E. Then the set

MdesQ (e) =
{

µ (α) : α ∈ T ∧ e ∈ µ (α)∧
(for all β ∈ T ∧ e ∈ µ (β) ⊆ µ (α) implies µ (β) = µ (α))

}

is called soft minimal edge description of e ∈ E.

De�nition 12. Let Q = (E, CE) be a soft edge covering approximation space. Based on Q = (E, CE) , the sets
de�ned by

appr
Q
(Y) =

⋃
α∈T
{µ (α) : µ (α) ⊆ Y} ,

and
apprQ (Y) =

⋃
{MdesQ (e) : e ∈ Y}

for the subset Y ⊆ E, are called the lower Q-soft edge covering and upper Q-soft edge covering approximations
of Y, respectively.
Also,

PostQ (Y) = appr
Q
(Y) ,

NegtQ (Y) = E − apprQ (Y)

and BndQ (Y) = apprQ (Y) − appr
Q
(Y) .

are called Q-soft positive edge covering region, Q-soft negative edge covering region and Q-soft boundary edge
covering region respectively. If apprQ (Y) = appr

Q
(Y) , for Y ⊆ E, then Y is called Q-soft edge covering

de�nable set and GQ = (V , E) is called Q-soft edge covering de�nable graph. On the other hand if apprQ (Y) ≠
appr

Q
(Y) then Y is called Q-soft edge covering based rough set and GQ is called Q-soft rough edge covering

graph. De�ne and denote the lower and upper Q-soft edge covering approximations of GQ by

GQ =
(
V , appr

Q
(Y)
)

and
GQ = (V , apprQ (Y))

for any Y ⊆ E.

De�nition 13. Let GQ be a Q-soft rough edge covering graph. Then the Q-roughness membership function of
Y ⊆ E is given by

ξGQ
(Y) = 1 − 1

2

1 +
∣∣∣appr

Q
(Y)
∣∣∣

|apprQ (Y)|

 .
Thus if apprQ (Y) = appr

Q
(Y) then ξGQ

(Y) = 0, and so the graph GQ is soft edge covering de�nable, i.e., no
roughness.

De�nition 14. A full soft graph G =
(
G*, λ, µ,T

)
is called covering soft graph if λ (α) = ̸ ∅ and µ (α) = ̸ ∅ for all

α ∈ T .



Soft covering based rough graphs and corresponding decision making | 429

Table 2

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
α1 1 0 1 0 1 0 0 0 0 1
α2 0 0 0 1 0 0 0 0 0 0
α3 0 0 0 1 1 0 0 1 0 0
α4 1 1 0 0 1 1 0 1 1 0
α5 1 0 1 0 0 0 0 0 0 0
α6 0 0 0 0 0 1 1 0 1 0

Example 2. (Continued from Example 1) Let (µ,T) be a covering soft set over E and Q = (E, CE) be a soft edge
covering approximation space such that µ (α1) = {e1, e3, e5, e10} , µ (α2) = {e4} , µ (α3) = {e4, e5, e8} ,
µ (α4) = {e1, e2, e5, e6, e8, e9}, µ (α5) = {e1, e3} and µ (α6) = {e6, e7, e9} as shown in the Table 2

Let Y = {e1, e3, e4, e10} ⊆ E. Then

appr
Q
(Y) =

⋃
α∈T
{µ (α) : µ (α) ⊆ Y} = {e1, e3, e4}

apprQ (Y) =
⋃
{MdesQ (e) : e ∈ E} = {e1, e3, e5, e10} .

As appr
Q
(Y) ≠ apprQ (Y) , so Y is a soft edge covering based rough set and GQ := (V , E) is Q-soft rough edge

covering graph, where

GQ =
(
V , appr

Q
(Y)
)
= ({v1, v2, v3, v4, v5, v6, v7} , {e1, e3, e4})

GQ = (V , apprQ (Y)) = ({v1, v2, v3, v4, v5, v6, v7} , {e1, e3, e5, e10}) and

ξGQ
(Y) = 1 − 1

2

1 +
∣∣∣appr

S
(Y)
∣∣∣

|apprS (Y)|

 = 0.125.

De�nition 15. The G*-roughness membership function of any subgraph graph G** = (X, Y) of G* is given by

µG*
(
G**
)
= 1 − 1

2


∣∣∣appr

S
(X)
∣∣∣

|apprS (X)|
+

∣∣∣appr
Q
(Y)
∣∣∣

|apprQ (Y)|

 .
De�nition 16. A soft graph G =

(
G*, λ, µ,T

)
is called soft covering based de�nable if

(1) X is S-soft vertex covering de�nable i.e., apprS (X) = apprS (X) for X ⊆ Vand
(2) Y is Q-soft edge covering de�nable i.e., apprQ (Y) = appr

Q
(Y) for Y ⊆ E.

De�nition 17. A soft graph G =
(
G*, λ, µ,T

)
is called soft covering based rough graph if

(1) X is S-soft vertex covering based rough set i.e., apprS (X) = ̸ apprS (X)
(2) Y is Q-soft edge covering based rough set i.e., apprQ (Y) = ̸ appr

Q
(Y) .

A soft covering based rough graph is denoted by G = (GS , GQ) .

De�nition 18. The lower and upper approximations of the soft covering based rough graph G = (GS , GQ),
is denoted and de�ned as appr (G) =

(
appr

S
(X) , appr

Q
(Y)
)

and appr (G) = (apprS (X) , apprQ (Y))
respectively, for any X ⊆ V and Y ⊆ E.

Proposition 1. Let G =
(
G*, λ, µ,T

)
be a covering soft graph and S = (V , CV) and Q = (E, CE) be soft vertex

covering approximation space and soft edge covering approximation space, respectively. Then
(1) appr (G) =

⋃
α∈T
{(λ (α) , µ (α)) : λ (α) ⊆ X, µ (α) ⊆ Y}
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(2) appr (G) =
⋃
{(MdesS (v) ,MdesQ (e)) : v ∈ X ⊆ V and e ∈ Y ⊆ E}

(3) appr (∅) = appr (∅) = ∅

(4) appr
(
G*
)
= appr

(
G*
)
= G* =

(⋃
α∈T

λ (α) ,
⋃
α∈T

µ (α)

)
(5) appr (G1 ∩ G2) ⊆ appr (G1) ∩ appr (G2)
(6) appr (G1 ∪ G2) ⊇ appr (G1) ∪ appr (G2)
(7) appr (G1 ∪ G2) = appr (G1) ∪ appr (G2)
(8) appr (G1 ∩ G2) ⊆ appr (G1) ∩ appr (G2)
(9) G1 ⊆ G2 implies appr (G1) ⊆ appr(G2) and appr (G1) ⊆ appr(G2) where G1 and G2 are subgraphs of

G*.

Proof. Straightforward.

Proposition 2. Let G =
(
G*, λ, µ,T

)
be a covering soft graph and let S = (V , CV) andQ = (E, CE) be soft vertex

covering approximation space and soft edge covering approximation space, respectively. Then

(1) For any X ⊆ V , X is S − soft vertex covering de�nable i� apprS (X) ⊆ X.

(2) For any Y ⊆ E, Y is Q − soft edge covering de�nable i� apprQ (Y) ⊆ Y .

Proof. (1) Suppose X is an S-soft vertex covering de�nable. Then appr
S
(X) = apprS (X) and so apprS (X)

= appr
S
(X) ⊆ X. Conversely suppose that apprS (X) ⊆ X for X ⊆ V . To prove X is an S-soft vertex covering

de�nable , we have to prove only apprS (X) ⊆ apprS (X) . Let v ∈ apprS (X) =
⋃
{MdesS (v) : v ∈ X} . Then

v ∈ MdesS (v) and MdesS (v) ∩ X ≠ ∅, showing that v ∈ MdesS (v) ⊆ apprS (X) ⊆ X. So v ∈ λ (α) for some
α ∈ T . Hence v ∈ appr

S
(X) =

⋃
α∈T
{λ (α) : λ (α) ⊆ X} and so apprS (X) ⊆ apprS (X) .

(2) Can be proved in similar way.

The above proposition is illustrated in the following example:

Example 3. Let G =
(
G*, λ, µ,T

)
be a covering soft graph over the simple graph G* = (V , E), where

V = {v1, v2, v3, v4, v5, v6} is a set of vertices, E = {e1, e2, e3, e4, e5, e6} is the set of edges and T =
{α1 , α2 , α3 , α4, α5} is the set of parameters. Let (λ,T) be a covering soft set over V such that λ (α1 ) =
{v2, v3, v5, v6} , λ (α2 ) = {v2, v6} , λ (α3 ) = {v1, v2, v3, v6} , λ (α4 ) = {v1, v5} , λ (α5 ) = {v1, v3, v4, v5} .
Then S = (V , CV) is soft vertex covering approximation space. For X = {v2, v6} ⊆ V , we have appr

V
(X) =

{v2, v6} = apprV (X) . Hence appr
S
(X) ⊆ X and X is S-soft vertex covering de�nable.

(2) Let (µ,T) is called covering soft set over E such that µ (α1 ) = {e1, e3, e6} , µ (α2 ) = {e2, e3, e4, e5} ,
µ (α3 ) = {e1, e2, e4, e6} , µ (α4 ) = {e2, e4} , µ (α5 ) = {e1, e2, e4, e5, e6} . Then Q = (E, CE) is a soft edge
covering approximation space. Let Y = {e2, e4} ⊆ E. Then we can see that appr

Q
(Y) = {e2, e4} = apprQ (Y)

showing that Y isQ-soft edge covering de�nable. Clearly,G =
(
G*, λ, µ,T

)
is soft covering basedde�nable graph.

Proposition 3. Let G = (GS , GQ) be a soft covering based rough graph. Then
(1) appr (appr (G)) = appr (G)
(2) appr

(
appr (G)

)
⊇ appr (G)

(3) appr
(
appr (G)

)
= appr (G)

(4) appr (appr (G)) ⊇ appr (G) .

Proof. Let G = (GS , GQ) be a soft covering based rough graph . Let S = (V , CV) be a soft vertex covering
approximation space and Q = (E, CE) be a soft edge covering approximation space.
(1) Let L = appr (G) = (apprS (X) , apprQ (Y)) for every X ⊆ V , Y ⊆ E. Let (l1, l2) ∈ L be such that
l1 ∈ apprS (X) and l2 ∈ apprQ (Y) . As l1 ∈ apprS (X), so l1 ∈ λ (α) and MdesS (v) ∩ X ≠ ∅ for some
α ∈ T . Since l2 ∈ apprQ (Y) so l2 ∈ µ (α) and MdesQ (e) ∩ Y = ̸ ∅ for some α ∈ T . But

appr (G) =
⋃
{(MdesS (v) ,MdesQ (e)) : v ∈ X ⊆ V and e ∈ Y ⊆ E}
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so there exists α ∈ T such that (l1, l2) ∈ (λ (α) , µ (α)) ⊆ L. Hence (l1, l2) ∈ appr (L) , and so L ⊆ appr (L) .
But appr (L) ⊆ L which shows L = appr (L) . Therefore appr (appr (G)) = appr (G) .
(2) Let L = appr (G) =

(
appr

S
(X) , appr

Q
(Y)
)

for every X ⊆ V , Y ⊆ E. Let (l1, l2) ∈ L such that l1 ∈
appr

S
(X) and l2 ∈ apprQ (Y) . As l1 ∈ apprS (X), so l1 ∈ λ (α) and MdesS (l1) ∩ X = ̸ ∅ for some α ∈ T . Since

l2 ∈ apprQ (Y) , so l2 ∈ µ (α) and MdesQ (l2) ∩ Y ≠ ∅ for some α ∈ T . But

appr (G) =
⋃
α∈T
{(λ (α) , µ (α)) : λ (α) ⊆ X, µ (α) ⊆ Y} ,

MdesS (l1) ∩ appr
S
(X) = MdesS (l1) ≠ ∅ and MdesQ (l2) ∩ appr

Q
(Y) = MdesQ (l2) ≠ ∅. Then

(MdesS (l1) ,MdesQ (l2))∩ L = (MdesS (l1) ,MdesQ (l2)), α ∈ T, which shows (l1, l2) ∈ appr (L) . So
L ⊆ appr (L) or appr

(
appr (G)

)
⊇ appr (G) .

(3) Let L = appr (G) =
(
appr

S
(X) , appr

Q
(Y)
)

for every X ⊆ V, Y ⊆ E. Let (l1, l2) ∈ L be such that
l1 ∈ apprS (X) and l2 ∈ apprQ (Y) . Since l1 ∈ apprS (X) , so l1 ∈ λ (α) and λ (α) ⊆ X for some α ∈ T . Since
l2 ∈ apprQ (Y) , so l2 ∈ µ (α) and µ (α) ⊆ Y for some α ∈ T .
Since

appr (G) =
⋃
α∈T
{(λ (α) , µ (α)) : λ (α) ⊆ X, µ (α) ⊆ Y} .

So there exists α ∈ T such that (l1, l2) ∈ (λ (α) , µ (α)) ⊆ appr (L). Thus L ⊆ appr (L) . But appr (L) ⊆ (L) .
So L = appr (L) . Hence appr (G) = appr

(
appr (G)

)
.

(4) To prove appr (appr (G)) ⊇ appr (G) . Let L = appr (G) = (apprS (X) , apprQ (Y)) for every X ⊆ V,
Y ⊆ E. Let (l1, l2) ∈ L such that l1 ∈ apprS (X) and l2 ∈ apprQ (Y) . Since l1 ∈ apprS (X), so l1 ∈ λ (α) and
MdesS (l1) ∩ X ≠ ∅ for some α ∈ T . Since l2 ∈ apprQ (Y) so l2 ∈ µ (α) and MdesQ (l2) ∩ Y = ̸ ∅ for some α ∈ T .
Since

appr (G) =
⋃
{(MdesS (l1) ,MdesQ (l2)) : l1 ∈ X ⊆ V and l2 ∈ Y ⊆ E} ,

apprS (X) =
⋃
{MdesS (l1) : l1 ∈ X ⊆ V } and

apprQ (Y) =
⋃
{(MdesQ (l2)) : l2 ∈ Y ⊆ E} .

Therefore (MdesS (l1) ,MdesQ (l2)) ∩ L = (MdesS (l1) ,MdesQ (l2)) with MdesS (l1) = ̸ ∅ and MdesQ (l2) ≠ ∅.
So (l1, l2) ∈ (MdesS (l1) ,MdesQ (l2)) ⊆ appr (L) showing (l1, l2) ∈ appr (L) . Thus L ⊆ appr (L) . Hence
appr (appr (G)) ⊇ appr (G) .

Corollary 1. Let G =
(
G*, λ, µ,T

)
be a soft graph and S = (V , CV) and Q = (E, CE) be soft vertex covering

approximation space and soft edge covering approximation space, respectively. Then for every X ⊆ V and
Y ⊆ E, the following hold.
(1) appr

S
(apprS (X)) = apprS (X) .

(2) apprS
(
appr

S
(X)
)
⊇ appr

S
(X)

(3) appr
S

(
appr

S
(X)
)
= appr

V
(X)

(4) apprS (apprS (X)) ⊇ apprS (X) for every X ⊆ V .
(5) appr

Q
(apprQ (Y)) = apprQ (Y) .

(6) apprQ
(
appr

Q
(Y)
)
⊇ appr

Q
(Y)

(7) appr
Q

(
appr

Q
(Y)
)
= appr

Q
(Y)

(8) apprQ (apprQ (Y)) ⊇ apprQ (Y) for every Y ⊆ E.

Example 4. Let G =
(
G*, λ, µ,T

)
be a soft graph as in Example 1 with µ (α1) = {v1, v5, v6, v7} ,

µ (α2) = {v3, v5, v6} , µ (α3) = {v1, v3, v4} , µ (α4) = {v5, v6} , µ (α5) = {v2, v4, v6, v7} and µ (α6) =
{v1, v2, v3, v6, v7} . Let X = {v2, v3, v5, v6} ⊆ V . Then

appr
S
(X) =

⋃
α∈T
{λ (α) : λ (α) ⊆ X} = {v3, v5, v6} ,
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and
apprS (X) =

⋃
{MdesS (v) : v ∈ X} = {v1, v2, v3, v4, v5, v6, v7}

(1) Let P = apprS (X) = {v1, v2, v3, v4, v5, v6, v7} . Then apprS (P) = apprS (apprS (X)) = P.
(2) Let R = appr

S
(X) = {v3, v5, v6} . Then apprS (R) = apprS

(
appr

S
(X)
)
= {v1, v2, v3, v4, v5, v6, v7} =

apprS (X) ⊇ R.
(3) appr

S

(
appr

S
(X)
)
= appr

S
(R) = {v3, v5, v6} = R = appr

S
(X) . Similarly rest of the above results can be

veri�ed.

Proposition 4. Let G =
(
G*, λ, µ,T

)
be a soft graph. Then G =

(
G*, λ, µ,T

)
is a full soft graph if and only

if appr
(
G*
)
= G* = appr

(
G*
)
.

Proof. Suppose G =
(
G*, λ, µ,T

)
is a full soft graph. Then G* =

(⋃
α∈T

λ (α) ,
⋃
α∈T

µ (α)

)
. Since

appr
S
(X) =

⋃
α∈T
{λ (α) : λ (α) ⊆ X} ,

so appr
S
(V) =

⋃
α∈T
{λ (α) : λ (α) ⊆ V} =

⋃
α∈T

λ (α) = V . Hence appr
S
(V) = V . Now appr

Q
(Y) =⋃

α∈T
{µ (α) : µ (α) ⊆ Y} , so appr

Q
(E) =

⋃
α∈T
{µ (α) : µ (α) ⊆ E} =

⋃
α∈T

µ (α) = E. Therefore appr
(
G*
)
=(

appr
S
(V) , appr

Q
(E)
)

= (V , E) = G*. Also apprS (X) =
⋃
{MdesS (v) : v ∈ X } , so apprS (V) =⋃

{MdesS (v) : v ∈ V} =
⋃
MdesS (v) = V

Similarly apprQ (Y) =
⋃
{MdesQ (e) : e ∈ Y } , so apprQ (E) =

⋃
{MdesQ (e) : e ∈ E} =

⋃
MdesQ (e) = E.

Hence G* = appr
(
G*
)
.

Conversely suppose that appr
(
G*
)
= G* = appr

(
G*
)
. To show G =

(
G*, λ, µ,T

)
is a full soft graph.

Since appr
(
G*
)
=
(
appr

S
(V) , appr

Q
(E)
)
= G* so appr

S
(V) = V and appr

Q
(E) = E.

So appr
S
(V) =

⋃
α∈T
{λ (α) : λ (α) ⊆ V} = V and appr

Q
(E) =

⋃
α∈T
{µ (α) : µ (α) ⊆ E} = E, which shows that

⋃
α∈T

λ (α) = V and
⋃
α∈T

µ (α) = E. Hence G* = (V , E) =
(⋃

α∈T
λ (α) ,

⋃
α∈T

µ (α)

)
showing that G =

(
G*, λ, µ,T

)
is

a full soft graph.

Proposition 5. Let G =
(
G*, λ, µ,T

)
be a covering soft graph and S = (V , CV) be a soft vertex covering

approximation space. Then the following are equivalent:
(1) (λ,T) is a full soft set.
(2) appr

S
(V) = V

(3) apprS (V) = V
(4) X ⊆ apprS (X) for all X ⊆ V
(5) apprS ({v}) ≠ ∅ for all v ∈ V .

Proof. Using Proposition 4, it is easy to show that the conditions (1) and (2) are equivalent. Similarly the
conditions (1) and (3) are equivalent.
Now to prove conditions (4) , (5) and (1) are equivalent. Suppose condition (4) holds. To prove that (5) is
true. For v ∈ V , by condition (4) , {v} ⊆ appr

S
({v}) . Thus appr

S
({v}) ≠ ∅ because v ∈ appr

S
({v}) . Hence

(4) implies(5) . Now to show (5) implies (1) . Suppose apprS ({v}) = ̸ ∅ for all v ∈ V . Let l ∈ apprS ({v}) .
Then by de�nition of appr

S
({v}), there exists some α in T with l ∈ λ (α) and λ (α) ∩ {v} = ̸ ∅. It follows that

v = l ∈ λ (α) and so v ∈
⋃
α∈T

λ (α) . Hence (λ,T) is a full soft set showing that (5) implies (1) . Now to complete

the proposition, it is left to show (1) implies (4) . Suppose (λ,T) is a full soft set with X ⊆ V . For any p ∈ X,
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since (λ,T) is a full soft set so there exists some α ∈ T such that p ∈ λ (α) . Also X∩MdesS (p) ≠ ∅ because
p ∈ X ∩MdesS (p) . Hence p ∈ appr

S
(X). Therefore X ⊆ apprS (X) for all X ⊆ V .

Proposition 6. Let G =
(
G*, λ, µ,T

)
be a covering soft graph and Q = (E, CE) be a soft edge covering

approximation space. Then the following are equivalent:
(1) (µ,T) is a full soft set.
(2) appr

Q
(E) = E.

(3) apprQ (E) = E.
(4) Y ⊆ apprQ (Y) for all Y ⊆ E.
(5) apprQ ({e}) = ̸ ∅ for all e ∈ E.

Proof. Similar to the proof of the Proposition 5.

4 Applications of Soft Covering Based Rough Graphs
One of the most important applications of rough sets is the decision making and after combining with
soft sets, it has promoted to multicriteria group decision making. Many applications of multicriteria group
decision making are available in literature which can be seen in [26, 28, 31, 34, 39]. In such applications,
the decision making has not been involved by the interaction of the objects, while their individual perfor-
mance/characteristics have been used. Initial evaluation results have been used to perform the algorithms
of decision making, which are prescribed to a few number of �elds. In this section, we use the soft covering
based rough graphs to settle a real life medical diagnosis problem. The algorithm is described as follows:
Let V = {V1, V2, V3, ..., Vk} be the set of objects(universe) and T = {d1, d2, d3, ..., dr} be the set of
(diseases)parameters. Let G* be a simple graph with V as a set of vertices and E as a set of edges. Let (λ, T)
and (µ, T) be two covering soft sets on V and E respectively, de�ned by;

λ (di) = {VP ∈ V : Vertex VP possesses the attribute di}

and
µ (di) = {VpVq ∈ E : Vertex Vp with attribute di has interaction with vertex Vq} ,

so that G =
(
G*, λ, µ,T

)
is a soft graph, i.e., for each i, Gi = (λ (di) , µ (di)) is a subgraph of G*. For basic

evaluation, supposeD = {S1, S2, S3, ..., Sm} is the set of mmedical specialist and (π,D) be a soft set over V
de�ned by

π (St) =
{
VP ∈ V : the medical specialist St suggested VP possessing

some attribute di

}
.

Let S = (V , CV) be a soft vertex covering approximation space, then

appr
S
(π (St)) =

{
VP ∈ V : VP is an optimum candidate according to

medical specialist St

}
,

and

apprS (π (St)) =
{
VP ∈ V : VP is possibly an optimum candidate according

to medical specialist St

}
.

Suppose Ωπ(D) (VP ) and Ωπ(D) (VP ) are two fuzzy sets for measure of optimality and possibly measure of
optimality, respectively on E, of each object VP such that

Ωπ(D) (VP ) =
1
m

m∑
k=1

χ
π(St)

(VP )

and

Ω
π(D) (VP ) =

1
m

m∑
k=1

χ
π(St)

(VP ) ,
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where χ
π(St)

and χ
π(St)

are a kind of indicator functions, de�ned by

χ
π(St)

(VP ) =
{
1 if VP is in apprS (π (St))
0 otherwise,

and

χ
π(St)

(VP ) =
{
1 if VP is in apprS (π (St))
0 otherwise

.

Clearly Ωπ(D) (VP ) and Ωπ(D) (VP ) represents the optimality and possible optimality of each object according
to each medical specialist. Now consider the interaction of vertex Vp with vertex Vq and vice versa. The
marginal weight function φ for each Vp can be computed by;

φ (Vp) =
1
k [φr (Vp) + φc (Vp)]

for p = 1, 2, 3, ..., k, where

φr (Vp) =
k∑
i=1
χE (VpVq) ,

is the measures the interaction of Vp with Vq, and

φc (Vp) =
k∑
i=1
χE (VqVp) ,

is the measures the interaction of vertex Vq with Vp , where χE is an indicator function on E, de�ned by

χE (VpVq) =
{
1 if VpVq form an edge
0 otherwise

.

Henceforth the marginal weight function φ for each Vp , in both ways, actually measures the degree of
interaction. Finally an evaluation function ψ is de�ned on V by

ψ (Vp) =
1
2[Ωπ(D) (Vp) + Ωπ(D) (Vp)]φ (Vp) .

For a threshold γ ∈ [0, 1] , it can be seen that all persons Vj are at optimum for all j, in which ψ (Vp) ≥ γ.
The persons Vk is the best optimal if ψ (Vk) = max

p
{ψ (Vp)} . This algorithm involved both the indivisual’s

evaluations as well as the e�ects of interaction amongst the vertices/objects. This can be an interaction of
two poles of transportation or network problems. One can apply this algorithm to other related problems. A
real life application for diagnosing diseases from a group of people has been considered below.
Suppose during the annual medical checkup, four viral diseases found in a group of 20 people V =
{V1, V2, V3, ..., V20}, through di�erent sources such as insect bite, eating contaminated food, having sex
with an infected person and breathing air polluted by a virus. The above process of infection results in a
diversity of symptoms that vary in severity and character, depending upon the individual factor and the kind
of viral infection. Suppose T = {d1, d2, d3, d4} is the set of parameters such that d1 represents " entering of
virus in human body through insect bite ", d2 represents " entering of virus in human body through eating
contaminated food ", d3 represents " entering of virus in human body through having sex with an infected
person and d4 represents " entering of virus in human body through breathing air polluted by a virus. It is
also assumed that a person Vj may have more than one viral disease. Suppose G* is a simple digraph having
vertex set V of 20 persons, (λ, T) be covering soft set on V indicating which member has what disease and
S = (V , CV) be a soft vertex covering approximation space such that λ (di) := {Vp : Vp is infected through di}
where

λ (d1) = {V4, V5, V6, V7, V8, V9, V16, V18, V19, V20} ,

λ (d2) = {V1, V2, V4, V10, V12, V13, V14, V15, V19} ,
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λ (d3) = {V2, V3, V5, V8, V9, V11, V17, V20} ,

λ (d4) = {V1, V6, V7, V8, V13, V17, V18} .

Let (µ, T) be a covering soft sets on E de�ned by;

µ (di) = {VpVq : Vp is infected by Vq through di}

Let

µ (d1) =
{
V4V6, V5V6, V6V7, V7V9, V9V8, V8V16, V16V20,

V7V20, V16V18, V20V19

}
,

µ (d2) =
{
V1V4, V1V2, V2V4, V4V19, V19V10, V10V12, V12V15,

V13V14, V1V10, V14V15, V15V10, V4V1, V19V1

}
,

µ (d3) =
{

V2V5, V3V5, V5V8, V2V3, V8V9, V9V11, V2V17,
V8V3, V17V20, V9V20, V8V11, V17V2, V20V5, V11V17, V11V5

}
and

µ (d4) = {V1V6, V7V13, V6V7, V18V7, V8V17, V13V18, V13V17, V17V6} .

Clearly G =
(
G*, λ, µ,T

)
is a soft graph, i.e., for each i = 1, 2, 3, 4, Gi = (λ (di) , µ (di)) is a subgraph of G*.

Let D = {S1, S2, S3} be the set of 3medical specialist’s group who examine the patients with respect to the
parameters d1, d2, d3 and d4. Let (π,D) be a soft set over V showing whether a person is diagnosed by viral
disease or not. Suppose

π (S1) = {V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V13, V16, V17, V18, V19, V20} ,

π (S2) = {V1, V2, V3, V4, V6, V10, V12, V13, V14, V15, V18} ,

and
π (S3) = {V1, V2, V3, V4, V9, V10, V13, V18, V20} .

Let S = (V , CV) be a soft vertex covering approximation space. Then
appr

S
(π (S1)) = {V1, V4, V5, V6, V7, V8, V9, V13, V17, V18, V19, V20}, apprS (π (S2)) = ∅ = appr

S
(π (S3))

and apprS (π (Si)) = V , for i = 1, 2, 3. Suppose Ωπ(D)
(
Vj
)
and Ω

π(D)
(
Vj
)
be two fuzzy sets for measure of

optimality and possibly measure of optimality, respectively on E of each object Vi such that

Ωπ(D) (Vp) =
1
3

3∑
k=1

χ
π(St)

(Vp)

and

Ω
π(D) (Vp) =

1
3

3∑
k=1

χ
π(St)

(Vp) .

Here

Ωπ(D) (Vp) =
1
3 for j = 1, 4, 5, 6, 7, 8, 9, 13, 17, 18, 19, 20

and Ωπ(D) (Vp) = 0 for rest of values of p

and
Ω

π(D) (Vp) = 1 for p = 1, 2, 3, ..., 20.

The marginal weight function φ for each Vp can be computed by;

φ (Vp) =
1
k [φr (Vp) + φc (Vp)] .

That is

φ (V1) =
3
10 , φ (V2) =

3
10 , φ (V3) =

3
20 , φ (V4) =

1
4 ,
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φ (V5) =
3
10 , φ (V6) =

1
4 , φ (V7) =

1
4 ,

φ (V8) =
7
20 , φ (V9) =

1
4 , φ (V10) =

1
5 , φ (V11) =

1
5 ,

φ (V12) =
1
10 , φ (V13) =

1
5 , φ (V14) =

1
10 ,

φ (V15) =
3
20 , φ (V16) =

3
20 , φ (V17) =

7
20 , φ (V18) =

3
20 ,

φ (V19) =
1
5 , φ (V20) =

3
10 .

Finally an evaluation function ψ is de�ned on V by

ψ (Vp) =
1
2[Ωπ(D) (Vp) + Ωπ(D) (Vp)]φ (Vp)

That is

ψ (V1) =
1
5 , ψ (V2) =

3
10 , ψ (V3) =

3
40 , ψ (V4) =

1
6 , ψ (V5) =

1
5 ,

ψ (V6) =
1
6 , ψ (V7) =

1
6 ,

ψ (V8) =
7
30 ,ψ (V9) =

1
6 , ψ (V10) =

1
10 , ψ (V11) =

1
10 ,

ψ (V12) =
1
20 ,ψ (V13) =

2
15 ,ψ (V14) =

1
20 ,

ψ (V15) =
3
40 , ψ (V16) =

3
40 ,ψ (V17) =

7
30 , ψ (V18) =

1
10 ,

ψ (V19) =
2
15 ,ψ (V20) =

1
5 .

Hence from the above calculations, the persons at highest risk is V2.
The pseudocode of the above algorithm is presented below;

Pseudo code
(i) Consider G =

(
G*, λ, µ,T

)
a soft graph and evaluation soft set (π,D).

(ii) Find lower and upper S-soft vertex covering approximations of each π (St) .
(iii) Compute the fuzzy functions and Ωπ(D) (Vp) and Ωπ(D) (Vp) given by

Ωπ(D) (Vp) =
1
m

m∑
k=1

χ
π(St)

(Vp)

and

Ω
π(D) (Vp) =

1
m

m∑
k=1

χ
π(St)

(Vp) .

(iv) Calculate the weights for each Vp, given by

φ (Vp) =
1
k [φr (Vp) + φc (Vp)]

(v) Finally calculate the evaluation function given by

ψ (Vp) =
1
2[Ωπ(D) (Vp) + Ωπ(D) (Vp)]φ (Vp)

The person Vk is at high risk if ψ (Vk) = max
p
{ψ (Vp)} .
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5 Conclusion
The applications of soft sets and rough sets that are available in the literature are usually based upon the
individ’s properties of the members of the universe with the given attributes. In decision making problems,
the diversity of attribute/behavior and characteristics with the member’s interaction have not been con-
sidered so far. In the present work, we introduced the notion of soft covering based rough graphs. We not
only discussed the basic properties of such graphs but also formulated a prediction system to optimize the
diagnosis process of diagnosing some diseases among the members working in a factory. This interaction
may cause the spreadness of disease among the sta� members. Using the concepts of lower/upper S-soft
vertex covering approximations, the fuzzy sets Ωπ(D) and Ωπ(D) are introduced, while the marginal fuzzy
sets φr (Vp) and φc (Vp) are used to �nd the measure of interaction of any sta� member Vp with Vq and vice
versa. Finally the evaluation function has pointed out the optimal carriers of diseases. We hope our results
will prove a foundation for decisionmaking problems. In future work we will be working on decisionmaking
problems in which lower/upper covering soft edge approximations are used to optimize the algorithm and
will try to use di�erent techniques to replace the marginal fuzzy sets.
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