
Received March 6, 2019, accepted April 3, 2019, date of publication April 11, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910559

Microarchitecture-Aware Code Generation for
Deep Learning on Single-ISA Heterogeneous
Multi-Core Mobile Processors
JUNMO PARK 1,2, (Student Member, IEEE), YONGIN KWON2,
YONGJUN PARK 3, (Member, IEEE), AND
DONGSUK JEON 1, (Member, IEEE)
1Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea
2System LSI, Samsung Electronics Co., Ltd., Hwaseong 18448, South Korea
3Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Dongsuk Jeon (djeon1@snu.ac.kr)

This work was supported in part by the National Research Foundation of Korea under Grant NRF-2019R1C1C1004927 and Grant
NRF-2016R1C1B2016072, in part by the Information Technology Research Center Support Program under Grant
IITP-2019-2018-0-01421, supervised by the Institute for Information and Communications Technology Promotion, and the System LSI
Division of Samsung Electronics.

ABSTRACT While single-ISA heterogeneous multi-core processors are widely used in mobile computing,
typical code generations optimize the code for a single target core, leaving it less suitable for the other
cores in the processor. We present a microarchitecture-aware code generation methodology to mitigate this
issue. We first suggest adopting Function-Multi-Versioning (FMV) to execute application codes utilizing
a core at full capacity regardless of its microarchitecture. We also propose to add a simple but powerful
backend optimization pass in the compiler to further boost the performance of applicable cores. Based on
these schemes, we developed an automated flow that analyzes the program and generates multiple versions
of hot functions tailored to different microarchitectures. At runtime, the running core chooses an optimal
version to maximize computation performance. The measurements confirm that the methodology improves
the performance of Cortex-A55 and Cortex-A75 cores in Samsung’s next-generation Exynos 9820 processor
by 11.2% and 17.9%, respectively, while running TensorFlow Lite.

INDEX TERMS Edge computing, function multi-versioning, single-ISA heterogeneous multi-core.

I. INTRODUCTION
A. DEEP LEARNING ON SINGLE-ISA HETEROGENEOUS
MULTI-CORE PROCESSORS
The big.LITTLE architectures consisting of multiple cores
with different microarchitectures are widely adopted in
mobile environments where the tradeoff between power effi-
ciency and performance is a critical issue. In order to fully
exploit the benefit of those architectures, operating systems
need to handle each program appropriately. On the Android
platforms, tasks are divided into background, foreground, and
top-app. The type of each task determines where it should be
executed; on most of big.LITTLE systems, top-app, and fore-
ground tasks can run on any core, whereas background tasks
can run only on little core to save power consumption. For
instance, if a task runs in the background, the scheduler will

The associate editor coordinating the review of this manuscript and
approving it for publication was Xinyu Du.

assign the task to the little core group. In addition, many opti-
mized schedulers such as an energy aware scheduler (EAS)
have been applied to dynamically select an appropriate core in
the assigned core group by scrutinizing the usage pattern and
computational requirements [1]–[4]. The type of task may be
changed from background to top-app or vice versa by user
input, making it impossible to predict which core group the
given task will be assigned to.

As deep learning algorithms have evolved in the last few
years, developers have made many efforts to accelerate an
inference process and improve energy efficiency in mobile
environments. For instance, Google proposed multiple
convolutional neural network (CNN) models optimized for
real-time processing in mobile systems, accompanied by
quantized models to further reduce overheads [5], [6].

The most performance-critical part of the inference
using deep neural networks is a general matrix multiplica-
tion (GEMM). To accelerate GEMM operations, developers

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52371

https://orcid.org/0000-0002-8500-8874
https://orcid.org/0000-0003-3725-0380
https://orcid.org/0000-0002-0395-8076


J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

often apply hand-tuned assembly codes or intrinsic functions
such as NEON in ARM architectures. For instance, two types
of libraries are used for maximizing GEMM performance
in the Tensorflow Lite infrastructure: 32-bit floating-point
models use the Eigen library [7] based on ARM-NEON
intrinsic functions, whereas 8-bit quantized models employ
the gemmlowp library [8] consisting of hand-tuned assembly
codes.

Compilers typically generate assembly codes with differ-
ent patterns depending on the microarchitecture characteris-
tics for maximal performance. Since the compiler-generated
code pattern is optimized only for a target core, execution of
the code may undergo performance degradation on the other
cores in the processor with a big.LITTLE configuration.

The GCC compiler currently supports big.LITTLE -mcpu
option in order to address this issue, which tries to opti-
mize the code considering hardware characteristics of both
big and little cores simultaneously. However, the resulting
code still exhibits inferior performance to the codes solely
optimized for each core due to architectural differences. For
big.LITTLE architectures with big out-of-order and little in-
order cores, traditional static compilers such as GCC generate
assembly codes primarily focusing on little cores that do
not have sufficient hardware resources such as a register
renaming unit and a re-order buffer. As a result, significant
performance degradation may be incurred when the code is
executed in big cores.

B. PROPOSED APPROACH
To solve the aforementioned code inefficiency problem,
we propose a novel code generation methodology for single-
ISA heterogeneous multi-core mobile processors aimed
at deep learning applications. We first suggest adopting
Function-Multi-Versioning (FMV) to execute application
codes utilizing a core at full capacity regardless of its microar-
chitecture. The concept of FMV was initially proposed sev-
eral decades ago [9], but it has not been adopted broadly due
to large code space overhead from generating multiple copies
of the code. However, for mobile deep learning frameworks
such as Tensorflow Lite, it is observed that a program is
spending most of its time performing only a few operations
such as GEMM.Under this observation, we find that applying
FMV to only a set of hot functions enhances performance
noticeably while imposing very little code space overhead.

We also propose to add a simple but powerful back-
end optimization pass in the compiler to further boost the
performance of smaller cores. By modifying the baseline
AArch64 load-store optimization pass with the introduction
of a load split pass, the code generation scheme achieves sig-
nificant performance improvement for smaller cores running
GEMM.

In order to apply these techniques to general systems,
we also develop an automatic microarchitecture-aware code
generation flow. It first analyzes a target program and selects
candidate functions from the list of functions sorted by exe-
cution frequency based on the profiling result. Then the flow

Algorithm 1 Load Split Pass
1. function load-split-pass(loop L ε in function)
2. for each instruction I ε basic blocks in L
3. if I==128-bit_load then
4. Find available register r ε GPR64RegClass
5. if exist(r)then
6. Create I64−bit_load with Rsource = Rsource,I ,

Rdest = Rdest,I
7. Create I64−bit_load with Rsource = Rsource,I + 8,

Rdest = r
8. Create I64−bit_mov with Rsource= r andRdest =Rdest,I
9. Remove I
10. end if
11. end if
12. end for

clones the target functions and inserts a runtime selector,
resulting in target-specific assembly codes after compilation.
At runtime, the selector checks IDCODE in the Performance
Monitoring Unit (PMU) register of the current core and
chooses an optimal version among the clones.

The proposed code generation flow was tested on Sam-
sung Exynos 8895 processor as well as next-generation
Exynos 9820 processor. Measurements show a performance
improvement of 12.7% for Exynos-M2 core in Exynos 8895,
and performance boosts of 11.2% and 17.9% for Cortex-
A55 and A75 cores in Exynos 9820, respectively, confirming
that the proposed methodology is effective for processing
deep learning models on single-ISA heterogeneous multi-
core processors.

II. RELATED WORKS AND MOTIVATION
A. FUNCTION MULTI VERSIONING (FMV)
FMV has been extensively studied in the last few years
in order to maximize performance while suppressing code
space increase. A program may run differently depending on
the input data pattern due to unexpected control flows from
conditional statements and varying call paths in a function.
The conventional FMV technique profiles the program and
generates multiple copies of the code, each optimized for
specific input data pattern, through feedback-driven program
optimization. This process may be repeated until an optimal
point is reached [10], [11]. Some works also suggest applying
the multi-versioning technique to smaller code regions such
as a loop or set of basic blocks [12], [13].

Although conventional FMV schemes shorten the execu-
tion time of the program through adaptive code selection at
runtime, deep learning algorithms usually exhibit very regular
data patterns, making input-dependent FMV less attractive.
In addition, it still optimizes the code only for a single target
core although each microarchitecture may have largely dif-
ferent hardware configurations.

The LLVM compiler [14], which is widely used in mobile
environments, currently supports optimizations of target

52372 VOLUME 7, 2019



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

programs for a specific microarchitecture. If the compiler
obtains target microarchitecture information using the -mcpu
option, the compiler optimizes the code considering hard-
ware resources of the given microarchitecture. For instance,
the compiler can enforce different register allocation policies
based on the information about the target microarchitecture.
For in-order machines, the register numbers cannot be reused
due to lack of register renaming unit in the microarchitecture.
However, out-of-order machines usually have register renam-
ing units, and hence the compiler can employ an improved
instruction scheduling through reusing register numbers.

B. GENERAL MATRIX MULTIPLICATION (GEMM)
GEMM is considered to be a key library in deep learning
algorithms based on deep neural networks. For minimizing
inference time on mobile devices, some prior works proposed
to optimize the neural networks (e.g., Mobilenets [5] and
Mnasnet [15]), whereas others try to reduce arithmetic cal-
culation overhead by replacing costly 32-bit floating-point
operations with 16-bit operations or even smaller fixed-point
operations [6], [16].

FIGURE 1. Proportion of GEMM libraries in execution time.

In this work, for all analyses we use the Tensorflow Lite
which is a lightweight version of TensorFlow aimed at run-
ning machine learning models on mobile and embedded
devices. Tensorflow Lite supports both 32-bit floating-point
and 8-bit quantized models. Figure 1 shows the percentage
of GEMM libraries in execution time when different CNN
models are processed using Tensorflow Lite on Exynos 9820
processor, which implies that the main bottleneck can be only
a few functions, and they consume most of the computa-
tion time. Specifically, the hottest function alone takes 64%
and 61% of the runtime in 32-bit floating-point and 8-bit
quantized models, respectively. This result suggests that if
FMV is applied only to those functions, we could obtain sig-
nificant performance improvement without code bloat. Note
that some 32-bit floating-point models such as Mobilenet [5]
and Mnasnet [15] have the second hottest function due to
their specific neural network architectures that require depth-
wise convolutions [5]. Table 1 displays representative models
used for analyses throughout the paper, which are extracted
from the hosted models and have varying neural network

Table 1. Selected test models of TensorFlow Lite.

architectures and input sizes of 224× 224× 1 or larger. Other
hosted models are mostly derivative of the selected models.

C. MICROARCHITECTURE-AWARE CODE GENERATION
Both GCC and LLVM currently support -mcpu option for
microarchitecture-aware code generation. Without such an
option, the compiler generates a generic code for generalized
architecture such as AArch64 and ARMv7-a. This is equiva-
lent to using -mcpu = generic option at compile time.

FIGURE 2. Measured inference time on various cores with different
-mcpu options used for compilation.

Figure 2 shows the measurement results when we com-
pile Tensorflow Lite with different -mcpu options and run
the models from Table 1 on various cores. Note that the
baseline is -mcpu = generic which is being used by most
Android developers. Google provides a toolchain for building
Android applications called Native Development Kit (NDK).
Although NDK does support -mcpu option, in most cases
developers use a generic option since there exists a wide range
of SoCs with different microarchitectures. In Figure 2, if we
use –mcpu = exynos-m2 option during compilation, a sig-
nificant improvement of 12.6% is observed for Exynos-M2

VOLUME 7, 2019 52373



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

core in Exynos 8895 processor. However, that option results
in 13.8% performance degradation for Cortex-A53 core in
the same Exynos 8895 processor, confirming that a simple
microarchitecture-aware code generation is not effective in
heterogeneous multi-core processors.

III. PROPOSED FMV SCHEME FOR HETEROGENEOUS
MULTI-CORE PROCESSORS
As discussed earlier, the conventional FMV scheme generates
multiple versions of a given code but does not allow dynamic
version change when a task migrates to a different core.
In other words, if a code is optimized for one core, the code
may suffer from performance degradation on the other cores.

FIGURE 3. Proposed FMV scheme.

To resolve this issue, we propose a new FMV scheme
which enables dynamic version change of target code regions
at runtime so that each core can execute the version solely
optimized for that core. Figure 3 depicts the proposed FMV
scheme. Multiple versions of a target function are generated
where each version is optimized differently by the compiler
considering the target microarchitecture, and a runtime selec-
tor is inserted into the program.

For the proposed FMV scheme, the program must know
which core it is currently located in at runtime to select a
proper version. Hence, the program needs access to PMU
to retrieve such information. PMU is an optional feature
for some architectures such as ARMv8-A, but the feature
is still strongly recommended by ARM [17] and most SoC
manufacturers integrate the PMU block in the processor.

A. RUNTIME SELECTOR
After a scheduler assigns a program to an appropriate
core, the program must identify the running core for FMV.
We insert a runtime selector in the program so that the runtime
selector dynamically chooses one of the versions that fits
the current microarchitecture during execution. The selector
can be realized with a few conditional statements followed
by additional function calls. Conventional input-aware FMV
schemes also employ a runtime selector in the flow, but the
selector must analyze input data in detail to determine an
optimal version, which translates to large processing over-
heads [18], [19]. However, our runtime selector chooses a

version by simply looking at the implementer (IMP) and iden-
tification (IDCODE) information retrieved from the PMU.
Since the runtime selector always chooses the same version
unless the program migrates to a different core, the pattern
can be well predicted by the branch predictor in the core, and
pipeline stalls due to branch predictionmisses can be avoided.
The only overhead of the runtime selector is reading PMU
register and comparing it against predefined values, which
does not impose noticeable performance degradation in real-
world experiments as demonstrated in Section 5. The runtime
selector is inserted as an inline assembly and Code 1 shows
an example runtime selector.

CODE 1. Runtime selector example.

B. MULTI-VERSIONED FUNCTIONS
In Tensorflow Lite, GEMM algorithm is implemented using
two libraries: gemmlowp [8] and Eigen library [7]. Contrary
to the gemmlowp library which is implemented in hand-tuned
assembly, main functions of the Eigen library are written in
ARM NEON intrinsics and hence can be optimized by the
compiler. For those functions, the compiler selects NEON
instructions and performs back-end optimizations including
register allocation, instruction scheduling, and peephole opti-
mizations such as load-store optimization. For FMV, target
functions are cloned and additional function attributes stating
target microarchitecture are inserted as shown in Code 2.

CODE 2. Multi-versioned function example.

52374 VOLUME 7, 2019



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

With the added attributes, the compiler can recognize the
target microarchitecture of the function even if we use -
mcpu = generic option or leave it empty. This information is
also transferred to the compiler backend for applying target
specific optimizations.

IV. LOAD SPLIT OPTIMIZATION AND LLVM-BASED
UNIFIED AUTOMATIC CODE GENERATION
While the FMV scheme allows conventional compilers to
optimize functions for multiple target microarchitectures,
in this section we propose an additional optimization tech-
nique for the backend of the LLVM compiler to further
enhance performance. The neon-gemm-kernel-benchmark for
the gemmlowp library provides an example hand-tuned
assembly code for ARM Cortex-A55 core, where a sin-
gle 128-bit load instruction is replaced with three separate
instructions as shown in Code 3.

CODE 3. Load split assembly example.

Cortex-A55 microarchitecture does not allow loading
128 bits at once. Hence, the core internally realizes the
128-bit load operation by loading 64 bits twice, which cannot
be executed in the same cycle although Cortex-A55 supports
dual-issue. On the other hand, manually splitting load instruc-
tions as shown in Code 3 and placing other arithmetic instruc-
tions between them can mitigate pipeline stalls by processing
a load and an arithmetic operation in the same cycle through
dual-issue. We refer to this scheme as load split. Inspired by
this observation, we propose a backend optimization pass for
the LLVM compiler.

A. LLVM BACKEND PASSES
The LLVM compiler backend has more than 100 opti-
mization passes, where the instruction selection and load-
store optimization passes play an important role in boosting
GEMM performance. Since GEMM operations require fre-
quent matrix data load, the overall performance is largely
affected by which load instructions are selected [20]. The
load-store optimization pass attempts to combine instruc-
tions, searching for contiguous loads or stores that can be
combined into a single instruction as depicted in Code 4.

CODE 4. Load pairing example.

Combining instructions reduces code size and lowers
instruction fetch and decode overhead on the core. However,

FIGURE 4. Proposed automatic code generation flow.

this optimization reverses the effect of load split and, there-
fore, this pass is turned off for Cortex-A55 and other similar
microarchitectures in our flow.

B. LOAD SPLIT OPTIMIZATION PASS
We implement an additional optimization pass for load split
after the load-store optimization pass. The load split opti-
mization can be applied to any load instructions in a function,
but we enforce the pass only for loops to minimize code size
increase. A typical workflow is described in Algorithm 1.

This optimization provides maximal benefit when enough
number of other independent arithmetic instructions can be
placed between newly created load instructions. For example,
the hottest function of Tensorflow Lite consists of 32 128-bit
loads and 96 SIMD-FP-multiply-accumulate instructions,
providing a good ratio between load and arithmetic opera-
tions. However, the 2nd hottest function consists of 12 128-bit
loads, 4 SIMD-FP-multiply and 4 SIMD-FP-add, suggesting
less performance boosting due to load split optimization.

After the load split optimization pass, we need to run
instruction scheduling again in order to move arithmetic
instructions into the space between the split instructions.
LLVM already has the PostRAScheduler feature that sched-
ules again after register allocation. Currently, the feature is
not activated for Cortex-A55/75 in LLVM 7.0, which is the
most up-to-date version, and we reactivate this feature in the
compilation step of the proposed flow.

C. UNIFIED AUTOMATIC MICROARCHITECTURE-AWARE
CODE GENERATION FLOW
The proposed code generation methodology should be
applied to only a subset of functions in order to suppress code
size increase. We present a unified automatic code generation
flow depicted in Figure 4. The flow first builds the target
program while collecting build logs which are later used for

VOLUME 7, 2019 52375



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

tracking source files to be modified. Then the flow profiles
the program using Linux Perf [21], which calculates the
overhead of each function and sorts the functions by their
hotness. In the next step, the function at the top of the list
is selected and cloned through FMV. Each clone is compiled
with an optimal target microarchitecture directive as well as
goes through the load split pass in the backend depending on
the target microarchitecture. Finally, the resulting program is
profiled on each core and the flow removes the versions that
do not exhibit performance improvement. The flow continues
onto the next function in the list if its share in runtime is higher
than a threshold.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
In this work, we evaluate the flow using Tensorflow Lite
framework which is a strong candidate for deep learn-
ing applications on mobile platforms. We run 12 floating
point models and 4 quantized models which have different
structures and use various sizes of memory. The flow was
tested on two mobile processors: Samsung Exynos 8895 and
next-generation Exynos 9820 processors. The Exynos 9820
features three processor clusters to realize a big.LITTLE
architecture, each consisting of four Cortex-A55 cores, two
Cortex-A75 cores, and two Exynos-M4 cores, respectively.
The Exynos 8895 has a typical ARM big.LITTLE microar-
chitecture and includes two clusters in total, each with four
Cortex-A53 cores and four Exynos-M2 cores, respectively.

For evaluation, tasks are processed on a specific core using
taskset command. The frequencies of processors andmemory
interface are all fixed during experiments for reliable mea-
surements. Since the two processors require different versions
of Android OS, Ubuntu is used instead for experiments to
align the experiment environments. We use chroot tool for
running Ubuntu on each device and building Tensorflow Lite
for Linux.

B. FLOATING-POINT MODELS
We first evaluate the proposed flow using the floating-
point models in the Tensorflow Lite benchmark. Those
models employ the Eigen library based on intrinsic func-
tions. Figure 5 and 6 represent the relative runtime of each
model using our code generation flow for Exynos 8895 and
9820 processors, respectively, compared to the baseline in
which a generic option is used for compilation. In our flow,
the FMV feature is used for all experiments in order to gener-
atemultiple versions solely optimized for eachmicroarchitec-
ture, and the backend optimization is enabled for Cortex-A55
and A75 cores in Exynos 9820.

For Exynos 8895, the big core (Exynos-M2) exhibits
noticeable performance improvements across all models,
with an average of 13.0%. For Exynos 9820, the little and
middle cores (Cortex-A55/A75) show apparent performance
boosting of 11.2% and 17.9%, respectively, on average.
Since the load split technique is enabled for those cores, the

FIGURE 5. Performance improvement of cores in Exynos 8895 processor.

FIGURE 6. Performance improvement of cores in Exynos 9820 processor.

improvements are the combined effects of using an optimal
compilation directive for each clone of a target function and
applying additional backend optimization. Figure 7 displays
the runtime reduction after applying compilation directives
only, and after using both techniques.With compilation direc-
tives, the throughput of Cortex-A55 and A75 are improved by
3.0% and 2.9%, respectively, whereas the compiler backend
optimization enhances the performance further by 8.2% and
15.0%, respectively.

FIGURE 7. Effects of optimal compilation directive and load split
optimization.

In the aforementioned experiments, the flow creates
6 clones of the target functions in order to support Cortex-
A53/A55/A75 and Exynos-M2/M3/M4 cores altogether.
However, the size of the generated binary increases by
only 3.66%.

52376 VOLUME 7, 2019



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

FIGURE 8. Performance improvements over GCC.

FIGURE 9. Assembly code optimization for gemmlowp library using load
split technique.

We also compiled Tensorflow Lite using GCC 8.2 and
measured the performance on Cortex-A55 and A75 cores in
Exynos 9820 (Figure 8). On Cortex-A55, LLVM and LLVM
with load-split optimization show 1.47% and 12.2% better
performance than GCC, respectively, on average. On Cortex-
A75, LLVM and LLVM with load-split optimization exhibit
9.49% and 24.88% better performance than GCC. We also
tested GCC 7.2 for completeness, but it showed even lower
performance than GCC 8.2. Google decided to deprecate
GCC in their toolchain in October 2016 [22] and hence most
of the mobile applications are expected to be built by LLVM.

C. QUANTIZED MODELS
The quantizedmodels use the gemmlowp library, which relies
on hand-tuned assembly codes. Therefore, automated code
generation flow cannot be directly applied. However, we can
still manually adopt the proposed FMV and load split opti-
mization techniques to improve computation performance.
Figure 9 shows that the techniques raise the performance by
12.5% when applied to Cortex-A55 core. If the same code is
used for Exynos-M4 accompanied in Exynos 9820, the per-
formance drops by 3.5%, and this is remedied by applying the
proposed FMV in the assembly, confirming the effectiveness
of our flow. Note that we modified the Tensorflow Lite build
option to enable ARMv8.2 Dot Product feature.

VI. CONCLUSION
In this work, we present a microarchitecture-aware code gen-
eration technique for single-ISA heterogeneous multi-core
processors. By applying FMV and introducing additional

optimization pass in the compiler backend, both Exynos
8895 and the next-generation Exynos 9820 processors exhibit
significant performance improvements for deep learning
applications on all of 16 famous models. Although the flow
was tested for two processors, the Cortex-A55 and A75 cores
are expected to be used in most mobile SoCs in the near
future. In order to adopt the flow in the current Android
environments, it is essential to access PMU registers from
user level. This is not allowed in the current OS version, but
we hope this change is made in the next releases so that deep
learning applications can be efficiently accelerated on mobile
processors.

REFERENCES
[1] ARM and Linaro. Energy Aware Scheduling (EAS). Accessed: Dec.

2018. [Online]. Available: https://developer.arm.com/open-source/energy-
aware-scheduling

[2] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
‘‘Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,’’ ACM SIGARCH Comput. Archit. News, vol. 32,
no. 2, p. 64, 2004.

[3] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
‘‘Fairness-aware scheduling on single-ISA heterogeneous multi-cores,’’
in Proc. 22nd Int. Conf. Parallel Archit. Compilation Techn. (PACT),
Sep. 2013, pp. 177–187.

[4] J. Corbet. (2016). Scheduling for Android Devices. Linux Plumbers Con-
ference. [Online]. Available: https://lwn.net/Articles/706374/

[5] A. G. Howard et al., ‘‘MobileNets: Efficient convolutional neural networks
for mobile vision applications,,’’ CoRR, vol. abs/1704.04861, 2017.

[6] B. Jacob et al., ‘‘Quantization and training of neural networks for efficient
integer-arithmetic-only inference,’’ in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), 2018.

[7] G. Guennebaud et al. (2010). Eigen V3. [Online]. Available:
http://eigen.tuxfamily.org

[8] B. Jacob. (2018). GEMMLOWP: A Small Self-Contained Low-Precision
GEMM Library. [Online]. Available: https://github.com/google/
gemmlowp

[9] K. D. Cooper, M. W. Hall, and K. Kennedy, ‘‘Procedure cloning,’’ in Proc.
Int. Conf. Comput. Lang., Apr. 1992, pp. 96–105.

[10] D. Chen et al., ‘‘Taming hardware event samples for FDO compilation,’’ in
Proc. 8th Annu. IEEE/ACM Int. Symp. Code Gener. Optim., vol. 10, 2010,
pp. 42–52.

[11] D. Chen and D. X. Li, ‘‘AutoFDO: Automatic feedback-directed optimiza-
tion for warehouse-scale applications,’’ in Proc. Int. Symp. Code Gener.
Optim., 2016, vol. 1, no. 212, pp. 12–23.

[12] X. Chen and S. Long, ‘‘Adaptive multi-versioning for OpenMP paral-
lelization via machine learning,’’ in Proc. 15th Int. Conf. Parallel Distrib.
Syst. (ICPADS), vol. 12, 2009, pp. 907–912.

[13] K. Koukos, P. Ekemark, G. Zacharopoulos, V. Spiliopoulos, S. Kaxiras,
and A. Jimborean, ‘‘Multiversioned decoupled access-execute: The key to
energy-efficient compilation of general-purpose programs,’’ in Proc. 25th
Int. Conf. Compiler Construct., 2016, pp. 121–131.

[14] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), Mar. 2004, pp. 75–86.

[15] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, ‘‘Mnas-
Net: Platform-aware neural architecture search for mobile,’’ CoRR, vol.
abs/1807.1, 2018.

[16] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2016.

[17] ARM Architecture Reference Manual ARMv8, for ARMv8-A Architecture
Profile, ARM, 2018.

[18] K. Tian, Y. Jiang, E. Z. Zhang, andX. Shen, ‘‘An input-centric paradigm for
program dynamic optimizations,’’ in Proc. ACM Int. Conf. Object Oriented
Program. Syst. Lang. Appl. (OOPSLA), 2010, vol. 45, no. 10, pp. 125–139.

[19] P.-F. Chuang, H. Chen, G. F. Hoflehner, D. M. Lavery, and W.-C. Hsu,
‘‘Dynamic Profile Driven Code Version Selection,’’ in Proc. 11th Annu.
Workshop Interact. Between Compil. Comput. Archit., 2007, pp. 74–81.

VOLUME 7, 2019 52377



J. Park et al.: Microarchitecture-Aware Code Generation for Deep Learning on Single-ISA Heterogeneous Multi-Core Mobile Processors

[20] X. Su, X. Liao, and J. Xue, ‘‘Automatic generation of fast BLAS3-GEMM:
A portable compiler approach,’’ in Proc. IEEE/ACM Int. Symp. Code
Gener. Optim. (CGO), Feb. 2017, pp. 122–133.

[21] Linux Perf. Accessed: Dec. 2018. [Online]. Available:
https://perf.wiki.kernel.org/

[22] Google. (2019). NDK Revision History. Accessed: Jan. 2019.
[Online]. Available: https://developer.android.com/ndk/downloads/
revision_history

JUNMO PARK received the B.S. degree in com-
puter science from Kwangwoon University in
2012. After that, he worked at Samsung Elec-
tronics for around 7 years, working on Compiler
Optimization and Development. He is currently
pursuing the M.S. degree with the Graduate
School of Convergence Science and Technology
at Seoul National University, South Korea. His
research interests include deep learning, com-
piler, embedded systems, HW/SW co-design and
optimizations.

YONGIN KWON received the B.Sc. degree in
electrical and electronic engineering from the
Korea Advanced Institute of Science and Tech-
nology, South Korea, in 2008, and the M.S. and
Ph.D. degrees in electrical and computer engineer-
ing from Seoul National University, South Korea,
in 2010 and 2015, respectively. He is currently
a Software Engineer with Samsung Electronics.
His research interests include mobile cloud com-
puting, compiler, deep learning, and embedded
systems.

YONGJUN PARK received the Ph.D. degree
in electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2013. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, Hanyang University,
Seoul, South Korea. His research interests include
compilers and computer architectures for various
computer systems.

DONGSUK JEON (S’10–M’15) received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2009,
and the Ph.D. degree in electrical engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2014. From 2014 to 2015, he was a Post-
doctoral Associate with the Massachusetts Insti-
tute of Technology, Cambridge, MA, USA. He is
currently an Assistant Professor with the Grad-
uate School of Convergence Science and Tech-

nology, Seoul National University. His current research interests include
energy-efficient signal processing, low-power circuit, and SoC for mobile
applications.

52378 VOLUME 7, 2019


	INTRODUCTION
	DEEP LEARNING ON SINGLE-ISA HETEROGENEOUS MULTI-CORE PROCESSORS
	PROPOSED APPROACH

	RELATED WORKS AND MOTIVATION
	FUNCTION MULTI VERSIONING (FMV)
	GENERAL MATRIX MULTIPLICATION (GEMM)
	MICROARCHITECTURE-AWARE CODE GENERATION

	PROPOSED FMV SCHEME FOR HETEROGENEOUS MULTI-CORE PROCESSORS
	RUNTIME SELECTOR
	MULTI-VERSIONED FUNCTIONS

	LOAD SPLIT OPTIMIZATION AND LLVM-BASED UNIFIED AUTOMATIC CODE GENERATION
	LLVM BACKEND PASSES
	LOAD SPLIT OPTIMIZATION PASS
	UNIFIED AUTOMATIC MICROARCHITECTURE-AWARE CODE GENERATION FLOW

	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP
	FLOATING-POINT MODELS
	QUANTIZED MODELS

	CONCLUSION
	REFERENCES
	Biographies
	JUNMO PARK
	YONGIN KWON
	YONGJUN PARK
	DONGSUK JEON


