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Correlation functions in Schwarzian liquid
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We analytically study low-temperature universal properties of a class of SYK-type models in the large N
limit from the AdS, gravity dual side in terms of SL(2, R)-invariant Schwarzian action. The quantum
correction to the conformal field theory CFT; two-point correlation function due to the Schwarzian action
produces a transfer of degree of freedom from the quasiparticle peak to the Hubbard band in density of
states (DOS), a signature strong correlation. In Schwinger-Keldysh (SK) formalism, we calculate higher-
point thermal out-of-time order correlation (OTOC) functions, which indicate quantum chaos by having a
Lyapunov exponent. Higher-order local spin-spin correlations are also calculated, which can be related to
the dynamical local susceptibility of quantum liquids such as the spin liquid in disordered metals, marginal

Fermi liquid, non-Fermi liquid, etc.
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I. INTRODUCTION

Recently, the Sachdev-Ye-Kitaev (SYK) model [1,2]
attracted a lot of interest [3—37]. It is a (0 + 1)-dimensional
quantum mechanical system composed of N Majorana
fermions, with a random, all-to-all quartic interaction.

There are three novel features of the SYK model. The first
one is the solvability at large N in the strong coupling limit.
The second one is the emergence of conformal symmetry at
the IR limit, as well as its spontaneous breaking which
results in soft modes as the pseudo Nambu-Goldstone
bosons (pNGBs) [7,23,33]. The third one is the quantum
chaos behavior in four-point correlation functions.

There are several ways to generalize the SYK model. One
is the generalization in flavor symmetry, which generalize
the four-Majorana fermion interactions of SYK-like model
to gs-fermion with f-flavors [12]. The other is its gener-
alization in higher-dimensional spacetime [11,13,22]. Since
in the (0 + 1)-dimensional SYK model, the Majorana field
w is dimensionless ([y] = 0), the coupling J is always
dimensionful ([/] = 1). Thus, the p > 4-fermion interaction
is always relevant at UV. While in general this is not true in
D > 2, since the UV relevance of the p-fermions
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interactions depends on the dimension of the spacetime.
For example, in a generalization of the (1 + 1)-dimensional
SYK model, in analogy to the two-dimensional Gross-
Neveu model, it can be obtained by integrating out the tensor
field that coupled with a new vector field [24]. In this case,
the fermion field is dimensionful ([y] = 1/2), meanwhile
the coupling is dimensionless ([J] = 0). Thus, the four-
fermion interaction term is marginal. Generally speaking,
the generalization to higher dimensions (D > 3) will inevi-
tably lead to irrelevant p-fermion interactions.

In this paper, motivated by the novel features of the spin
liquid phase in SY state [2,38] in disordered metals
depicted by SYK-like models [39-41], we study a general
class of strongly interacting (0 + 1)-dimensional quantum
mechanical models in the large N limit [16], whose low-
energy dynamics is depicted by the Schwarzian action. The
action leads to pNGBs modes, which results in quantum
corrections to the correlations of the quantum liquid such as
“marginal Fermi liquid” (MFL) [42] and “fractionalized
Fermi liquid” (FFL) [43].

The Schwarzian action is determined by the pattern of
spontaneous breaking of reparametrization symmetry [7]. It
has been conjectured that the gravity dual of the SYK
model can be described by a two-dimensional dilaton
gravity [6]: one example is the Jackiw-Teitelboim (JT)
model [44,45]. Another example is the Almheiri-Polchinski
(AP) model [8,46]. The low-energy quantum description of
the SYK model is proposed to be holographically dual to a
(1 + 1)-dimensional model of a black hole [5,23], although
it is not completely conventional AdS/CFT.

By taking accounting of the soft mode from Schwarzian
effective action, we set up a relatively simple reductive field
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method to calculate higher-point quantum correlation func-
tions, order by order at large N. With the matter correlation
functions, we are able to calculate the spin-spin correlation
functions and retarded Greens’ functions. As it will be shown,
the Schwarzian correction to the AdS, symmetry, leads to a
Hubbard band in the spectral function by transferring the
degree of freedoms from the quasiparticle peak at CFT fixed
point to the side band, a hallmark of the strongly interacting
systems. Our analytical results are consistent with the general
tendency of the modification of the spectral functions by
interaction, by computing in density functional theory (DFT)
[47], e.g., the DOS result as Fig. 4B in Ref. [48], or in the
dynamical mean-field theory (DMFT) approach [49].

The identification of the gravity dual of the SYK model
is not exact. However, in strongly interacting system, the
explicit model dependence is easily washed out. Namely, if
two models have the same symmetry, the IR dynamics is
controlled only by universal features. Whatever gravity
dual model we take, the low-energy result is the same and
controlled by the Schwarzian action. This is why we
believe that our calculation is relevant to SYK model.

We are not calculating the SYK model, which is about the
fermions with random coupling, while we are dealing with
the correlation function of bosonic operators without it.
However, it is rather interesting to observe that the resulting
two- and four-point correlation functions are almost the
same (apart from the sign factors) with the known results of
SYK models [5] by field theory calculations.

We think the reason is as follow: in (0 + 1) dimension
there is no spinor and spin connection, and there is not
much difference between the fundamental field and the
composite boson apart from the scaling dimension and
antisymmetry coming from the anticommutativity of fer-
mion operators. So it is not surprising that the gravity
calculation which pick up the leading order in large N
should give the same correlation function if we can set the
scaling dimension arbitrary.

The paper is organized as follow. In Sec. II, we study the
correlation functions from Schwarzian action at both zero
and finite temperature. In Sec. III, we study the zero
temperature and thermal retarded Green’s functions with
loop correction from pNGBs, and local dynamical suscep-
tibility of quantum liquid. The higher-order local spin-spin
correlation functions beyond local susceptibility are also
investigated. Generalization of AdS, spacetime as near IR
horizon of RN black hole in AdS,, | spacetime is studied in
Appendix C. In Sec. IV, we study higher-point correlation
functions, the thermal OTOC functions in SK formalism.

II. CORRELATION FUNCTIONS FROM
SCHWARZIAN

In this section, based on the low-energy effective action
of the Schwarzian theory of time reparametrization from
two-dimensional gravity, we calculate the correlation
functions, especially the two-point one [50].

A. Effective action of gravity and soft mode

In the linearized theory of the boundary action of
two-dimensional gravity, i.e., one-dimensional effective
action as

Sur = =C, [ dp(0Seh(r (0.0, (21

C, is a constant depending on the bulk gravity parameter,
is the boundary time coordinate, f(7) is the field variable,
¢,(t) is the normalizable part of the dilaton, which is a
constant on the cutoff boundary and plays a role of external
coupling, while the divergent part that blows up at
boundary is absorbed by a counter term, and can be
identified as the source in nearly-AdS, (NAdS,)/nearly-
CFT; (NCFT),) description, Sch(f,r) is the Schwarzian
derivative defined as

1IN\ 1 11\ 2 111 11\ 2
sair.n = (5) -3 (5) =5-3(5) e
f 2\f fo2\f
where the prime ’ denotes the derivative with respect to 7.
The zero modes is described by the Schwarzian action. The
effective action has a global SL(2) invariance, which is
obvious that by noticing Sch((af + b)/(cf +d),t) =
Sch(f, ). By doing variation with respect to f(z), the
action becomes

Sch(f(z), )

OSett ~ _Cg / ¢r(t)dt[ 7 of. (23)
and by using the property as
[Seh(f. 1)) _ [1 <(f’)’>’}’ o4
f AN ’ 24)
and that §(f')~' = —(f")~26f", one obtains the field equa-

tion of motion with respect to 7(s) turns out to be

]

which becomes [Sch(f, )]/t = 0 when ¢, is a constant.
One of the simplest nontrivial solutions might be a non-
constant function with constant Schwarzian.

(2.5)

1. Zero temperature soft mode propagator

Consider a linear transformation f(z) = z(¢), then acco-
rding to the composition rule of Schwarzian derivative as
Sch(g(f). 1) = f?Sch(g(f). f) + Sch(f,7),  (2.6)

where g(f) = g(f(¢)) and f = f(¢), one has Sch(f,) =
72Sch(f,7) + Sch(z, t), where Sch(f,7) = 1/2, when 7 is
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a linear function of 7, Sch(z, s) is constant and satisfies the
equation of motion of the Schwarzian action, i.e.,
Sch(z,t)'/f = 0. In the perturbative approach, one can set

(1) =t + ek(t), (2.7)

where ¢ = it is imaginary time and € < 1 is the expansion
parameter, which can be chosen as the bulk gravitational
interaction coupling, i.e., € = ky ~ /Gy, which is propor-
tional to Gy in gravity or large N='/2 as in the SYK
model. By expanding the Schwarzian action, one has

Sch(f.1) = ek” + ¢ (—%k”z - (k”k’)’) +0(e%). (2.8)

By dropping total derivative term, the leading-order action
at €% order reads as
3C
S = 52 / ik, (2.9)
where C «x ¢,. By doing a Fourier transformation
k(t) =", k,e™, the action becomes
3C
Sur =% / din*k k.. (2.10)
where hence and forth, the Einstein summation notation

convention is applied for repeated n € Z. Thus, the soft
mode propagator can be obtained

1 int

Elk(t)k(t)) =——S E
(k(t,)k(t,)) 6ﬂCn¢0 v

1
2 / _ _ -
k(1)K (12)) =5 sen(?) (z =[] 27— o] e,
SR e (“Erba=l?). @)
6xC 6 2
where t = t; — t, and we have used that
Li L'1—12'4Bl il
14(Z)+ 14 E ——47( ﬂl) 4 +g nzg
4 3 2.2 4
S T AT (2.12)

246 6 45

where z = e'’. Li,(x) is the polylogarithmic function
defined by the series Li,(x) =Y ¢, z*/k" for |z] <1
and B, (x) is the Bernoulli polynomial.

2. Thermal soft mode propagator
Consider a thermal circle transformation f(z) =
tan(zz/p) satisfying f(z + ) = f(r) with period length
f = 2z, in other words, by imposing a mapping from

(2.13)

then the composition rule of Schwarzian derivative in
Eq. (2.6) leads to an action results as Sch(f,7) = 72/2+
Sch(z,t), when 7 is a linear function of ¢, Sch(z,s) is
constant and satisfies the equation of motion of the
Schwarzian action, i.e., Sch(f,)'/f’ = 0. This can be
traced back to the bulk equation of motion, which gives
the dilaton solution.

In the perturbative approach as in Eq. (2.7), after
expanding the effective Schwarzian action, higher-order
self-interaction terms for k(z(¢)) are present, which is
suppressed by factor of €. By expanding the Schwarzian
action, one has

1 1 1

+ 0(€?). (2.14)

By dropping total derivative term, the leading-order action
at €* order reads as

C
Sefr = 562 / di(K"? — k), (2.15)

where C « ngZ,. By doing a Fourier transformation as
k(t) =", k,e™ where ¢ € [0, 2x], the action becomes

C
S =5 / di(n* = ke, (2.16)

where for repeated n the Einstein summation convention is
applied as stated before. Thus, the soft mode propagator
can be obtained as

int

1 e
- 22C Z 2(n®-1)

nz0 17

2 (k(t))k(t,))

1 n* (|t|-n)?
e ] 1 _—
27TC( * 6 2

5
+ (|t| =) sin|7| —l—icost),

k(¥ (1)) =5 (= Ii)(1 =cos ) ~3sinl] ).

eX(K (1)K (1)) :$ (1 —I—%cos|t| —(m— |t|)sin|t|>,

(2.17)

where t = t; — t, and we have used that

066001-3



QI SEO, SIN, and SONG

PHYS. REV. D 99, 066001 (2019)

, (1 1. i

le(Z) +L12 <E> = —5(2711) BQ (1 +EIHZ)
ISR
R

where 7 = e,

B. Effective action of matter

The n-point function of a matter field, e.g., a scalar ® in
NAdJS,, can be computed by coupling the matter field to the
bulk gravity in AdS,, and then rewriting the action by using
f(t), and rescaling by a factor f”(¢)* at the insertion of each
operator.

1. Two-point matter correlation functions

For a massive scalar ® in AdS, spacetime in Poincaré
coordinate, since all gravitational configurations in two-
dimensional spacetime can be described by the metric, and
the effective action is [7]

S, = % / d’x\/=g[(V®)? + m*®?]

—N/dtd’ q/>|02Az)+ L (218)
where N = vCy = (A —1/2)['[A]/[/al(A =1)] and we

have used the asymptotic behavior of @ at boundary

®(1,7) :/dt’KA(Z, t, 1)@y (1)

= ()" 20y(t) +---, -0,  (2.19)

where ' =z/e, Ky(z,t,7') is the normalized bulk-to-
boundary Green’s function for A > 1/2 as

Ka(z.t.0) = Ca (W)A (2.20)

where C, =T'(A)/[\/al'(A = 1/2)], ®y(t) can be viewed
as a source for a scalar operator with conformal dimension
A, e.g., for free scalar in pure AdS,/CFT, case, A = A_ is
the largest root of indicial equation with A, = 1/2+

\/1/4 +m? > 1. Consider that the trajectory of the boun-
dary curve is f(¢), which can be transformed to the desired
boundary conditions as

Dy(1) = [f'(1)]' 7A@y (f(1)).

Then, the effective action can be reparametrized as

I __ S SOf () A )
Ser=—N / drdr ([f(t)_f([w) Do (1) Dy (). (2.22)

(2.21)

The two-point function of the dual field O(¢) to the source
@, can be read as

G1,1) = (O()O(1)) ~ (%)A (2.23)

For the convenience of generalization to the higher-point
correlation function, let’s relabel t = r;, ' = t,, then the
two-point function can be reexpressed in a more tidy form as

Gy(t, 1)) = 2N<f/f/> .

12

(2.24)

where we have made the new notations as f;

and f1; = |f(11) = f(2)].

= f()

2. Three-point matter correlation functions

In addition to the quadratic interactions in Eq. (2.18),
three-point matter correlation functions can be obtained by
introducing the cubic interaction term as [51]

i p
Sip =) LW =20 4 (2.25)

n>3

where - - - denotes the quartic and higher-order interactions.
In this case, the equation of motion becomes

(V2= m2)® = 1,® + (2.26)

In this case, the solution for ® turns out to be
D(t,z) = /dt’KA(t,z; Dy (1) + / drd7G(t,z;1,7)

2
X j'3 / H dthA(t/f Z/’ tm)q)()(tm)ﬂ

m=1

(2.27)

where K,(t,z;¢) is the boundary-to-bulk propagator
in Eq. (220) and G(t,z;7,7)) is the bulk-to-bulk
Green’s function which can be expressed in terms of
Hypergeometric function as

20, [\ _ /A A 1
Gts ;tls ! =\ 5 F AN A = 1; 2 )
(t,z;0.7) ,/ (2>21<2 5ty s>

(2.28)
where
A=A A 27
— = - S = .
" Y 2’ 242+ (=1)?
(2.29)
In the s — 0 limit, one has G(,z;7,7') = (2Ca/v)(s/2)2.

By substituting the classical solution in Eq. (2.27) back into
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the original action, integrating by parts and using the
properties of the bulk Green’s function, one obtains the
effective action as

3
i = [ T[anistn ) +0 (230)
i=1
where
dz ¢
I3(t1,t2,t3>5 de—ZHKA(t,Z,tj) (231)
=1

J

Then the generic connected part of the tree-level three-point
functions from the effective action becomes

(O(t)O(1,)O(t3)) = =M313(t1. 12, 13).  (2.32)
To be concrete, one obtains
Cs3
(O(1)O0(1,)0(t3)) = ———x.,  (2.33)
(tiat13ta3)

where C; = —3I(A/2)°T((3A = 1)/2) /2T (A = 1/2)3.
In analogy to Eq. (2.23), after the time-reparametrization
transformation, the three-point functions of the boundary
dual field O() to the source can be read as

_ NS5\
Gs(t1. 12, 13) = (O(11)O(1,) O(13)) ~ fiafisfas)

(2.34)

where we have made the abbreviation for the notations f; =

f(t;) and f;; = f(1;) = f(1)).

C. Zero temperature correlation functions

Consider expand the boundary ¢ around the saddle of
imaginary time 7 as

f(2) =t + ek(1). (2.35)

The two-point function of the dual operator can be
expanded as

1+€Bi(t12) +€*By(t12) + O(€)

G(tl ,t2) = £2A
12

. (2.36)

where B, (t,) = B,(t; — t,) with n = 1,2, ... and

Bi(n2)=4 (k/(tl )+K (1) —2M> ,

5P

— 2 ’ 2 ’ B
Bz(ru)_A((k(tl)fff(tz)) k(1) 42—k(t2) )
+2A2(k/(tl);k'(fz)_k(fl)t—k(tz)f’ 237
12

where t;, =t; — t,. In analogy to the finite temperature
case, the two-, four-, six- and eight-point functions are,
respectively, given by

1+ €(By(115))

G2 - N A .
1)
€ (1B, (t12)By(134) )
Gy =N 2824 ’
12 134
G _N€4<551(f12)51(134)52(f56)3>
6 — 2ARALA ’
12 134 156
By (t10) By (t34) By (ts6) By (175) :
Gy = N€ (:By(t12) 22(23;&)%12;6) 1(t78) >’ (2.38)
115 134 156 178

where G2 = Gz(tl, tz), G4(t1, t2, t3, t4>, etc.

D. Thermal correlation functions

Consider expand the boundary ¢ around the saddle of a
thermal circle, according to Eqs. (2.13) and (2.7) as

t+ €k(r)

f(t) = tan————=,

5 f(t) _ eit—‘riek(t)’

(2.39)

where we have dropped a common factor 2z/f, so to
recover one has to rescale ¢ — 2x/ft. The two-point
function of the dual operators can be expanded as

1+ eB(t12) + €2By(112) + O(€?)
G(t ,t ) - N )
172 (2sin )22

= Go(t1, )[1 + €By(112) + €2 By(112) + O(€%)],
(2.40)

where B,(t;;) = B,(t;.t;). By neglecting the perturbation
expansion term, € — 0, the AdS, thermal two-point func-
tions is recovered as

1 T\
GO(tl’ t2) = (2 Sin%)2A = QSIH@> ’ (241)

s

where in the last equality, we have recovered the thermal
factor t;, — (27)/pt;,. The leading correction to the
thermal two-point-Green’s function can be expressed more
explicitly as
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By(t12) = A(k/(t,) + K (1) _M> ;ﬁf; Sﬁf‘:jﬁ

tan 2
1 —k(n)\? (2)G(t1, 1)
By(t12) = §A2 <k/(t1) + K (1) + M) 1,t2

tan 2
L () =B o0 4 iy
+4A< (sin2)’ 2[K (1) + K (1) ])

N
N

(2.42) ] 1
where for the brief ness, we do not recover the thermal (b)Gz2(t1,t2)

factor. The expansion can be viewed in Feynman diagrams
as shown in Fig. 1. It will be obvious in the following that

the higher order with €"B,(t;,t,) for n>3 will not  pode (double wave lines) for B(t,) and B,(t;,) as shown in
contributes to the leading order of all point functions. Eq. (2.42). (b) Feynman diagrams for two-point correlation

The generating functional of connected correlators can  functions G,(t,.1,) of scalar fields with loop corrections from
be expanded as soft modes as shown in Eq. (2.17).

FIG. 1. (a) Feynman rules for two-point functions of scalars
(dashed line) G(#, t,) and the corrections from gravitational soft

W=in(z)=tn(e) <tn| [ Dulsie (1w / [Laouts Baltio) +€Bi(11)

112)\2A
(2sin"2)

/Hdt @y (1, 51(f12)81(t34) +€(2(Slljig;1222£28§13:4))'+2131(1«‘12)B3(134)1)

1 3:B1(112) By (t34) By (ts6) : +€*(: By (t12) Ba(134) Ba(ts6) : +6: B By By : +3: BB By -
+€4/Hdtiq)0(ti) (2sin’2)?A (2sin")?4 (2sin’s) 24

/Hdt@ B, (112)B1(134)B1 (156) By (175) - +¢> (6'Bl(fu)Bl(t34)52(f56)32(f78)1+4331B1B1532)+...
' (25in'P) (25in’3)?4 (26in5 23 (2sin'3) 2 ’

where B, (1;;) = B,(t;.t;), Dulf] = Df(t)/f'(¢) is an SL(2, R)-invariant measure [23], Sy = =N [ dt,dt,®(t,)P(t2)/
(2sin(zy,/ 2)) is the same as Eq. (2.22) with f(¢) = tan(#/2) without soft mode ek(#) correction, and we have dropped the
odd-leg source term considering that (B;(t;;)) = 0 or (k(¢)) = 0. : - -- : means the time ordering. From the functional Z,

one can reads 2n-point functions as

2n 1 2n 5
(T100,1) = 57 L s 2@l .43

From the generating functional W|[®,], one can read all connected 2n-points functions from irreducible Feynman diagrams.
Thus, as the leading expansion, the two-, four-, six- and eight-point functions are, respectively, given by

G, = Nl + (B, (1)) Gi=N (1B (112) By (134) 1)

@ing? 0 T iR iy

G =N e*(: By (112)Ba(134) By (ts6) °) Ge—N e*(: By (112)B1 (134) By (156) By (178) *)
6 (2sin )22 (2 sin%)?4 (2 sin 58) %A 8 (2sin“2)?A (2 sin3t)?4 (2 sin 58) 24 (2 sin )24

Gy =N €®(: By (t12) Bi (134) Ba (t56) B (178) Bi (t9.10) )

, 2.44
(2sin )22 (2 sin %t)?4 (2 sin 5%) 24 (2 sin )24 (2 sin t%)m (244)
where Gy = G,(t1.12), G4 = Gy(t;. 12,13, 1), etc. : -+ : means the time ordering and (---) = Z;! [Du[f]--- e=5 and

Zy = Z(®Dg)|p,—0- The generalization to more higher-order 2n-point functions is straightforward.
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E. Loop corrections to two-point function

1. Zero temperature case

By using the correlation function B,(z,,1,) in Eq. (2.36)
and the soft mode propagators in Eq. (2.11), one obtains the
correction to the two-point function as

2

(B> (12) =1 81 - [A (mu - %) - nA%u} . (245)

In the large Lorentzian time with ¢ — i7 and in the contour
chosen in Eq. (4.24), the loop correction to the two-point
function turns out to be Lorentzian time independent as

5 (3 —-4A)A
t = 2.46
€ (By(t12)) 0 ( )
2. Finite temperature case

By using the correlation function B,(z,,1,) in Eq. (2.42)
and the soft mode propagators in Eq. (2.17), one obtains the
loop corrections to the two-point function as

1 A
e (By(112)) = 32C [4sm2"2 (f =27t

t
+2(w—11,)sint, +4sin? ;2>]

A2 t12—271' t12
— -2 =2, (247
3 < tan‘} tan’ (247)

which recovers Eq. (4.36) in Ref. [5]. The Feynman
diagrams of the loop corrections from pNGBs are depicted
|

k()

in Fig. 1. In the large Lorentzian time with # — i7 and in the
contour chosen in Eq. (4.24), one has the two-point
functions as

(By(11,)) =— [(1—”—2>A+2A2} %Az, (2.48)

27C 4

which is a constant and independent of 7.

F. Three-point correlation functions

The three-point function of the dual single-trace operator
can be expanded as

G(t1.1.13) =Gy (t1.1.13) [1 +€Cy (113) + €2 Co(t123) +€7].

(2.49)

where Cn(tijk) = Cn(tlp tjk’ tki)’ with tij = |ti - tj| By
neglecting the perturbation expansion term, € — 0, the
AdS, thermal two-point functions is recovered as

_ G r=0_ C3
Goltta 1) = e T B (DA (B o,
Cs(m/p)** (2.50)

(sin®j2)8 (sin"2) 4 (sin"52) 4"

where in the last equality, we have recovered the thermal
factor t,, — (27)/ft;o. The leading correction to the
thermal two-point-Green’s function can be expressed more
explicitly as

Ci(tiz) = A<k'(f1) + K () + K (13) = B
2tan '}

A? (sin(tlz)+sin(t23)+sin(t3l)

2 4(sing)(sin ) (sin 4t

Co(tiz) =

(K (1)) + K (1) + K (13)] +

k() k() = k(1) k(1) = k(a))

[k(11) — k(1)) (sin “)?

2(sin %) (sin &) (sin 3t

+ (< 13) + (& f31)>2

A ([k(t) — k()P | [k(t) — k(1)) | [k(t2) — k(13)]?

= —2[K ()2 + K (1,)* + K (13)?] |, 2.51

4 < 2(sin"?)? 2(sin4)? + 2(sin%)? [ (e)* + K (1) + K ()] (2.51)
where for the briefness, we did not recover the thermal G3(t123) x 13€2(Cy(t123)), (2.52)

factor f/2x for this expression. These three-point correc-
tions can also contributes as the loop correction to the two-
point, by taking #; — f,, Eq. (2.51) exactly reduces to be
the same formalism as Eq. (2.42).

1. Correction to three-point correlation

By using the correlation function C,(7,,,73) in
Eq. (2.51) and the soft mode propagators in Eq. (2.17),
assuming t; > t, > t3, then one obtains the loop correc-
tions to the three-point function as depicted in the first
Feynman diagram in Fig. 2(a)

and an explicit form of the correction term turns
out to be

15Cs [é ((7[— to) 1 (ta—2x)

G pr—
VivaVs = 2nC 2tan() 2

+ (t1y < 13) + (11 < t31)> + (’)(A;)]
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2 3 4 3 5 4

N
AN
N
w

6 1 1

(a)G3(t1,t2,t3) (b)G5(t1,t2,t3,t4,15)

7 1 8 9 1
(c) (d)

Gr(t1,t2,t3,t4,t5,t6,17) Go(t1,t2,t3,t4,t5,t6,t7,18,t9)

FIG. 2. Typical Feynman diagrams for odd-point matter correlation functions of matter fields (dashed line) with loop corrections from
soft modes (wave lines) as shown in Eq. (2.17): (a) Three-point correlation functions G;(#;, t,, 3) with the corrections from gravitational
soft mode to C;(t;»3) and C(t23) as shown in Eq. (2.51); a six-point function Gg(153456) & 436*(C;(1123)C (t456)) diagram is also
shown on the right; (b) Five-point correlation functions Gs(t1345) & 43€2(C;(t123)B;(ts5)); (c) Seven-point correlation functions
G7(t1234567) & A3€*(Ca(t123) By (145)Bi (167) ) (d) Ninepoint correlation functions Gy (f153456780) & 4367 (Ca(£123) By (145) By (167) By (139))-

where the coefficient C comes from that associated with the soft mode propagators. Since the terms at order A? is length, we
will not list here.

2. Correction to five-point correlation

The correction to the five-point correction turns out to be

Gs(t123a5) o 436> (Co(t123) By (145)).

For the TOC’s of five-point correlation function with normal time order #; > t, > t3 > t, > t5, one obtains the loop
corrections to the correlation function as depicted in the first Feynman diagram in Fig. 2(b),

(2.54)

23C3A? ( Iys

—3 [Sin(tlz) + Sin(t31) + Sin([23)] + t12 COS(tlz) + t23 COS(I23) + t31 COS(Z13)
GV Vo V- W W — 7 —2
1V2V3rvarvs 871.( tan( 45)

sin(“g)sin(") sin(2) '

(2.55)

2 2

conductivity for (0 + 1)-dimensional quantum critical sys-
tem is obtained in Appendix C 5.

III. QUANTUM LIQUID WITH SCHWARZIAN
CORRECTIONS

In this section, we study the retarded Green’s functions
as well as the local spin-spin correlation functions of
the quantum liquid with Schwarzian correction in terms
of the “Schwarzian liquid,” which can be related to the
spectral functions and local dynamical susceptibility of
strongly interacting quantum liquid including the spin
liquid phase [2,38], i.e., MFL [42] or FFL [43]. We also
generalize the AdS, vacuum in two-dimensional gravity to L
a higher-dimensional RN-AdS,,; vacuum in Einstein AT ) 2 _ %
gravity with the Maxwell action as in Appendix C. ds”= 4c, z2< di”+dz7), At_ﬂ(l z)’ (3.1)
We obtain the exact formula of 7 = 0 residual entropy

A. Quantum liquid from AdS,

1. Poincaré AdS,:zero temperature CFT;

In the AdS, spacetime in the energy coordinate z, the
metric and the gauge field is linear in 1 + 1-dimensional
spacetime as

of a generic SYK,, model as in Appendix C 4. Moreover,
the analytic formula of a new gauge covariant optical

which is a AdS, spacetime in the Poincare coordinate, c,
contains UV information from a two-dimensional gravity.
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For the convenience, one may define an effective AdS,
radius as

f% =— 2. (3.2)

1
4c,
In the momentum spacetime, the Klein-Gordon equation of

a charge scalar in out-wave e~ (9, » —iw, 0, — ik)
becomes

{83 + <w + q,u(l - %))2 - mzﬂ d(z.k) =0, (3.3)

Z

which leads to the wave functions

¢<Z) = ClMiquz*,—vq (21'2(7)) =+ CZWiqﬂz.,—uq (2iZCT)), (34)
where @ = @ + gp and the conformal dimension is
1 m??
=4/-- - ¢t 3.5
“a \/4 4e, THE (3:3)

In the special case with ¢, = —1/4, it just recovers the
original one.

In the near horizon limit, one obtains the asymptotic
behavior of the boson wave function as

er (= 1)Ftians (1 = 2u,) e >
C(iguz, — v, +3) ?
e T (1 = 2w, )29 (i) iaw.
T(—iguz, — v, +1)
(3.6)

() i (

X (ia))iqﬂz*e—i(bzziqﬂz* +
X ei(bzz—iquz,,‘

The out-going wave is e~ i@ +i®i—ianz.Inz = \which implies
that the in-falling boundary condition to be ¢; = 0. On
the other hand, in the infinite boundary z — 0, one has
$(2)R°B(w) 2% + A(w)z %, where A and B are iden-
tified as source and response, respectively, and can be
expressed more explicitly as

 2(i@) el (2u) + e T(—iguz, + vy +3)]

Alw) = ,
(@) [(—iquz, + v, + D)
1 1
2%t (i) e (—2v,)
B(w) = 22— e (3.7)
C(—iguz, —v, +53)

The two-point Green’s function ban be read as

I'2v,) T'(—iguz, —v,+4
G(w) =47 (@)™ (2v,) T(Zigue, ~vqty) (3.8)

F(_qu) F(_iq/’lzt +Uq +%) ‘

By doing an inverse Fourier transformation, one has

too ; ima .
/ dwe ' 0" = —e2 sin(za)l'(a + 1)

o0
-1
sgn™ (1)+1
Wﬁ? ., a>0
sgn(t)+1
M(,,L , a < 0.

/ " dwe=iot|p]e = —2 sin (ﬂ> Ma+1) (3.9)
. 2 |g|ot1

where e~ = (—=1)* = (—i)** and sgn(t) = t/|t|. Thus,
in the coordinate spacetime, assuming ¢ >> 0, then one
obtains the retarded Green’s function in real coordinate
spacetime, which just recovers the ansatz of the form of the
two-point correlation function at strong coupling at zero
temperature [5,29],

sen(1)
TS

(3.10)

2 t
G(t) = \ﬁe—qu sin(27v, )T(1 = 2v,) |S;|;1n_(zp) ~b
T q

It is worthy of noticing that the result reproduces the
SYK uniform saddle-point solution, by making a match

as below
1 2 1/p
b= —\|1-= tanz
2] p p

2
\/:e_””’q sin(2zv,)0(1 -2v,),  (3.11)
T

where A=p~! =1/2 - v, In particularly, in the case that
v, = 1/4, m*¢?/(4c,) = q*u*z%, the Green’s function just
recovers the two-point function of SYK model with
conformal dimension AR =1/4 due to an emergent
conformal symmetry at low energies and large N at zero
temperature,

G(1) = ([0a(1). 0 (O))) ~ &),

1> 1,
|1

(3.12)

where ~ denotes a common factor v/2e™ is dropped. It is
useful to use the Fourier transforms for symmetric and
antisymmetric function as [T e™!|¢|~22{sgn(z), 1} =
2I°(1 = 2A)|w|**~{i cos (zA)sgn(w), sin (zA)}.

2. Global AdS,:finite temperature CFT,

Consider the AdS, metric in global coordinates as in
(BS) for hyperbolic case in the vacuum b =1 as

1 —di* +dz?

ds? = —— T
4c, zgsinh?(z/z)

, A,(z) = pzo (1 - coth£>,

20
(3.13)
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where z € (0, 00). It is worthy of noticing that it can be
transformed into

1 —df* + dz?
ds? = ————— A,(z) = u(1 —cothz),
y 4c, sinh’z ((2) = (1 =~ cothz)
(3.14)
by making a replacement
u
t = tzo, 7 — 220, u— . (3.15)
0

For the simplicity, let’s consider the zy =1 case at the
beginning, we can obtain a general results by making an
inverse rescaling

|

z
Z=>—, H—UZ), 2o (3.16)

w— W, = A
0 20 27T

the parameter z is related to the temperature, according to
Eq. (B3). The Klein-Gordan equation is

1 1
d"(z) + [a)2 + (Z - 1/%) S Z]qﬁ(z) =0,
1 m?
AT T ae (3.17)

For neutral scalar case (4 = 0), the wave functions are

o 1 1
P(z) = i~ tanh>1 (z)(—sech?(z))~% [Cztanh_”l (2),F; (Z (=2v; = 2iw + 1), 1 (=2v; = 2iw +3);1 —vy; tanhz(z))

1 1
+ ¢i*1tanh? (z),F, (4_1 (2u, = 2iw + 1)’4_1 (2vy = 2iw +3);v; + l;tanhz(z)ﬂ . (3.18)
For the charged scalar case, the Klein-Gordan equation is
¢"(2) + |@* + L V2 L +2qua(1 —cothz) |p(z) =0 v = L m_2 - ¢*u? (3.19)
4 71) sinh’z ’ V4 4, '
The wave functions are
¢(z) = —icosh(z)tanhi™ (z) (tanh(z) + 1)+ (tanh(z) — 1)»1+ika+5
tanh(z) \™ , | _ 1 2 tanh(z)
—_— Fi| —iqu— —,—iqu—v, — =1 =2 ————
X {cl (tanh(z) — 1> 5 1( g — vy + 5 g —v; —io + 5 yl’tanh(z) 1
tanh(z) \“ 1 1 2 tanh(z)
B, M7 (i 2N R N — =i -1 — 1420 —— . 3.20
+ c2(-2) (tanh(z) _ 1) 2 1( Igp + vy + Igp +vy — o + 7 + 2 tanh(z) — 1 (3.20)
The wave function can also be reexpressed in a new coordinate p = tanh z as
1 1: ; ; i®
ipri(p + 1 —5i(2ug+a-+i) p—1 vy Fipg+% ] 1 ) ) 1 2p
b(p) = - wrl) \/—2( ) cioFi | —ign —vi 435, —igu — vy —iw + 531 = 2uy;
1-p 2 2 p—1
P\ . I o1 2p
+op(=2)™ </ﬁ> 2 F (—lfm +u+ 5 Tlap +uv —io+ 5 I+ 21/1;'0f1 . (3.21)

In the near horizon limit (p — 1), the wave function can be reexpressed as w(p)= a(w)(1-p)% + b(w)(1 - p)~%, where
~ means that we have dropped a common factor —i2¥172(—1)*1+#4+% in front of the wave function and the coefficients are

e al(1-2y) e l'(2u, +1)
Cl((l)) =2 ZF(_lw) . 1 . . 1 . 1 . . 1 )
C(ign —vi +3)T(—ign —vy —iw +3)  Tligu + v +3)l(—igu + vy — io + 3)
r(1-2 r(1+2
bla) =210 ([ SR el ) e
(=igu —vi + )0 (igu — vy +iw +3)  T(=igu + vy + )T (iqu + vy + iw +3)

Since e~~:!n(1-7) js the infalling wave, will impose the in-falling wave condition that a(w) = 0, from which the relation
between ¢, and ¢ can be determined. In the UV limit, one has
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P(2) e + el emprtn = A(w)p- + B(w)p®, (3.23)

where for ~, we have dropped a common factor —i(—1)*1%#4+%_ The conformal dimension is defined as A, = 1/2 + 1.
Thus, the retarded Green’s functions are

— i Np(—; - 1
GR (@) = B _ g gtimy 2 _ gy, giimy LU 2u)Pliqu + v, + 21)F( p T ot f) . (3.24)
Alw) c: T(1+ 20 (igu — vy + DT (—igu — v — i + )
By using the rescaling relation in Eq. (3.16), one obtains the Green’s function as
B(w) 20,=1 _4izy, €2
GR _ 2Al — g1 201 iy, 22
(Cl)) ZO A(a)) ZO € Cl
. 1 - w+ 1
(T2 g C(1 = 2v)T(i 5% + vy + 3)0(+v) — i %52 +5) (3.25)

D(1+ 20D (i — vy + D0(—vy — i+ 1)

where the prefactors z( are due to the rescaling of the coordinates in Eq. (3.15). For neutral case, i.e., 4 = 0 and g = 0, one
has

MR(1-A,)] T(A,)  T(A, —is%)
TR+ AT =A)T(1 - Ay i)’

GR(w) = —4¥1 e¥m (3.26)

where A, = 1/2+4v,. The equation shows that the dimension A, sets the quasinormal mode frequencies as
iw,f} = 2x(A_ + n). Therefore, by doing an inverse Fourier transformation and according to the integral identity as in
Eq. (D13), one obtains the retarded Green’s function in real coordinate spacetime which just recovers the ansatz of the form

of the two-point correlation function at strong coupling at finite temperature [5,29],

20, — 1

rAy) = sgn(r) sgn(t)

G (1) = (O (1)04(0)) = 2@~

T2(1 + A )]T(1 - A,) f[sinh 222+

= ~b : 3.27
[Esinh 2124+ (3:27)

T

where sgn(7) = /1| is a step function. At this step, by making a comparison with that of SYK model as in Eq. (A10), one

has
il . 2A, -1 AL [(#\*2+]
27%b% = (1-2A )tanzA,, b= 25D - - <—) . 3.28
(1-24,)tanzh, TR(1+A,)]T(1-A,) \B (3:28)
The finite temperature retarded Green’s function can be expanded as
Ripy 7 1 \0 1 AR A(1+5A)z
G (#) ~ sgn(?) (ﬂ sinhfg> S PA T 30 T T gopt A (3.29)

In frequency space, it can be reexpressed as GX(w) =
—iG(—iw + €). As expected, at low temperature, i.e., in the
large B limit, the retarded Green’s function recovers the
zero temperature one as GR(f) ~ 724,

For arbitrary A, the result just recovers the retarded
Greens’f function of a generic class of mean-field theories
of the FFL phase of the lattice Anderson model [43], which
can be obtained in an analogy procedure for fermion case,
by solving the two-dimensional Dirac equation as shown in
Appendix B 3.

For A = 1/4 case, the retarded Green’s function obtained
above describes a general class of strongly interacting spin

|
liquid phase [2,41] with a large density of low-energy spin
excitations, or random/disordered paramagnet [38]. The
spin liquid phase is due to the quantum fluctuations near
a critical quantum Heisenberg spin-glass [39,40], in which
the quantum fluctuations are strong enough to overcome the
tendency to spin-glass ordering [2,38]. While for A = 1/4, it
describes a specific non-Fermi liquid (NFL) [52] in terms of
the MFL phase [42].

As the SYK model in the IR limit, not only the retarded
Green’s function, but also the action enables exact solution,
in the large N Imit, has the structure of a conformally
invariant (0 + 1)-dimensional boundary of a CFT, [38,53].
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The retarded Green’s functions of CFT; or NCFT; in
AdS, and NAdS, spacetime can be generalized to those in
higher-dimensional spacetime, as explored in Appendix C.

B. Schwarzian retarded Green’s functions

The two-point correlation function of FFL without
Schwarzian correction in real time is

1 1
G(r) = 28 24 2 ginh 1 2”]

i2A IZA ’

(3.30)

from which, one obtains the retarded Green’s function, or
the susceptibility of FFL as defined in Eq. (D3) as

GR () = —i /_ :” (1) e G (1)

,(2;;) 2870 (1-2A)T(A—iwL)
= —1| —
p r(l-A-iol)

where 0 < A < 1/2, > 0, Imw > 0, we have used the
integral in Eq. (D9) and in the last equality, we have used
Euler’s reflection principle. One can restore the temperature
by multiplying each @ with factor /(2x). The temperature
dependent factor in front origins from thermal correlation
function in Eq. (3.30), so that it recovers the quantum
correlation function in the zero temperature limit. For zero
temperature case, one has

GR (@) = (=1) 2™~ 1T(1 = 24),

where A < 1/2, Imw > 0 and (—1)724 = %74,

The pNGBs loop corrections to the imaginary time
thermal two-point functions in Eq. (2.47) can be reex-
pressed as real time one, by replacing ¢, with real time it as

(1) = 51 (8]2A+1)+5 (2 4 20m0)

AQA + 1)i(t + 2ix)
4sinh? (%)

. (331)

(3.32)

—iAQA + 1)(z — if)

coth(% )) (333)

sinh(%)
where we will assigned every ¢ with a factor multiplying factor
2z/p. It can also be separated as two parts, one has even

symmetry for time, while the other has odd symmetry as
|

72 (w) = /_ :° dt0(1)e' G, ()G, (—1)

(2A — 1)(4A = 1)A(9C + zA(A —

E(By(t1y)), — ﬁ (A {(m ) +%ﬂ]

AQA+ 1P tcosh(é)
sneD) ACAT DG )
e(Bs(112)), = ﬁ (Azf + Az(szliTj(j))t
2
—AQA+ 1) :il(%) ) 7i (3.34)
2

By doing Fourier transformation, the second and third part of
the odd sector will be vanishing unless —1 < A < 0, thus the
nonvanishing part within 0 < A < 1/2, comes form the even
part, which turns out to be

(@) = GX@)1 + (By(@)), +A{Bo(w)),),  (339)

where

(o). = 3o (828 + 1) + S vl
27nC 2
A )
-1+ 28)1 =iow) ).

e (By(0)), = 5= (=ird ). (3.36)

where we have used the integrals as in Egs. (D13) and (D8).

1. Zero temperature case

For zero temperature case, one can do the Fourier
transformation upon Eq. (2.45), which leads to

GR (@) = GR(w) |1+ 24 _118)]5? ) ( s )]
(3.37)
where A < 1/2 and GR(1) = (=1)*2@?*~'T(1 = 24) is

given as in Eq. (3.32). The dynamical local susceptibility
of Shcwarzian liquid becomes

%), (A-1)[4A-3)(28 - 1)(4A - 1)A?

_ .2
_)(loc(w) (1 + 1627rC2a)2

where A < 1/4, and )(<2)(60) =

loc

6487 C?w* ) - (339

(—iw)**7'T(1 —4A) as given in Eq. (3.42). After obtains loops correction from the

Schwarzian effective action, the local susceptibility becomes more singular at zero frequency limit @ = 0. While these
terms is vanishing when A = 1/2,1/4, the physical consequence of which can be observed at finite temperature.
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2. Finite temperature case

Therefore, for finite temperature case, the pNGBs loop
corrected two-point thermal retarded Green’s function
becomes

A—iwd 2

—(1424) <1 - ia)z"%wfiiwﬁ) - i”A2wfziwﬁ)] .

2z

0<A<1/2, p>0, Imw>0, (3.39)

where G®(w) is defined in Eq. (3.31), and we have used
that the iteration relation

32
(0) i S

A+l—iw% - Zf_]:z(ZAZ + A) A—iw%’ (340)

where 1\, is defined in Eq. (D9).

C. High-order local spin-spin correlation

By using the tree level retarded (real time) Green’s
function in Eq. (3.27), it is straightforward to calculate the
local spin-spin correlation function, namely the dynamical
local spin susceptibility y,.(@) as defined in Eq. (D5)

P +0o0
Yok (@) = /

According to the retarded Green’s function defined in
Eq. (3.30), by using Eq. (D13), we are able to calculate
the local spin susceptibility at zero temperature as

0(1)dte'™ G,(1)G,(—1). (3.41)

(2) e e N C144A
Aw) = [ a0 S5 = (-iw) (1 - 40

= ¢ H4A) =1 H4AT (1 — 4A), (3.42)
where the conformal dimension is limited as 0 < A < 1/4
and the frequency must be in the upper complex plane
Ime > 0. We have also used (—i) = e~ in the last equality
of the above equation.

1. Static and dynamic local susceptibility

The leading-order low frequency behavior of local spin
susceptibility is a constant, i.e., y(@) = const. + O(w), in
which, the constant term is inverse proportional to the
temperature as

B\'AT(; - 2A)0(24)
){1(32(0) = ( ) RN

T

(3.43)

While it turns out that for the special A = 1/4 case, the
imaginary sector of y(0) is divergent

_x A=1/2
120 {7

(3.44)
- +nZ, A=1/4.

Consider first derivative of x| (@) with respect to fre-

quency @, one obtains that the static local spin suscep-

tibility ;(SC) (0) is inversely proportional to the square of

temperature, i.e., > as

A0 =3 va(2) o (- 28 )rea),

(3.45)

from which, it turns out that for the special A = 1/2 case,
3)

loc

the imaginary part of y, . (0) is divergent

90 f(-sr2+2ms), a=1p2

loc

2 (3.46)
2 A=1/4.

While at the second-order derivative of x| (@) with respect
to w, the static local spin susceptibility y"(0) for both
A =1/2 and A = 1/4 case, becomes convergent and is
inversely proportional to the cubic of temperature,
ie., B as

A=1/2

3.4
A=1/4 (347)

22
12(0) {3/”
14£(3),

where {(3) ~ 1.20206 is the Riemann zeta function.

The effective bath for the local spin is given by the local
spin-spin correlation function itself, which have nontrivial
low frequency behavior, which appears only as a subdomi-
nant correction to the leading low frequency behavior
7™ (0) ~ const given f.

We will consider the dynamical local susceptibility in the
following section.

2. Fractionalized Fermi liquid

For generic A case,

GR(t) ~ T2
® Esinhz2s 24

(3.48)

the result recovers the retarded Green’s function of mean
field theory of FFL [43], or generic NFL [19,35,38,54-56].
In this case, one would expect the local spin susceptibility
Jioe(7, B) in the large N limit is given by
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#/b )4A. (3.49)

Zloc(T) & <sin7zr/ﬂ

For finite temperature case, by making a rescaling ¢ —
(2z/p)t or @ — f/(27)w, the dynamical local spin sus-
ceptibility at finite temperature becomes

[+) X 2 2
A= [ onae, ()6, (<), @0

By using Eq. (3.27), one has

@7 (4 < B ) 1-AT(1-4A)(2A - it w)
loc \ @)= 17— R
2r F(I—ZA—l%w)
1
0<A<Z’ £>0, Imw>0. (3.51)
Based upon which, the higher-order local spin susceptibil-
ity with respect to the frequency becomes

)T 2n 0T
2 (w) = gawxfoﬁ ().

271\ 2
2 (@) = (7) 202" ().

By imposing Eq. (3.51), one obtains leading higher-order
local spin susceptibility as

(3.52)

NT (4T (ST 27T 0 0 1
{)(1(02 ’Zl(oc) ’)(1(02 } :){1(02 {_W)(C )? (WSC ))2 +W)(C )’
0 0
— () + 3y Pyt ),

where x = 2A — iwf3/(2x), the prime is with respect to the
frequency and we have used the definition of functions
defined in Eq. (D10).

3. Marginal Fermi liquid
For A = 1/4 case,

¥
GH(1) ~ \/ sinh
p

In this case, one would expect the local spin susceptibility
Xioc(7, ) in the large N limit is given by [41]

z/p
)(loc(T) & (Sil’lﬂ"[/ﬁ) +oe

where 7 is the imaginary-time and G(z) is the bosonic
Green’s function. The local susceptibility is the response to
the local spin field. It is different from the uniform
susceptibility G(z), which is a consequence of the com-
mutation relations of the spin [41]. The result also recovers
the retarded Greens’s function of spin liquid phase [2,41],

(3.53)

(3.54)

which describes the strong quantum fluctuation in the
infinite-range Heisenberg spin-glass model in the large N
limit at low temperature.

The low frequency behavior of local spin susceptibility

Xffc)T(w) is given by Eq. (3.55).

@7 L L ol fe
Yo (@) n<2n>+l—4A TETVE\2 T )

(3.55)

where we have used that w(—1/2) = yw(3/2) =2 —yg —
21n(2) and w(1/2) = —yg — 21In(2). Thus, one obtains the
universal form for low frequency behavior of the dynamical
local spin-spin correlation susceptibility [38,80]

2T 1 of
T [

which is simply a smoothed-out version of the step function
at zero temperature (Im;(lfc) (w) = mtanh(zw)) or in large
frequency limit, i.e., T — 0, or T < @. The result also
recovers the local dynamical susceptibility, or spin-spin
local correlations of spin liquid phase [2,41]. The local

dynamical susceptibility implies that [52]

L o<kT
e {

(o), (3.57)

o>T

where the form of yj, . is precisely of the form for retarded

one-particle self-energy due to exchange of spin and charge
fluctuations in the phenomenological “marginal Fermi
liquid” (MFL) description of High-T, cuprates in the
strange metal region [42]. In this case, at low temperature
one has

7
1
Hioe (@) = / dw’{“)C—(a))~1n—, w>T.  (3.58)

® |w

The results just recover the spin-polarization correlation
function of MFL [42,52], which is a special case of NFL
metal phase in a doped Mott insulator [19,35,38,55,56].
The theory of MFL assume that the self-energy X(w, T) of
the electrons behaves for @ > T like ReX(w, T) ~ w In |w|,
ImX(w, T) ~ |w|, which is in contrast to ordinary Fermi-
liquid (FL) theory where ReX(w, T) ~ @, ImZ(w, T) ~ w?.

For higher-order local spin-spin correlation functions, at
finite temperature case, one has
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NT 1 po
=yl <§ 2ﬂ>

AVA 1 ﬁa)
2l = —y® <§ 2;7)

Thus, one obtains

2
= % sech? <§ co> ,

Im)(,(ggT(w) = r’tanh <’§ a)) sech? <’§ w> , (3.60)

(3.59)
Reyin ()

where in the last equality, we have used reflection principle
in Eq. (3.61) as

Imz//(% + i%w) = gtanh<§a)> ,
Rey 1) (5 ZE ) = gsechz (g w) ,
Imy ) (2 +i 2£ > = 7’ tanh <’§ w) sech? <’§ w) )

(3.61)
4. Fermi liquid like
For A = 1/2 case,
7
GR(1) ~ 3.62
(1) ﬂsinh’;—}’ ( )

In this case, the local spin susceptibility yi..(z, ) in the
large N limit is expected to be

z/B \?
Zloc(T) & (Sinnr/ﬁ) )

where 7 is the imaginary-time. The low frequency behavior
of local spin susceptibility y|..(w) is given by

(3.63)

1
2 —-4A

2 T .
2 () = 3 + iw [1 — v+

s ifw
1 Of—==11. 3.64
+ n<2ﬂ v 27 (3.64)
By using reflection principle in Eq. (3.61).
P \ezo ﬁ2 PLB3) _Pa(5)
Rew(z%w X —yp+ = 6 4+,
P I Pw
Imy/<z @)= o + 27rcoth 5 ) (3.65)

one obtains

1 P
Im)(l(jo( ) —w|:1 _}’E+2 4A—Rey/(0) <_lﬂw>:|

w—0 1 ﬂ2w2§(3)
~ a)(l + 2 - 4”2 b

—4A
Re;(l(ggT(a)) = % + wImy©) (— f—:) = —%cothﬂjw
”’*O—%—ﬂﬁ+ﬂ;7“’;+0( %) (3.66)
Thus,
ne(0) = Imy) () ~ o, (3.67)

which indicates behavior of Fermi liquid-like. In this case,

1 2r ifw
/ —_— ——
)(loc( ) <2 }/E+2 4A) + ,B Imlnr( 2]T>

w0 1 z* B(3)
~ |2 —— 3 3.68
( +2—4A>+ﬁ 122 7 (3.68)
The higher-order susceptibility is
(3) 2r 1 ﬁ
=— |—+1 1-
)(loc(w) ,B |:2(1_2A)+ 11(2 ) +
— l//(0> < lﬁw>:| _l_ la)l//( ) < lﬂw) R
27 2r
4 47 ifw . ifw
)(l<oc> (@) = ?W(U (‘g — iy oz ) (3.69)

In this case, one obtains

2z ifw ifw
imiio) =~ Ty (~57) orent (~57)
2 sinh(po) — fo

2f  sinh?Z
4) ifw ifw
Re)ﬁ(oc (w> = wIml//@) ( 27[) +— ,B R W( )< E)
3 th(22) -2
= ”_m’ (3.70)
p sinh? 2

where we have used the refection principle in Eq. (3.71) as
/] 2% 1, 5 (P
Rel[/<l) (lﬂw :—W—Eﬂ' csch 7 s

Imy 2 ( 2£ > - ;7;; — 7% coth (ﬂ;}) csch? <ﬂza)> )

(3.71)
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D. Retarded Green’s function

It turns out that the loop correction from pNGBs to the
thermal correlation functions, or the retarded Green’s
functions in Eq. (3.39), leads to a dynamically generated
high-energy Hubbard band in spectral function, which corres-
ponds to the destruction of quasiparticle states in the spectral
function/DOS of quantum liquid, as shown in Fig. 3-7.

1. A=1/4: MFL

In Fig. 3(a), we show the coupling strength evolution of
the retarded Green’s function of MFL with the Schwarzian
correction in terms of “Schwarzian MFL” with A = 1/4 by
increasing strength (~C~") of pNGBs loop corrections to
matter two-point correlation functions, due to Eq. (2.47).
The C = oo case (dotted red curves) corresponds to conven-
tional MFL with the fragile quasiparticle picture. With the
increasing of the coupling strength (or decreasing of C) up to
C~! = 3z (purple solid line), the DOS accumulates more in
the @ = 0 region as the metallic phase with theFermi
liquid behavior, meanwhile it develops a “slope-dig-ramp”
shoulder structure, i.e., a Hubbard band at w ~ 0.22, which is
dynamically generated DOS at finite frequency. The
Hubbard band is a smoking gun indicating the presence
of abad metal phase. Among the intermediate range, there is
atemperature dependent crossover between the Fermi liquid
regime and bad metal regime in the strongly correlating
regime, in which, the quasiparticle picture is still fragile or
even broken down. This signature of MFL phase with

A=1/4 A=1/4

-10 05 0.0 05 10 -10 ! 0 05 1.0
w w
(a)Evolution of GF(w) with coupling (2rC)~!
A=1/4 A=1/4
30 :
20
E \
3 E
& 10foaz=
g
T A
o~ —
1052 -0.1 00 0.1 02 X
w w
(b)Evolution of GF(w) with temperature §~*
FIG. 3. Dynamical susceptibility or retarded Green’s functions

of Schwarzian MFL with A = 1/4: 7(w) = —G®(w)/x given in
Eq. (3.39): (a) Evolution with coupling strength (2z2C)~!: C =
1/3z (blue/purple solid line), C = 1/2x (cyan/magenta dashed
line); C = 1/ (green/orange dashed line) and C = +oo (black/
red dotted line). (b) Evolution with temperature 7 = ! In front
of y(w), we have multiplying a temperature depending factor
z/p. For different : f = 2z (blue/purple solid line), f = 20z/3
(cyan/magenta dashed line), # = 20z (green/orange dashed line);
p = 200z (black/red dotted line). We have chosen input param-
eters as ff = 2x.

Schwarzian correction, i.e., a DOS with Hubbard band in
strongly correlated region, is significant different from the
conventional FL phase without such band structure. In
particular, the signature of the quantum liquid can be
depicted with only three input parameters: the temperature
p, the conformal dimension A and coupling strength of low-
energy effective Schwarzian action ~C;;! that comprise the
UV information of various two-dimensional gravity. Our
analytical computation is consistent with the general ten-
dency of the DOS calculated by DFT approach [47] or
DMFT approach [49] with a state-of the art numerical
calculation from first principles of many-body theory [48].

In Fig. 3(b), we also show the temperature evolution of
retarded Green’s functions of Schwarzian MFL with A =
1/4 by decreasing temperature (or by increasing f) untill
T = 1/(200x), which approximately corresponds to zero
temperature case (dotted lines). The decreasing of the
temperature from 7 = 1/(2z) to T = 1/(20x), the dig
of DOS moves from @ =~ 0.22 to more lower frequency
region at w ~ 0.02, and so does the location of Hubbard
band, which indicates that the dynamics is due to the
pNGBs from spontaneous and explicit symmetry breaking.
Meanwhile, the DOS accumulates rapidly and results in a
peak at @ = 0, which implies that the quantum liquid
becomes more metallic like in zero temperature limit.

In Figs. 4(a) and 4(b), we show the retarded Green’s
function at finite temperature with = 2z and coupling

-1.0 -0.5 0.0 0.5
w

(©Rex(2) (w)

0.5 1.0

(@)Imx 2 (w)

FIG. 4. Dynamical susceptibility or thermal retarded Green’s
functions y(@w) = G®(w) given in Eq. (3.39) for quantum liquid
with (solid line) or without (dashed line) Schwarzian correction.
For A = 1/4 cases: (a) -Re G¥(w) (blue line); (b) -Im GR(w)
(orange line). We have chosen = 2z and C = 1/(2x). Local
dynamical spin-spin correlation functions of quantum liquid
;(l(jc) () as given in Eq. (3.51) in high temperature case with § =
27 (solid green/pink line) and low temperature case with f = 20z

(dashed cyan/magenta line): (c) Re ;(fjc) (w), (d) Im )(1%2 (w)~

tanh(wf3/2). To avoid singularity of)(fi)(a)) at A = 1/4, we have
chosen A = 1/4 — e with e = 1073,
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C = 1/(2x) for A = 1/4 case. It is worthy of noticing that
the real part of ¥* () owns a peak at @ = 0 and decays
with the increasing of |w|, and is expected to be a delta
function §(w) at @ = 0 in the zero temperature limit as
shown in Fig. 4(c). While the imaginary part of local
dynamical susceptibility, i.e., ¥ (@) « Imy® (@) behaviors
like a smoothness function ~ tanh @ as given in Eq. (3.56)
and shown in Fig. 4(d), which is expected to be a step
function jumping at @ = 0 in the zero temperature limit.

2. A=1/3: FFL

In this section, we study the spectral functions of a
specific Schwarzian liquid with a conformal dimension
A = 1/3. This is an intriguing phase between Schwarzian
MFL phase (A = 1/4) and Schwarzian FL (A = 1/2) as
will be discussed in more detail in the following section.

In Figs. 5(a)-5(b), we show the retarded Green’s func-
tions of FFL for A =1/3 case with or without the
Schwarzian correction, and we also plot the corresponding
local dynamical susceptibility in Fig. 5(c)-5(d), which
characters the local spin-spin correlation of disordered state.

3. A=1/2: FL like
The Fig. 6(a) shows the evolution of retarded Green’s
function with respect to the coupling coefficient C~! (where
C~ Cg(;S,), for FL (with A = 1/2) with Schwarzian cor-
rection, in terms of “Schwarzian FL”. The coupling coef-
ficient C~! (where C ~ Cg(Z)r) characterizes the coupling

A=1/3 A=1/3

-ReGR(w)
- N

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
w w
(a)-ReGE (w) (b)-ImGE(w) ~ DOS
A=1/3 A=1/3
-1.0 of T F
3 -1.5 3 1
s, -2.0 TN S0
=< 25 = {
& E
-3.0 / \ L
-35 op—
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
w w
2 2
(c)Rex(o) () (d)Imx(2 (@)
FIG. 5. Susceptibility or thermal retarded Green’s functions

() = GR(w) of the quantum liquid with (solid line) or without
(dashed line) the Schwarzian correction as given in Eq. (3.39).
For A = 1/3 case: (a)-Re GR(w) (black line); (b)-Im G?(w) (red
line). We have chosen f# = 20z and C = 1/(2x). Local dynami-
cal spin-spi lation functions of quantum liquid z\”)
pin-spin correlation functions of quantum liquid ;.. (@) as

given in Eq. (3.51): (¢) Re )(l(jg(a)), (d) Im ;(l(jc)(a)) at high
temperature with f = 2z (solid green/pink line) or at low

temperature with # = 20z (dashed cyan/magenta line).

strength of pNGBs loop corrections to matter two-point
correlation functions, according to Eq. (2.47). The C = o
case (dotted red curves) corresponds to conventional FL, and
the local susceptibility becomes exact step function 8(w) in
the limit e — 0. With the increasing of the coupling strength
(or decreasing of C) up to C~! = 3z (solid purple line), the
DOS accumulates more in the @ = 0 region and develops a
small dig at the w = 0.5.

In Fig. 6(b), we also show the evolution of retarded
Green’s functions of Schwarzian FL with respect to the
temperature. By decreasing temperature (or by increasing
p) from T =1/(2x) downto T = 1/(20x) as well as T =
1/(200x) (black/red dotted line). As expected, the DOS
spread out among the frequency space at finite temperature,
but there is still a peak at @ = 0, and a plateau in the @ > 0
region at low temperature limit as 7 — 0.

4. Large p or small A behavior

In this section, we consider the physical consequence
when A becomes smaller as shown in Fig. 7. This is
equivalent to increasing the number of interacting particles,
ie., p=1/A [5]). As stated before in the introduction
section, the p-fermion interacting vertex with p > 4 is only
UV relevant in (0 4 1)-dimensional spacetime. Without
loss of generality, we chose some specific value for
conformal dimension as A = 1/8, /16, 1/32,1/64, respec-
tively. For larger p or smaller A, the spectral functions
ImG*®(w) becomes more sharper at @ = 0. Consequently,

A=1/2 A=1/2

.0 0.5

a=112 a=112

w

a
N
o

N w

a o
-ImGR(w)/r

>

-ReGR(w)/r
(%,

N
o

0 .
-04 -02 00 02 04 -04 -02 00 02 04
w

o

w
(b)Evolution of GF(w) with temperature 51

FIG. 6. Dynamical susceptibility or retarded Green’s functions
of Schwarzian FL with A = 1/2: y(w) = —G®(w)/x is given in
Eq. (3.39). (a) Evolution with different coupling strength
(27C)~': C = 1/3z (blue/purple solid lines), C = 1/2z (cyan/
magenta dashed line); C = 1/x (green/orange dashed line) and
C = 400 (black/red dotted line). We have chosen input param-
eters as f = 2z. (b) Evolution with different temperature 7: In
front of Eq. (3.39), we have multiplying a temperature depending
factor z/p. For different T = p~': f = 2z (blue/purple solid
lines), # = 20x/3 (cyan/magenta dashed line); = 20z (green/
orange dashed line); f = 200z (black/red dotted line).
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A=1/8
4
& £
3 3 2
T T 0
-2
-04 -02
(a)A=1/8 (b)A =1/16
A=1/32 A=1/64
10 b, 20 "
k15
Es 310 4
3 L4
< @ 5=
5 E V=
1 0 3 0F=
.3 \p—
-5 -10
-0.2 -0.1 0.0 0.1 0.2 -0.05 0.00 0.05

(©)A = 1/32 (A z 1/64

A=1/64,1/32,1/16,1/8

A=1/64,1/32,1/16,1/8

Re Xioc?

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.

w w
(e)R‘eXloc (f)Imxloc

FIG. 7. Retarded Green’s functions G®(w) of quantum liquid
with (solid line) or without (dashed line) Schwarzian correction
as given in Eq. (3.39). Re/Im G (w) for (a) A = 1/8 (black or red
line); (b) A = 1/16 (blue or orange line); (c) A = 1/32 (cyan or
magenta line); (d) A = 1/64 (green or purple line). For all six
cases, there are clean signatures of Hubbard band in DOS. Local
dynamical susceptibility y(?) (w) with different p = 1/A (p = 8,
16, 32, 64 corresponds to solid, dashed, dot-dashed and dotted
lines, respectively): (e) Rey?) (w); (f) Imy(®) (w). We have chosen
input parameters as f = 2z and C = 1/(2z). With the increase of
P, the density spectral function becomes more central localized at
low frequency region, i.e., @ ~ 0.

G

the life time of the quasiparticle becomes longer as shown
in Fig. 7. Conversely, for smaller p or larger A, the life time
becomes shorter and the DOS shows nonquasiparticle
behavior at low frequency.

With the increasing of p = A~!, or the decreasing of
conformal dimension A from A =1/8 to A = 1/64, the
spectral functions ImG®(w) become more and more cen-
tralized at w = 0. It shows more metallic behavior at low
frequency region, meanwhile the depth of Hubbard band
increases towards low frequency region, and so does the
location of Hubbard band.

IV. HIGH-POINT CORRELATION FUNCTIONS

In this section, based on the low-energy effective
action of the Schwarzian theory of time reparametrization
from two-dimensional gravity, we calculate the high-point
functions, especially the four-point correlation function
[51,57]. The physical consequence of the four-point func-
tions can be detected in the system of quantum chaos
[11,15,28,34,58-60], which can be characterized by an
exponential growth of the thermal out-of-time-order corre-
lating (OTOC) [59-64] four-point function with a scram-
bling time 7.

A. Three-point function

The three-point function (OA(1;)O*(1,)O*(13)) in
Eq. (2.50) can be generalized to a more generic case when
A; = A, # As, e.g., by introducing a bulk cubic interact-
ing term ®2¢, coupled with two scalar and a dilaton, which
is dual to boundary operators O, Op with scaling
dimension A and A, = —1, respectively [7]. To be more
general, one can generalize the three-point functions to be

(OA1 ()0 (1,) O (13)) as below

Cs (n—/ﬁ)A|2+Az3+Al3

G;3(t. 1. 13) =

2sin(R)] 2sin(3)] 2 sin()]*"

D123 (ginh Za2)Ar (ginh Z223) 22 (ginh Z43) A (4'1)
i% (sinh £42) 22 (sinh ©3*) 2> (sinh =32)

where A;;=A; +A; - A; and we have made the notation A3 = Ay, + Axz + A3 = Ay + A, + Az. The generic

coefficient in front turns out to be [65]

r((Alzs—l)

AT

2 2 2

C3: 2

2al(A = D0(A, = DT(Ay = 1)

(4.2)

In the last equality, we have changed from the Euclidean/imaginary time to Loreantzian/real time, i.e., t — it. In the zero

temperature limit, it recovers Gs (11, £, 13) = Cs/(£592 152 151)

. By doing an Fourier transform upon (#, t,, f3) coordinate,

one obtains the three-point correlation function in momentum space as

3
G3(@y, 0y, w3) :/Hdl‘ie—i(')iliG3(f1,lz,l3) :/
i=1

dl‘%e—i(w]erz+w3)f3d[ldtze—i(wzf23+w1113)C3 (ﬁ—/ﬁ)Am

. 7(tiz—t3)\ A . i3\ A . RN (43)
(smh%) 12(s1nh$) 23(smh%) 13

After integrating out #3, one obtains a delta function 2z8(w, + @, + @3). By integrating out w3 again, it becomes
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dw; ds dsye” (@252t @50) Cy (g / f) A
G ) = —G ) ) - - S . s s ) 4-4
(@1, ) / 2r 3(@1, @7, 3) /(smh”ﬁn)A.Z(smh 22)A% (sinh ‘)A” (44)

where we have redefined ¢35 = 5, t,3 = 5, and it is worthy of noticing that s, = §; — s, is independent of #;. For extremal
case A; = A; 4+ A,, one has A, =0, Ay; =2A,, Aj3 =2A,, the three-point simplifies to be a product of 2 two-point
correlation functions as

N €0 ) i LR €] )i
G3(a)1,a)2,a)3) = 271'6(601 +602 +0)3)C3[) dt23€ ZIZ3W%3)2A2A d[13€ IIBW. (45)

Alternatively, one may observe that assuming that the time translational invariance is kept, one can make a shift relative to
113, so that the three-point correlation function in Eq. (4.1) can be reexpressed as

Cy(x/f)drtantan
iA13 (sinh ’”‘2)Alz (sinh ’”2)A23 (sinh 73! ZyAis

Gs(ty, 1y, 13) = G3(t12, 123.0) = G3(s57.5,) = (4.6)

we have redefined #{5 = sy, 1,3 = 5, so that t, = ;3 — 153 = 5| — S, = 5. In this, case, we only need to make the Fourier

transformation in (s, s,) coordinate and the same formula in Eq. (4.4), which can be reexpressed as

C3 (ﬂ/ﬂ)Alz+Az3+A13
(sinh %’)Alz (sinh %)AB (sinh %)AB ’

G3(601,602) = /dSIdSZE i(@57+0151) /dt&(t - S12) (47)

where we have introduced a delta function 5(¢ —s15) = [ dw/2re~®("=52) The three-point function in momentum
spacetime can be expressed in a convolution integral form of three two-point correlation as

o, | (/)
G ’ _ dr | = —za)(t—slz)/d d —i(wy5,+w)5)) 3
S(a)l a)z) / /27[6 Sl S2€ (Slnh%t)Alz(Sinh%)AB(Sinh%)AB

—l(HI ﬂ/ﬁ AIZ e—i(rm—(u)x] ﬂ/ﬁ Ay e—i(w2+(u)x2 ﬂ/ﬁ Ay
= CS/ / t ic) A /dsl -y oa(s (+ie) A) /dS2 - oa(s Eie) A)
(sinh B=)An (smh‘T) 13 (smhzT) 3

_q / 2 Gry ()G (01— )G, (02 + o), (4.8)
2 2

-1
2

the integrand above is nothing but the two-point correlation functions with conformal dimensions (A|,, A3, A3). In the
last equality, we have used the Fourier transformation for the two-point correlation function as

[t o z/p ZA_ o L 27\ 28-1 | _-ﬁ
o= [ T (Gadiz) ot (G) w4

At zero temperature limit (f — o0), it just recovers

dow et e—i(a)l—w)sl e—i(a)2+w)sz
G (1)1 602 C3/ / t — Alz / dSl 7(51 i i€>A13 /dS2 7(32 T ie‘)AB . (410)

By using Eq. (4.12), the retarded three-point Green’s functions is defined as

e it 12 —i(w—w)s, . —i(@y+w)ss Aoy
G (0, w,) = Cz/ /dt@ (z/5)° /dslé(—sl)e (=/P)" /ds29(_S2)e T 1/ B)

A12(Slnh”’)Al2 iA‘3(Sinh%)Al3 A% (Sinh%)Aﬂ

(4.9)

_c / ZG’L ()Gl (0, — 0)GL (@ + ), (4.11)

where GR/G* are retarded/advanced two-point Green’s function in momentum spacetime as Eq. (4.12) is
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_ +o0 iot <7[/ﬂ>2A _ 271\ 24-1 F(A + lzﬁﬂa)) B N

In this case, the retarded three-point correlation function is

dw 272: A|2+A13+A23—3
(GR (w1, @) = C3 /Z <?>

ree+ile) rEE-il(o-0) TER-IiL(o,+o))

F(1=Ap)T(1 = AR)T(1 = Ay)

T
(- A”—l—z a))F( T’—i%(wl —w))I(1 - %—12 (07 + w))
27\ Ais—2 1—ﬁ+i—a),l—ﬂ,l—ﬂ—iﬁw
= (%) T ara - awrt - ageit (1 70 TR TR ),
p fp o jilg fn4ile,

(4.13)

where G}, are the Meijer G functions G}, [{{a1.....a,}. {a,s1.....ap} 1. {{b1. ... by} {byir. o by )i 2] With n =1,
m =2, p =73, g =3 defined as below

m,n
Gry <z

where we have defined s = ifw/27, z =1, and

ai,ay, -+ d 1 bj+s I'l—a;—s
b ”) = 1 b, ) L T ), (4.14)

blvav”'bp :2—7” Hk:n-H (ak+s)H1:m+1 (l_bl_s)

O T S A R = el
A Ay B Ay . P
Clz:l—%, 3—1—%—1%0)1, l—bg—l—%—lz—wz (415)
Take A; = A, = A and A; = A, as an example, the retarded three-point correlation function becomes

Csal'(A —B2) . F,(2A — Ay, A+ B2 A — B0 A Ay 4800 | A - A, - 5224 15)

2z ° 2z °
sin (7(Aj, — A) = Z2O0(=2A + A + D(=A =22+ DA — Ay + 220 1 DA - A, B2 1 1)
Cal (A, = 2ty po (A, A =B A, —'/ﬂ—’g%, —A+ A, —‘/’%Jrl,—"ﬂﬁ—'ﬂ“url 1)
sin (2(A = Ay) + 22T (1 = A,)T(=A + 220 4 1)1(1 = P2l p(_A 4 A, — Py 1)

Gl(go(wl’wz) =

(4.16)

where 3F2(a1,a2,ag,b1,b2, z) = >0 [(a))i(ar),(@s)z*]/[(b1)(by)k!] is the generalized hypergeometric function
with coefficients in terms of the Pochhammer symbol (a), = I'(a + n)/I'(a).

B. Four-point function

1. Zero-temperature case

By using the correlation function B, (¢, t,) in Eq. (2.36) and the soft mode propagators in Eq. (2.17), the correlation to

the connected four-point function turns out to be G*) (¢, t,, t3, ) = €2(B;(t12)B,(t34))/ [t12t34]*. For the normal ordering
of the time case, i.e., t; > t, > t3 > t,, the correlation function turns out to be vanishing,

(4) —
Gyyww = 0, (4.17)

which means that although the two-point function B, (7;,) generates an energy fluctuation, they do not affect each other.
While for the crossing time ordering case, i.e., t; > t3 > t, > 14, the corresponding four-point function turns out to be
nonvanishing.
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2, (2
1 A% 1y3(t55 — 3t13104)
1351349C f1al34

4
G = (4.18)

which is proportional to the overall separation of the two
pair t,3. In the absence of cross distance t,3, i.e., when

1, = 13, the result Gg}vvw just recovers GE;‘\))WW = 0. In the

case t; — t; and t, — t4, one has G%,&WW ~ 13,8, ~ 1.

2. Finite temperature case

Suppose one has two operators V and VY with the same
conformal weight A, which are dual to two bulk scalar field
@. The connected four-point function is given by

po — VOVEWEW)

V(t)V(12)) (W)WM (1))
= (B (112) By (t34))-

(4.19)

By using the correlation function B, (¢, #,) in Eq. (2.42) and
the soft mode propagators in Eq. (2.17), the correlation to the
four-point function turns out to be GW (1, t,,15,1,) =
FO (1,15, 13,14) /[2 800 (115/2)]* [2 i (134/2)]**.

According to the relative ordering of the time, there are
several possibilities; one is #; > t, > t3 > 14, in which case
one obtains

@ :2_A2 [t |t
YWWW e tan 2 tant)’

which can be viewed as arising from energy fluctuations.
After recovering the thermal factor 1 — (2z/f)t, one just
recovers the connected four-point function in Eq. (3.131) in
Ref. [5]. Each two-point function B;(#;,) generates an
energy fluctuation, which affects each other. This result
does not depend on the relative distance between the pair of
points. In the double limit of #;, — 0 and 734 — 0, one has

(4.20)

) A

_ 2 2
Www = =5 12134 (4.21)
The other result is obtained with the time order
1, > t3 > 1, > Iy, in this case, one has

5 . i t
@ n A® 3 s sin 3 cos 2t
WWWEC \ tan D2 tan % sin“gsint )’

(4.22)

4 _
Fyywyw =

which depends on the overall separation of the two pair. In

the absence of cross distance t,3, i.e., when t, = t3, the

result F @WW just recovers F g&WW.

3. OTOCs

A simple diagnostic of quantum chaos is consider a
square of the commutator by taking an expectation value in
some thermal state, by considering a quantity, i.e., the
commutator of operators separated in time as [1,62]

C(1) = =(V(1). W(0)) = C1(1) = C2(1),

Ci(1) = VOWO)W(0)V(1)) + VOV ()V()V(0)),

Ca(1) = (VOW(0)V()V(0)) + WOV ()W(0)V(1)),
(4.23)

where W(t) and V(t) are two different operators dual to the
source ®(t), and (---)z = Z 'Tr[e”"H...], where the
subscript f is introduced to denote the thermal expectation
value at temperature 7 = ~!. The behavior of C(¢) in a
chaotic system is by expanding it, there are four-point

functions in C, two of them consist of C;(¢) in terms of

Lorentzian time-ordered correlators (TOCs), i.e., G@WW =

(V(1)V(r)W(0)W(0)), while the other two are OTOCs of
the form G\, = (V(O)W(0)V(1)(0)), which can be
used to diagnose chaos. The Feynman diagrams of four-
point TOC and OTOC functions are shown in Fig. 8.

With the OTOC four-point function Gga)/vvw’ by making
the parametrization with the SK four-contour [66,67],
which is depicted in Fig. 9

—l5,z— 1, 5

pip
2 4

+ i?), (4.24)

N~
| >
|~
|~

e (-

where i = 1, 3, 2, 4 and # = 2x. 7 is the separation of the
early V operator and the later W operators. The contour
goes from some initial time #, within Euclidean domain,
along the imaginary time axis to some time 7,, then turns to
the Euclidean domain time 73 again, and again runs along
the imaginary time axis to 7.

In the 7> f limit, one obtains the TOC and OTOC
four-point functions, in the SK contour as depicted in Fig. 9

2 2
3 3
4
4 1 1
FIG. 8. Feynman diagrams for four-point correlation functions

G,4(t), 1y, 13, 1) of scalar fields with loop corrections from soft
modes, as shown in Eq. (2.44).
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Imt

B=2m t=it
B/2 il

B/A 4

0 2. ‘ Re t
-B/A S

B/ . LD Y

—t2 12

FIG. 9. Schwinger-Keldysh four contour for four-point
OTOCs, with time chosen as in Eq. (4.24).

O
VVYWW 42A zC ’
4) ek ? 2 i
GVWVW = —ﬂ?COSh[N ﬂﬁFE Lt, (425)

where Gg\lww = Gg&ww(il .1, 13,1,) etc., and for the last

equality of OTOCs, we have transferred the Euclidean time
7(t) in Eq. (2.7) to Minkowski time, i.e., #; — i7 and recover
the temperature by rescaling ¢; — 2xt;/f, while the f in
front comes from recovering of the thermal factor, i.e., by
multiplying a factor 1 — /2z. The behavior of thermal
OTOC:s at later time shows a exponential expansion with a
Lyapnov exponent 4; = 2z/f, which indicates the growth
rate of chaos in thermal quantum systems with a large
number of degrees of freedom, and is bounded in a
universal system [59], as A < A; = 2z/f. The Eq. (4.25)
is valid under the condition that ¢, < t < t,, where ¢, is
relaxation time, 7, is the scrambling time and ¢, ~ A;' In C
when C(r) becomes of O(1) under time long time evolu-
tion. By selecting the exponential increasing mode and
doing Fourier transformation, in the choice of SK contour
as in Eq. (4.24), or depicted in Fig. 9. The chaotic mode of
OTOCs in frequency space becomes

N

4 0 i 4
Gy (@) = =i~ | die™6(1)Gyy (1)

T J-c0
A 1
=] A, 4.26
P C(w—iy) me>h. o (426)
while the normal mode of TOC becomes
) B 1 A?
GVVWW(w) = —42—Aa, Imw > 0, (427)

which is singular at @ = 0. The chaotic behavior of four-
point OTOC functions in frequency space is shown in
Fig. 10. For maximal chaotic behavior with 4; =1
(# = 2nm), it results in a nonzero frequency bump in the

A=1/4 A=1/4
0.03 0.06
[

0.02 AN E 005

0.01 ] 3

ot ) e z 0.04

0.00 £ 0.03

['s —~— ©

© -0.01 T @ 0.02
N 1

-0.02 N f T 001

vwww(w)/ 7T

-Re

-0.03 0.00

(b)—ImGﬁf‘),VVW /m

FIG. 10. The four-point OTOCs in frequency space with
Lyapnov exponent as in Eq. (4.26) —ng&ww((u, B)/m of Schwar-
zian liquid: maximal chaotic behavior with A, =1 (f = 27)
(cyan/purple thick lines) or nonmaximal chaotic behavior with
Ar = 1/2 (f = 4r) (green/magnet dashed lines). We have chosen

a set of input parameters as A = 1/4, C = 1/(2x).

in low frequency region at large Lorentizian time. While at
low temperature limit for (f = 4x), the peak of the bulk
moves more closer to low frequency range, or equivalently,
a much more larger Lorentizian time to saturate the chaos,
which corresponds to the nonmaximal chaotic behavior
with 1; = 1/2. In the zero temperature limit, 4; — 0
(f — o), as expected, the peak of the bump moves to
the @ =0, and the mass spectrum of pNGB becomes
NGB like.

C. Six-point function

It is straightforward to calculate the higher-point func-
tions as in Eq. (2.43) such as the six-point functions
obtained in Eq. (2.44). The typical Feynman diagrams of
six-point TOC and OTOC functions are depicted in Fig. 11,
respectively.

For the convenience of viewing physical consequence
of six-point functions, one may generalize the SK four-
contour in Eq. (4.24) to be six-contour as shown in Fig. 12,

6 1 6 1
4 2 . 5
2 2
6 3 6 3
1 1

FIG. 11. Typical Feynman diagrams for six-point correlation
functions Gg(t,, ..., fg) of scalar fields with loop corrections from
soft modes as shown in Eq. (2.44), in TOCs and OTOCs,
respectively.
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Imt
B=2m t=iT
B2 bl IG
B/A i 4
2 5
0 Re't
B/4 -] 3o
Bl e
1 ‘ : !
_t _y2 t/2 t

FIG. 12. Schwinger-Keldysh six contour for six-point OTOCs,
with time chosen as in Eq. (4.28). One may entail an infinitesimal
Imts, = & > 0 to entail that 7, is earlier than #5 along imaginary
time line, and in the end set it to be zero, which does not affect the
results.

by increasing the real time with equal pace and imaginary
time separately for OTOCs as

[\)

(7,)0T0C = (—?—gi,—? él 0,0 + ei, t+—l t+g >

4.28)

—~

where the time order is i = 1, 3, 2, 5, 4, 6.

For example, in the SK six contour chosen in Fig. 12, the
six-point correlation function can be expressed more
elegantly as Gg(t,, ....15) = F¢/4%*, where Fg are

1 A
Fywyawx = Fypwywax = (1 57 cosh f) Fyywwaxs

(8A + 4 — %) A3

Fyvywwax = Fyywawx = 12 . (4.29)
where

Fywvawxy = € (By(112)Bi(13.4)Ba(15.6)0(132)0(t54)).
Fywowry = € (By(112)Bi(134)B(156)0(132)).

Fyywawxy = € (By(112)Bi(134)B(156)0(s4)).

Fyywwrx = € (B (112) B (t34) By (156) ). (4.30)

In a similar manner, one can redefine Fyyyyyry =
Fyywwrx(t34 < 156) as

Foywwrx = € (By(t12)Ba(134) B (156)), (4.31)
where ¢ is imaginary time, and 6(z;;) is the step function.
It turns out that, in the chosen SK six contour in Fig. (12),
one obtains

5
4 4
3 2
6 7
2 2 6 3
8 1 8 1
FIG. 13. Typical Feynman diagrams for eight-point functions
Gg(ty, ..., tg) of scalar fields with loop corrections from soft

modes as shown in Eq. (2.44), in TOCs and OTOCs, respectively.

Fuwvawxy = Fywywrx — Fyywawx + Fyywwax

A4 . A4
= Ecoshz(t) i el (4.32)
with the OTOCs time as 7; with i = (1,3,2,5,4,6) and
Ar =2x/f. The results just recover the 3-OTCs of six-
point functions in Ref. [34].

D. Eight-point function

According to Eq. (2.43), the eight-point functions are
obtained in Eq. (2.44). The typical Feynman diagrams of
eight-point TOC and OTOC functions are depicted in
Fig. 13, respectively.

For the convenience of viewing physical consequence of
eight-point OTOC functions, one may generalize the SK
four-contour in Eq. (4.24) to be eight-contour as shown in
Fig. 14, by increasing the real time with equal pace and
imaginary time separately, as

Im t
B=21m t=iT

Re't

FIG. 14. Schwinger-Keldysh eight contour for eight-point
OTOCs, with time chosen as in Eq. (4.33). One may entail
infinitesimals Im#s, = 6 > 0 and Im#74 = & > 0 to entail that 7, 4
is earlier than 755, respectively, along the imaginary time axis.
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In a similar manner as in calculating the six-point
function, in the chosen SK eight-contour as in Fig. 14
with the OTOCs time as 7; with i = (1,3,2,5,4,7,6,8),
the thermal eight-point functions turns out to be
Gg ~ Fg/4**, where Fg are

4A4

Fyywwaxxyy =Fyywawxyy = 20
Fywyzwxzx =Fywywzxzx

=—=Fywyzwzxx =—Fyywzwazx

=—Fywywzzxx =—Fywwwzrzy

4 4 20,7

Z:ZAC2<1 —Zcosh?>2~A4eCj (439
where
Fyywwrxyy = € (Bi(t1)),
Fyvwawayy = € (Bi(t18)0(1s4)),
Fywyzwrzx = € (B1(118)0(132)0(154)0(176))
Fywywzrzx = € (B(118)0(t3)0(t76)).
Fywyzwzax = € (B{(118)0(t3)0(ts54)).
Fyywawrzx = € (B (118)0(t54)0(t76)).
Fywywzzxx = € (B(118)0(132))),
Fyywwzazx = € (Bi(118)0(176)), (4.35)

where we have introduced the new notation Bj(t,g)=
Bl(tl.Z)Bl (t3_4)61 (t5,6)81 (t7,8)’ It is €asy to check that it
satisfy the relation

Fywyzwzax — Fvwywzzxx — Fyywawayy
+ Fyywwarxyy =0

Fyywzwxzxy — Fyywawxyy — Fvywwzazx
+ Fyywwaxyy = 0,

Fywywzxzy — Fvwywzzex — Fyvwwzxzx

A*cosh?()  A*ehl
+ Fyywwaxyy = 2 A

(4.36)

For the higher-point OTCs, one would expect that the
thermal system will approach the chaos much faster with
time less than 7;, = 1/4;.

V. DISCUSSIONS AND CONCLUSION

The SYK model is an intriguing quantum mechanical
model displaying both a spontaneous and explicit breaking
of an emergent reparametrization symmetry Diff,. The
breaking patten of this symmetry determines many feature
of the low-energy dynamical property of the model and

some are expected to be universal in strongly interacting IR
fixed point at large N limit.

A. Features of the SYK-like model

The most fabulous features of the SYK model is the
solvability in the strongly interacting IR fixed point at large
N limit. The mass spectrum of the SYK model is obtained
by solving Schwinger-Dyson equation and the spectrum of
two-point and four-point function, as well as more higher-
point functions are computed [3,5,32].

The other interesting features of the model is that in the
strong coupling limit (4J > 1), the four-point function
saturates the maximal chaotic bound since it is dominated
by the universal sector of gravity [59] which is characteristic
of a gravity theory with black hole solutions [58]. The
saturation means it achieves the maximally allowed chaos
quantified by the Lyapunov exponent 4 = 2z, the growing
rate of a thermal four-point OTOC function, as defined on the
Keldysh contour [1,6], (V;(0)W;(t)V;(0)W; (1)), ~ */N,
which is true at a time range between the dissipation time and
the scrambling time, i.e., # € (A=, =" In N). The exponential
growing manner reflects an underlying chaotic dynamics.

Another novel feature of the model is the emergent con-
formal symmetry, i.e., the time reparametrizations diffeo-
morphism symmetry Diff;, or Virasoro symmetry, at low
energy and its spontaneous and explicit breaking [5,7].

B. Spontaneous breaking of Diff,

In the SYK model, the emergent Diff; symmetry is
spontaneously broken down to SL(2, R) symmetry [68,69],
which is kept in the Schwarzian action (the Lagrangian) at
finite frequency. From the gravity viewpoint, the Diff;
symmetry is an approximate asymptotic boundary sym-
metry of the perfect AdS, at IR conformal fixed point
(w =0 orJ = ), and is spontaneously broken down to a
one-dimensional global conformal group SO(2,1)~
SL(2,R) symmetry, or large diffeomorphism Diff owned
by the AdS, symmetry.

C. Explicit breaking of Diff,

In the SYK model, the emergent Diff; symmetry is also
explicitly broken, since the symmetry is not kept by the
Lagrangian any more as one slightly moves away from the
IR conformal fixed point, where the kinetic term 0O,
becomes relevant at low frequency or strong coupling
region (w <1 or J> 1). From the gravity viewpoint,
the bulk spacetime is slightly deviated from AdS, vacuum
to NAdS, by taking account of the backreaction due to
arbitrary tiny energy excitation.

D. Diff; symmetry breaking pattern

The pattern of spontaneous breaking of the Diff; results
in an infinite number of zero mode, namely, the NGBs
characterized by the coset Diff,/SL(2, R). As the Diff,
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symmetry is explicitly broken, the leading-order dyna-
mical correction is described by a SL(2,R)-invariant
Schwarzian derivative of the reparametrization f(7) in
terms of effective Schwarzian action in Eq. (All) as
described in Appendix A, which determines many aspects
of the theory. As will be seen, the dynamics of the
Schwarzian correction to the quantum correlations of
SYK model is characterized by Schwarizian action with
an SL(2, R) unbroken symmetry. As the Diff; symmetry
is explicitly breaking due to a small but nonvanishing
derivation € ~x~J~! (this is equivalent to a small
o<1 or the presence of a relevant kinetic term 0,),
associated with an infinitesimal fluctuation field k(¢) in a
dynamical reparametrization function f = ¢ + €k(¢), as in
Eq. (2.7) and (2.13) for zero and finite temperature cases,
respectively. To be brief, the Diff; symmetry is para-
metrized by f and is explicitly broken by the small
fluctuation €k(r), which is parametrized by the coset
Diff, /SL(2, R).

E. Quantum and thermal correlations

For zero temperature case as in Eq. (2.10), the zero
modes of the fluctuation field, i.e., NGBs, leads to a zero
action in the IR conformal fixed point (/ = oo or € = 0),
while the soft modes of the fluctuation field, i.e., pNGBs,
leads to a nonvanishing action when the classic solution is
deviated away from the conformal limit (a small but finite
€ ~J). For finite temperature case as in Eq. (2.16), the
first exciting state of pNGBs, i.e., the n = %1 soft modes,
also leads to a zero action. In both cases, the two-point
function is singular and needs to be regularized.
Consequently, the two-point and four-point correlation
functions of matter field obtain loop corrections from the
pNGBs as the reminiscent of the breaking of the time
reparamterization symmetry Diff .

In conclusion, we study the retarded Green’s function of
Schwarzian liquid, which can be depicted by a (0 + 1)-
dimensional strongly interacting quantum mechanical/sta-
tistics model dual to a general (1 + 1)-dimensional classical
dilaton gravity model. Based upon the two-point correla-
tion functions of matter, which get loop corrections from
pNGBs in coset Diff;/SL(2,R), we obtain the bosonic
retarded Green’s functions as well as local dynamical
susceptibility, i.e., the second-order local spin-spin corre-
lation functions for quantum liquid. We also calculate the
four-point as well as higher-point thermal OTOC functions
in SK formalism, which cultivate the quantum chaos at
large real time.

To manifest our results, we show the spectral functions
of not only Schwarzian MFL described with conformal
dimension A = 1/4 (p = 4) but also Schwarzian FL with
A=1/2 (p =2), as well as a specific quantum liquid
phase with A = 1/3 (p = 3). Large p-body behavior of the
Schwarzian liquid is studied too. Moreover we make
comparison with the leading-order retarded Green’s

functions, which just recovers the results of quantum liquid
from AdS,/CFT, approach.

In the infrared (IR) conformal fixed point with zero
frequency (@ = 0) where the Diff; symmetry is emergent,
the spectral functions owns Fermi liquid [70] peak in DOS
at ® =0 and leads to typical metallic behavior. The
symmetry is spontaneously broken to SL(2, R) and leads
to zero modes on the boundary in terms of “boundary
graviton” [7], which are the Fourier modes of the Diff;
symmetry. At finite frequency (w # 0), the Diff; symmetry
is explicit broken. As its physical consequence, the system
develops a feature which is interpreted as bad metalic
behavior with a high-energy Hubbard band dynamically
generated. In the intermediate region, there is a temperature
dependent crossover between Fermi liquid phase and bad
metal phase in the strongly correlation regime, in which the
quasiparticle picture is fragile or even broken down.

We make generalizations of four-point correlation to
higher-point correlation functions. As noninclusive demos,
we show concise analytic results on six-point as well as
eight-point thermal OTOC functions in SK contour, which
exhibit exponential growth until progressively a longer
timescale and thus sensitive to more fine grained quantum
chaos. We also obtain analytic expression for third-order
and fourth-order local spin-spin correlation functions.

The Schwarzian liquid can be related not only to FFL,
but also disordered metals without quasiparticles scenery
depicted by SYK like model, such as NFL phase
[38,43,52-56]. We study the matter retarded Green’s
function by taking account of the loop corrections from
pNGBs to the matter two-point correlation function, and
unexpectedly find a Hubbard band or dynamically gen-
erated DOS in the spectral functions, which is due to the
spontaneous and explicit breaking of time reparametriza-
tion symmetry and is a distinct signature of Schwarzian
liquid, comparing with the conventional strongly interact-
ing quantum liquid. The existence of pNGBs mode from
Schwarzian action in the quantum liquid also provides a
dynamical mechanism for explaining the commonly obser-
vations of bad metal in strongly correlated system.
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APPENDIX A: SYK MODEL AND SCHWARZIAN
1. The action of SYK model

a. SYK model introduction

In the path integral, the prototypical SYK model is
described by the partition function an action Z(J) =
| Dy;e™5, with the action as

1< 1 ikl
S:/dr<§;)(ia,)(i—azjijleZ]X)()’ (A1)

i.j.kl

where ' are N Majorana fermions, satisfying {y;.x;} =
0jj, interacting with random interactions involving four
fermions at a time. J;;; is a Gaussian random infinite-range
exchange interaction of all-to-all quartic coupling, which
are mutually uncorrelated and satisfies the Gaussian’s
probability distribution function P(J;j,) ~exp (=N*J3;,/
12J%), which leads to zero mean E[J, ;] = 0 and variance
E[J3y] = 31J%/N° with width of order J/N3/2, respec-
tively. The E[- - -] denotes an average over disorder. The J is
the only one effective coupling after the disorder averaging
for the random coupling J;j;;. The random couplings J;;y,
represents disorder, and does not correspond to a unitary
quantum mechanics [14,33]. For Euclidean time 7 = iz, the
model can be viewed alternatively as a one-dimensional
statistical model of Majorana fermions. For finite temper-
ature case, the quantum mechanical model can be alter-
natively depicted in a quantum statistics. By using a
Hubbard-Stratonovich transformation, it is possible to
rewrite the original partition function of SYK model as
a functional integral of the form [1,39-41] as

Z:e‘ﬂF:/DgDZexp(—NS),

S‘——[InPf(&,—Z)—%/drldrz <zg—§gﬂ>}, (A2)

where S = S/N is a disorder-averaged nonlocal effective
action by doing Gaussian integral over the disorder and
integrating out fermions after introducing a bilocal field
G(r,7') and a Lagrange multiplier field X(z, 7). Pf denotes
the Pfaffian, and the first term of the action can also be
reexpressed as In[det(0, — X)]/2, 7, 7’ are Matsubara times,
and p = 4 denotes the number of Majorana fermion in the
vertex.

Atlarge N limit, i.e, amodel with the number of Majorana
fermion N > 1, by doing variation with respect to G and X,
or equivalently by counting the resummed Feynman

diagrams, the solution of SYK model is described by the
Schwinger-Dyson (SD) equations in real spacetime as
G=(0,-3)", T=rg, (A3)
where G = G(r,7') is the two-point Green’s function, X =
%(z,7’) is one particle irreducible (1PI) self-energy.

The first kinetic term in the G represents a conformal
breaking term as will be clear in the following. Substituting
the full solutions of the above classical equations of motion
back into the effective action in the partition functions, one
obtains the leading large-N saddle-point free energy F in
low temperature expansion as [5,11]

- F Imz 1
F:—: = —

NT BN B

= ey —sof" = %}’ﬁ_z + (A4)
where ¢ is the nonuniversal (UV completion sensitive)
ground state energy density, s, is the universal zero
temperature entropy density and ¢, = yB~! is the specific
heat density. - - - denote terms with higher order in 5.

The residual zero temperature entropy density and the
thermal capacity density turns out to be

__@__li_ aF _ﬁZ@
0T Tor T "tomr Pomp 7 op
1 (92I_7 aS() 8s0 aS()
L= — = -] —— = _ = = —H—. A
=g’ 9T T 9T g A

In the ultraviolet (UV) limit at short distance, w > J, the
kinetic term dominates and the four-fermion interactions
term is irrelevant so that the theory has N weakly interacting
massless Majorana fermions. The fermions have a two-point
function given by Gy(z) = sgn(z)/2 regardless of temper-
ature, or G(w) = iw~" in frequency space, assuming the time
translation symmetry is kept. The action is invariant under
arbitrary time reparametrizations and consequently the
Hamiltonian is zero. While in the low-energy IR limit at
large distance, the frequency (in the momentum spacetime
0, ~ iw) is much smaller than the UV coupling J, i.e.,
o < J, means the model becomes strongly interacting at
low energies. Consequently, the kinetic term O, can be
dropped, so that the SD equations in the IR limit are
modified to be conformal invariant ones as in

/df”g('r, ?NE(, ) = =8(r - 7)), > = J2grl,

(A6)

In this case, the SD equation in the conformal limit is
reparametrization invariant, which means that under an
infinitesimal transformation of the time reparametri-
zation 7 — 7 + ¢(r), the two-point function transforms as
G - G+ 6.G with
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6.G = [A(Bre(z) + Dye(?)) + e(0)0; + e()3,1G.  (AT)
where ¢(7) = 87 is an infinitesimal conformal trans-
formation.

In this case, G+ 6.G still solve the conformal SD
equations in Eq. (A6).

As a physical consequence, an extra general reparamet-
rization symmetry with an arbitrary function f(#) and
conformal invariance is emergent in the IR limit as long
as w < J or equivalently, J — oo, namely, in strong
interactions, as 7 — f(7),

G = If @f ()G (x). f(2')).

= |f@f (@)PPIE(f(2). f(7). (A8)
where A =1/p is the conformal dimension of CFT,,
which is explicitly broken by the kinetic term 0, in medium
energy range, i.e., @ ~J, which is the explicit symmetry
breaking parameter. To be brief, both the two-point
function G and self-energy X are conformal invariant in
the IR background. Therefore, fJ > 1 can also be viewed
as the conformal limit of the model.

In the IR limit, the action is reparametrization invariant
by dropping the kinetic term 0, inside the action, while the
solution G is only SL(2, R) invariant. Thus, one can view
reparametrization invariance as an emergent symmetry of
the IR theory, which is spontaneously broken by the
conformal solution G. The emergent full reparametrization
symmetry, i.e., the Virasoro group SL(2), is presented by
the generators

D=-10,—-A, P=20,
[D.P]=P, [D.,K]=-K,

K =720, +2zA,

[P,K]=-2D, (A9)
where H, D and K is a generator of time translation,
dilatation and special conformal transformation, respec-
tively. The zero modes in the effective action can be viewed
as Nambu-Goldstone (NG) modes for the spontaneous
breaking of the full SL(2) conformal symmetry down to
SL(2, R). Since the action is SL(2, R) gauge invariant, in
the path integral, one need to dived the integral by a volume
of SL(2,R).

At zero and finite temperature, the two-point function
has a conformal ansatz form at zero and at finite temper-
ature, respectively, as

b
T=0:G(r) = ngn(r),

T#0: G(z) = b(ﬁsin%

24
> sgn(z),  (A10)

where A is the IR conformal dimension, which turns out to
be inversely proportional to the d.o.f p of the disordered

interaction, i.e., A=1/p and b? = (2zJ?)7'(1 -2A)
tan (rA) at leading order in 1/N. The Green’s function
represent the low frequency behavior of the retarded
Green’s function for the SYK model in the strong coupling
limit. The ansatz form above can be obtained by applying
the reparametrization at saddle point f(z) =7 in zero
temperature case, while in finite temperature case, the time
direction is considered Euclidean and compactified into a
thermal circle f(t) = ¢**/# or f(z) = tan (zz/p) satisfy-
ing f(r+p) = f(z). To be brief, the thermal quantum
mechanics or quantum statistics can be achieved through
the reparametrization of a zero temperature quantum
mechanics, by mapping a straight line of imaginary time
7 to a thermal circle, i.e., 7 = tan (zz/f) with periodic
boundary conditions over a periodic lattice length f.

b. Effective Schwarzian action

In the low-energy limit, the model can be described by a
local effective action proportional to the Schwarzian
derivative [1] in terms of Schwarzian theory [23], which
can be understood as the dynamics of a Goldstone bosons
f(7), a near-zero mode for the breaking of reprarametriza-
tion invariance [5], with a coefficient of order (8J)~! as [1]

Sur = —¥ / drSch(f(z).7),  (ALl)

where Sch(f,7) is the Schwarzian derivative in Eq. (2.2),
which is invariant under SL(2) symmetry f —
(af +b)/(cf +d) and it is an exact symmetry at zero
temperature since f(z) =7. The prime indicates the
derivative with respect to the z. f(r) is the Nambu-
Goldstone bosons, or the zero modes involving large
diffeomorphisms, which are nontrivial on the boundary.
When one move away from the IR fixed point
(w < J - ), the NG bosons cease to be zero mode
and leads to a nonzero action, i.e., Sch(f(z),7) #0, e.g.,
f(z) = tan(zz/f), a black hole with finite temperature as a
deformed parameter from AdS,. At the finite temperature,
the effective action becomes S = —222Na/(Jp).

The form of the action itself implies an SL(2,R)-
invariant solution f — (af + b)/(cf + d) witha, b, c,d €
R and ad — bc = 1, which is the same as SL(2, C). For
instance, at finite temperature, f(z) = tan(zz/f), the
Schwarzian is Sch(f,7) = 2z%/#?. Since the effect cou-
pling of the theory 1/¢*> « Na/(Jf?), at large N and fixed
temperature, the theory is weakly coupled, dominated by
fluctuations around the saddle point 7z, but is strongly
coupled at ultra low temperature, i.e., g « f. It also inter-
esting to consider a reparametrization f(z) —tan(ze(z)/f),
the Schwarzian becomes Sch(f(z),z) = Sch(f(z),7)+
2(z/B)*f"?. Considering a small reparametrization 7 — 7+
€(r), by using the equivalent form of the Schwarzian with
terms of the total derivatives, the action can be re-epxressed
as a local one as
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Na €”?  [(2m\% ,
= [ (- (5) )

6l/ / 16”2
SCh(€(T),T> = (—,) —E?,

E (A12)
where we have dropped the total derivative terms (¢” /€)',
the action has an expression of lowest order in derivatives
that vanishes for global SL(2) transformation. Consider a
small fluctuation on the fixed parametrization e(z) = 7+
é(z), and expanded up to quadratic order, one obtains the
quantum action in terms of Pseudo Nambu-Goldsonte
(PNG) boson field é. In this case, not only the SL(2)
symmetry is broken by the SL(2,R)-invariant IR G
solution, but also is explicitly broken, which gives a small
Schwarzian action for &(z), which is vanishing in the strong
interacting limit J — oo at order of large N. The effective
action is a potential term for the zero mode, thus, the
Schwarzian action can be viewed as a mass term for PNG
boson. Therefore, the low-energy effective Schwarzian
action above makes reparametrization modes & PNG
bosons, in terms of soft modes [9,33].

2. Self-energy

With the two-point correlation functions G(z), it is also
possible to consider the scattering rate of quantum liquid
with soft modes from Schwarzian effective action, by doing
fourier transformation upon the imaginary time self-energy.
In SYK,, model, according to the SD equations in Eq. (A3)
or Eq. (A6) with p = 1/A, the conformal dimension of the
self-energy can be estimated as

1 1
>y x G(r)P! =
A (7) j2(A-1) [2%sinh§2,7”]2(A‘l)
= T A (A13)

where we have used Eq. (3.30). Thus, Z,(®) « Ga_j (@)~
GA"(w), where the prime denotes the derivative with
respect to the frequency .

3. Partition functions

According to Eq. (A4), by using the thermal para-
metrization f(¢) = tan (x1/2), the free energy in low
temperature expansion i.e., > 1, can be obtained from
the effective action.

From the effective action of the gravity sector in
Eq. (2.1), one obtains the free energy
FO = —%an :%Seff :%

1 2n?

1 2r
= Cg¢r/dtﬁ_) CFZJT%— CF,

Cy, / dtSch(f(1),1)

(A14)

which leads to the zero temperature entropy S = Nsy =
PF =27%p7" and the specific heat C,, = Nc, =y~ =
47z2Cp~", which are both linear in temperature.

While from the effective action of the scalar matter given
in Eq. (2.22),

2A+1 pl—2A A 7el—24
_ g sec(ﬂ1)+ € ’ (A15)
F(l — A)F(A + 5) 2A -1

where the first term is a finite one as leading IR correction
under the case that A < 3/2, since this free energy due to
matter F, o< f'724 dominates over the free energy due to
the gravity F o< 72 at low temperature limit. While the
second term is a UV divergent term, since it is a constant,
thus contributes to the ground state energy density e, as
obvious in Eq. (A4).

One can also include the one-loop exact Schwarzian
partition function by direct functional path integration of
the Schwarzian theory as [23]

1 b2 €2
7 = — -, =—, Al6
Sch 471'93 exXp (92> g C ( )

from which, the one loop corrections to the free energy is
obtained from

3.8

FSCh = ——hlZSchN——ln—.

5 S (A17)

Therefore, the loop corrections of graviton soft mode to the
scalar matter field turns to contributes a finite logarithmic
temperature term for the free energy.

APPENDIX B: WAVE FUNCTION
IN GLOBAL AdS,

In the main text, we mainly focus on the bosonic retarded
Green’s function of Schwarzian liquid, a similar pro-
cedure might be imposed to fermion’s case, which leads
to NFL underlying fundamental Dirac or Weyl fermions
[19,35,55,56]. For A = 1/4 case, one just recovers the FFL
of lattice Anderson model [43]. To obtain thermal fer-
mionic retarded Green’s function of quantum liquid, one
needs to solve the wave functions of Dirac fermions in
(1 + 1)-dimensional spacetime in global AdS, coordinate.

1. Global AdS, spacetime

In (1 4 1)-dimensional spacetime, the spacetime metric
of hyperbolic AdS, black hole in global coordinate is
given by
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2 2 -1
ds? = _(r_z_ 1>dt2 + (r—z— 1) dr?,  (Bl1)

o o

where the second expression is for global coordinate. The
gauge field in two-dimensional spacetime is

A(r) = pu(r = ro), (B2)
which leads to a constant U(1) field strength, since

F, = E = —u. The temperature of the black hole turns
out to be

1
T= . B3
2rry (B3)

In Cartesian gauge, the metric
ds®> = —dx* — dy* + dz? (B4)

can be classified into three classes, according to the index
k= —1 for embedding conic curves —x?>—y?+ 7> =
k = —1, which is obvious in the Lorentzian gauge as

ds* =—cosh’pdz*+dp?, pe(0,+), 7€(0,27),
(x,y,z) =coshp(sint,cosz,tanhp), y=+ix=e*"coshp

ds>=—e’’dt* +do?, o€(—c0,+x), tE€(—00,+),
(x,,z)=(e°t,cosho—e°*/2,sinhc+ €12 /2),

ds* =—sinh’pds® +dp*, p€(0,+0), 7€(0,27),
(x,y,z) =sinhp(sinhz,coshz,cothp),

x+£z==2e*sinhp,

where for hyperbolic case, the (p, 7) is just the usual bulk
Rindler like coordinates at positive side of Rindler space
with boundary at p — oco. The Poincaré time ¢ runs from
—o00 to 400, while the Rindler time 7 is 27 periodic. In the
Schwarzschild gauge,

2 2 -1 —dt2 d 2
ds2:—<r—2+1>dt2+<r—2+l> = —4C A
o o [sin (z/7)]

Z z
A, = ury (cot— - 1), r=rycot—,
ro o
—df? + dz?
2

9

1
ds> = —r*dt* + —2a'r2 =
r

2 2 -1 —df* + d7?
d32:—<r—2—1)d[2—|-<r—2—1) dr2:'7+zz,
rg rg [sinh (z/rg)]
A,:/H‘O(COthi—l), r:rocothi, (BS)
ro r()

where r € (ry, o) and ry is the Rindler horizon with #
being AdS, radius, the transformation between r and z
relates the parabolic orbits and to elliptic/hyperbolic orbits.
At infinite boundary, the elliptic and hyperbolic type just
reduces to be parabolic one.

2. Boson in global AdS,

Consider the AdS, metric in global coordinates as

=1

ds* = £*(dp? — cosh’pdr?),
4cﬂ

(B6)
where p € (—c0, +c0) and 7 € (—c0, +-00), ¢, contains UV
information of two-dimensional gravity.

The global coordinates are within the range p € (o0, 0)
for z € (0, o). Thus, it is expected that the theory is dual to
copies of conformal quantum mechanics CQM; and CQM,

on two boundaries via AdS,/CFT,. The Klein-Gordon
equation in this coordinates becomes

2

¢" + tanh pg’ + <wzsech2p - 4m_> $»=0, (B7)
c
u

which gives the wave functions as

p(z) = (22 = 1)"Her Pl 1 (2) + 200 ((2)]. (BY)
2 2
where z = tanh p and
1 m?
=4/-—— B
TTNET 4, (B9)

3. Fermion in global AdS,

The Dirac equation in (1 + 1)-dimensional spacetime
can be expressed as

("D, —m)y = 0, (B10)

where v = (w_,y )7 is a two component spinor, [* =
eqy® where e}, is the inverse of the vielbein g, which relates
the metric in curved spacetime frame to the local flat
Minkowski frame
9w = 'Iabe,'f‘«’f, (Bll)
where 1% = diag(—1, +1) is Lorentzian metric for local
inertial frame.
The covariant derivatives are D, = Gﬂ +Q, where

— .ab ab : : : ab __
Q, = w’y,/4 and wf” is the spin connection w;’ =

e (0,e™ + e"1,), where ' is the Christoffel symbols
and y* = [y“,y?]/2 is the generator of Lorentz rotations.
y“ is the gamma matrices of Dirac fermions, which satisfy
the anticommutation relations
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{ye. v’} =21, (B12)

where 7% = diag(—1, +1) is two-dimensional Lorentzian
metric for local inertial frame.

In two dimensions, one may choose y* as a real
representation [56]
0 1
rer “1 0
0 1
F—py — 6l = , B13
=y (1 0) (B13)

where ¢ are Pauli matrix. In the representation, the
chirality operator is

3 0,1 _— <3

In the conformal gauge, or light cone gauge, one has
(0 + ') = < 0 1 )
yry 0 o)

pom=("0)

Thus, the wave function contains two components carrying
opposite chirality as ¢ = (y_,y.)T.

The vielbein ej allows the y matrices to satisfy a
generalized algebra in the curved spacetime as

<
|||

(B15)

N = N =

{rry =2¢9", (B16)
where y* = y%el. In (1 + 1)-dimensional spacetime, the
gamma matrix can simplifies the Dirac equations in curved
spacetime as

{ ( a0, + 5 = ﬂ(\/—ge’;)> - m},// =0. (B17)
By using a coordinate transformation

sinhp = tano, € (-n/2,n/2), (B18)
which transforms the boundary of the spacetime at p =
+oo into ¢ = +x/2, the global AdS, metric in Eq. (B6)

becomes equivalently as

—dr?* + do?

cos? o

ds* = ¢* (B19)

The vielbein and nonvanishing spin connection in the
global AdS, coordinate in Eq. (B6) are given by

p p pT
e =17, w;- = —w; = sinhp.

(B20)

e = ¢ coshp,

In the momentum space by assuming the time translation
invariance, ie., y4(t.p) > ey (w,p). The Dirac
equation (p — m)y = 0 in the global AdS, coordinate in
Eq. (B6), becomes

iw 1
——— — —tanh —mly_ =0,
(a” coshp 2 an '0>l//+ mev-

0] 1
d,+————tanhp |y_ —méy, =0, B21
( ot coshy 2 p>u/ méy (B21)

which can be combined to be two decoupled equations of
motion for y, respectively, as

! tanh 2+ 1/4
<8§+tanhp6/)+4+m2f2:': » anhp ©° + / >

coshp  cosh’p
X yre = 0. (B22)

Alternatively, the Dirac equation in the global AdS,
coordinate in Eq. (B19) is

t 12
(00=i0-"5 ), - 2y 0.

COSo
0, + i — 200 me 0 (B23)
io———|y_ — =0,
2 v cosaw+

which can be combined to be two decoupled equations of
motion for y ., respectively, as

/4 +m2f2

1
<6§:Fiwtana+ +w +4>w¢=0~ (B24)

The solutions to the Dirac equation in Eq. (B22) or
Eq. (B24) turn out to be

w_ = (z+1)7m [czz'w/zzFl <—imf, —iml —w

1

+E;§_

fotriwto;
w 2,50 2’ 0

v, = (z+ 1) [c4\/2z_‘”/22F1 <1 —imfl,—imf —

w,—z) + c1v/22%/%, F) (1 —iml, —imf

13
+ 5;5 —w; —z) + c3z“’/22F1 (—imz,”, —im? + o
it
—so+zi—2 )|
2T
where y+ = y+(z) with z = €%,

066001-30



CORRELATION FUNCTIONS IN SCHWARZIAN LIQUID

PHYS. REV. D 99, 066001 (2019)

APPENDIX C: HIGHER-DIMENSIONAL
GENERALIZATION

1. Boson in d + 1-dimensional spacetime
a. Klein-Gordon bulk equation of motion

The equation of motion in coordinate space for ¢ with
action

§=- / 441 xy/=gg"N (Dy)* D + mp* ). (C1)

where Dy, = Vy — igAy. From the action, one can obtain
the equations of motion for the complex scalar,

MN(Vy —igAy)(Vy — igAy)p —m*¢p = 0. (C2)

Assuming the spacetime metric is
ds* = —gn(r)dtz "‘grr(’”)d’"2 —I—gxx(r)dxz. (C3)
Then, the EOM of the charged scalar is

1 1 / /
- [a%+ <g”—¢”+ (d - 1)g”>a,]¢
Grr 2\91 9 Gnx
1 1
+ (—6,% +—(0+qA,)* - m2>¢ =0, (C4)
YGxx 9
where ¢ = ¢(t,r,x), and for the briefness, we have

dropped r dependence of ¢, g,,, g,.. The EOM of the
charged scalar can reexpressed as

8r — rrar 2 A 2
{ (v=99 )+<§+(w+q ) > _mz]qﬁ_o'

vV -9 Gxx it
(Cs5)

where we have used the relation

1
A =2 +InA(r)

Ay A9 =+ mAYD,.(co
so that A(r) = /=g9"" = \/ 9.9 9% ". By doing Fourier

transformation as,

d
Plra) = / LE g p(r. k).

(2r)4 (€7)

where k, = (—w,k) and x* = (1,x'). The equation of
motion for ¢ = ¢(r, k,) is given by

— L 0,(v=ag0,) + g (R~ ) + m2)p =0,

Ner (C8)

where

=\ [0+ gA,(r)).

i

(€9)

b. Charged scalar in RN-AdS, . spacetime

In the AdS,., spacetime in the energy coordinate z,
dz?
f(z)

where the redshift factor and the gauge fields are

ds? = = (—f(z)dt2 + + dxf,_1>, (C10)

B d 7\ 2(d-1) 2(d— ]) z\4
R G R =
742
Tx
The EOM for the charged scalar becomes
1(2) = (d (_
f(2)02 () 1)
(at - ith)2 2 2f2:|
- T L9 = Cl12
FOE ¢ (C12)

where ¢ = ¢(t,z,x) and

% o an) _;‘j_zﬂ (c13)

Note that we have chosen the gauge so that the scalar
potential is zero at the horizon (r = ry,z = 7p), and as a
result.

u(z) =

Afz) > u u(@) > wotqp. (2-0).  (Cl4)
This implies that @ should correspond to the difference of
the boundary theory frequency from gqu, thus the low
energy limit really means very close to the effective

chemical potential gu. In the momentum space (9, = i@

and 0, —» —ik), the EOM can be reexpressed as
- gA,)? m>¢?
d-19 fZ) >+<w 944 K2 -0
{Z ) (zd ! f@2) L
(C15)

where ¢ = ¢(w, z). We will most interested in the case
T =0, where f(z) is shown in Eq. (C11).

c. CFT; correlation functions

Consider a massive neutral scalar field ¢ with mass in the
bulk action
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Sp= =5 | Ex/EGTHP + g+ (Cl6)

where denotes the interactions terms or high-
dimensional operator, which is irrelevant at the moment.
Consider a pure anti-de Sitter spacetime with a AdS,
metric in conformal coordinate

2

%
ds* = = (—d?* + dz?), (C17)

where u = (¢), the signature of the ordinary spacetime is
chosen as (—1,1), and z is the coordinate of extra
dimension where the gravity is penetrating. In the coor-
dinates, the AdS, boundary is lying at z = 0.

The equations of motion is V2¢ — m*¢ = 0 in the AdS,
metric is

m2e?

ZZ

Rp--0h-p-"5-9=0. (C1y

where ¢ = ¢(z,1). In the infinite boundary z — 0, the
scalar wave equations is dominated by pole at z =0,

1 m2¢£?
R¢p—-0.p——5¢=0. (C19)
Z Z
In the infinite boundary, the asymptotic solution to the
scalar wave function has the expansion,

p(t.2) ~ A(w)z® + B(w)z*,

z—0, (C20)

where the two exponents are, respectively,

1 /1
Aizij:ul, v = Zﬁ’”zfz' (C21)

The conformal dimension A are two roots of the quadratic
equations

A(A—-1)=m?¢, (C22)
which are consistent with the results from AdS2 grav-
ity [71].

Let’s consider an operator O of the boundary field
theory, dual to a bulk scalar field ¢(z,z) with mass m
and charge ¢. The boundary field theory in the UV, e.g.,
CFT; in the UV is characterized only and completely by the
dimension of the operator CFT|, e.g., A which is given in
term of bulk quantities as shown in Eq. (C21) for neutral
bulk field. The boundary field theory in the IR, e.g., CFT|,
or (0 + 1)-dimensional CQM [72-74], is characterized by
the scaling dimension of the operator ®@. Then we have the
following correspondence to the conformal field theory at
the boundary.

(1) A, is the conformal dimension of the dual
operator O;

(2) A(w): the coefficient of the more dominant term
(|]z2-] > |z%+|, when z — 0) in the infinite boundary
condition z — 0, can be identified as the source for
O, which is equivalent to adding to the Lagrangian
of the boundary theory a source term 0Sp =
[ dtA(2)O(¢).

(3) B(w): the coefficient of the subdominant term in the
infinite boundary condition, can be identified as the
expectation value of the operator O, e.g., (O) =
2u,B(1).

(4) The linear response function in momentum space for
Ois Gp(w. k) = 2v,B(w)/A(w), where the B and A
are the quantities after doing Fourier transform along
the boundary directions z. The ratio is determined by
aregularity condition at the interior of the spacetime,
e.g., for the horizon brane, it is the infalling con-
dition at the horizon.

With the above identification, we have the following
physical consequence:

(1) A(w) =0 (6Sg =0) but B(w) # 0: Spontaneous
symmetry breaking (SSB), the operator O has deve-
loped an expectation value without a source, the
linear response function is divergent Gg(w) — oo.

2) A(w)#0 (5Sg#0) but B(w)#0: Symmetry
breaking (SB), the operator O has developed an
expectation value with a source, the linear response
function is finite.

(3) A(w) #0 but B(w) =0: No expectation value is
developed, the linear response function is absent,
namely no response at all.

d. CFT, correlation functions

At the momenta, let’s re-visit the asymptotic behavior of
the bulk scalar, in the infinite boundary for the AdS,.
spacetime with d >3, z = 0 (f(2) = 1, A, = u):

d(x*, 7) ~ A(x)z5 + B(x)z%+, 70,
¢k, 1)~ A(k”)r_A* + B(kﬂ)r_A+, (C23)
where the two exponents are, respectively,
d d
Ai :Ezl:l/d, Vg = Z—l—mzfz, (C24)

and it is worthy of noticing that A_ =d — A,. Thus,
the retarded Green function in the infinite boundary
condition is

(C25)

where we just consider the standard quantization in
the discussion and K is a positive constant, which is
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independent of k, = (—w, I;) The asymptotic behavior is
obtained by solving the EOM in the AdS, | (d > 3) metric

2f2>¢ O

(C26)

d—1 )
(o220~ 10, - w2 - 23] -

where ¢ = ¢(#,z,x). For neutral massive scalar case
g =0. The EOMs of the scalar wave equations are
dominated by pole at z =0, for d >3, in the infinite
boundary z — 0, namely,

d—1 22
<3§ - 9. - mz—z)qb(z, 2x)=0. (C27)

Z

Assume that ¢ is an in-falling wave at the horizon
(0, = ik, 0, > —iw), then the EOM in boundary in
momentum space becomes

d—1 202
<63—76Z+ K(U—Fqﬂ)z—kz]_mzz >¢_07 (ng)

where ¢ = ¢p(w, z, k). Therefore the boundary theory
energy corresponds to @ + gu, and @ should be interpreted
as measured from the effective chemical potential gu > 0.
The wave functions becomes

$(2)~z
where @ = \/(w + gu)? — k*, and the conformal dimen-

sion is v, is defined in Eq. (C24).

Take charged scalar in AdS, vacuum as an example. In
this case, d =1, ¢ =0, k=0, and the wave functions
becomes

W20c,J, (@2) + c2Y, (@z)],  (C29)

$(z) = Vzled,, (zo) + Y, (z0)],

in the near horizon limit, one obtains the asymptotic
behavior of the boson wave function as

(C30)

imeo €08 [F— (@ + qu)z] — sin [5 — (@ + qu)7]
P(2)" ~ e NN

_ i [ = (@ + qu)z] + cos [ = (@ + qu)Z]
: Vv

(2 +4)(c1 + 102) i(ar-+qu) it
VEVHG T @
(% - Z)(cl iCz) i(w )Z—l%l/l
N N Fau)z=ig (C31)

The in-falling wave is e~*"+/(“+44)2 which entails that ¢, =
—ic, so that the outgoing waves are isolated. On the other
hand, in the infinite boundary z — 0, one has

20 2™ (CZ COt(”DI) +c )(luq + w)yl Z%+Dl
F(Ul + 1)
022”1F(u1) Hq +Cl)) e 1

™

#(z)

(p
b2
= B(w)z"' + A(w)z ™", (C32)
where A and B are identified as source and response,
respectively. The two-point Green’s function can be read as

_ B(w) B zlcot(zvy) — i W
Glw) = Alw) 4 T(w)T(v +1) 2
T4~ eim/] (1)2yl

T (W) + D sin(awy) (€33)

2. AdS, from RN-AdS,,

The AdS, spacetime background can be generalized into
high-dimensional spacetime, e.g., as an embedded boun-
dary in the near horizon boundary of a charged RN black
hole in AdS,,;.

a2 = (5) (crnae+any+ (5) 25 (e
where
e oA
]

In the IR limit at large distance, we have f(r)~ 1, or
energy scale is much larger than the chemical potential u
(but still much less than the UV scale) is simply a vacuum
with conformal symmetry AdS,,;. The near horizon
geometry is given by AdS, x R, ie., ds* = dsiy +
(r2/£?)dx*, which indicates the boundary system should
develop an enhanced symmetry group including scaling

invariance. For 7' = 2n§ and T = O case, respectively, one

has AdS, in global and local/Poincaré coorindates, respec-
tively, as

52 6:2 é'2 -1
tha= (- (5]
SNAdS, 2 Co C(z) ¢

= M A — _E_fz (1 _ £>
[sinh(z/¢)]*’ ! ¢ o
(C36)
i =0 (=df* +d¢?), A= (C37)
Ads, = 72 ; 1=

where ¢, is the curvature radius of AdS, given by
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1
fz—mf-

(C38)
For the second equality, we have used the coordinate
transformation as

Z _ 7
— l‘=2

{ = {ytanh—, —=
L Lo

o, A= Ef<cothi - 1).
2}

(C39)

In the finite temperature limit { — {,, the metric and the
vector potential of the Maxwell field are dominated by

Lﬂ2 412 -1 }’2
ds® —>—§ <1 ——2> di*+—%dx*, A, (5)—0. (C40)
¢ % 4
The time direction also shrinks to zero, and the spatial
direction approaches a constant, the Maxwell field approaches
zero. The RG scales is flowing from AdS,, | with scale z to
near horizon boundary with scale z, a single scale of the
boundary theory. In the boundary field theory aspect, the
theory flows from CFT, in the UV to the IR-CFT |, which is a
conformal symmetries of a (0 4 1)-dimensional conformal
quantum mechanics (CQM) [72-74], including the scaling
symmetry in the time direction. Therefore, the corresponding
IR fixed point is just a IR-CFT;, which is a conformal
symmetry only in the time direction. The new conformal
symmetry is emergent and has relation with the collective
motion of the large number of charged excitation. Of course,
one has to take a notice that the spatial direction can also have
important physical consequence.

In the zero temperature limit { — 0, the metric and the
gauge field in Eq. (C36) reduce to the 7 =0 case in
Eq. (C37). It is worthy of emphasizing here that the central
charge is infinite, since it is proportional to the volume of
the d-dimensional transverse space R?~!. To have a finite
central charge one could replace R*~! by other manifold,
1.€., a torus.

The time direction shrinks to zero, and the spatial
direction approaches a constant, the Maxwell field
approaches zero. The AdS, symmetry is emergent in the
near-horizon region. The AdS, is isomorphic to a full
SL(2, R) symmetry, which own the scaling isometry:

t— A,

&=, X = X, (C41)
where only the time sector scales. The finite ¢ corresponds
to the long-time limit of the original time coordinate,
meanwhile the short-distance limit of the original spatial
coordinates. Thus, the metric obtained above should apply
to the low-frequency limit, since @ is the frequency
conjugate to ¢

o~T < p. (C42)

In the low-frequency limit, the d-simensional boundary
theory at finite charge density should be described by a
CFT|, in terms of IR CFT of the boundary theory, which is
an emergent conformal symmetry due to collective behav-
ior of a large number of degrees of freedom. It is not related
to the microscopic conformal symmetry in the UV, which is
broken by finite charge density.

The metric is the AdS, slice of the high-dimensional
RN-AdS,, i, the letters with a bar above are associated with
%, T,and T and are the Hawking temperature with respect to
the coordinates ¢ and 7, respectively. In this case, the
frequency conjugated to the rescaled time 7 becomes

_ C43
22T 2aT’ (C43)

a. Near horizon field equations of motion

Consider a massive scalar field ¢ with mass in the bulk
action as

5= = [ @t =gl ™ (D) (Dnd) + 1),
(C44)

where the covariant derivative is defined as Dy = Vy—
igAy. From the action, one can obtain the equations of
motion for the complex scalar,

(6" (Vi = iqAy)(Vy = iqAy) = m?]¢p = 0. (C45)
Let’s consider a charged scalar field in the background

metric and gauge field at zero temperature 7 = 0, which is
given by Eq. (C37),

» _ 6 2 2 2 €d
ds* = 5 (—=dt* + d{*) + 5 dx*, A =—,
¢ ¢
which recovers the asymptotic AdS, spacetime in Eq. (B5),
by setting £, = 1 and e; = u. To be explicit, by consid-
ering that ¢** = 1/r2, A, = 0, the field equations become

2

2 (C406)

2 2igey g’er m*t3
<8§_6§+r2¢28§+ ¢ 0te T p >¢:O’

(C47)

where ¢ = ¢(z,{). Alternatively, one can expand ¢ in
momentum space by doing Fourier transformation,

P(1,%.¢) = / G0 i, ),

2n)’ (C43)

one obtains

S == [ =gl (Dup);Dude + midide). (€49
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where D, =V, —igA, and

k22 k*z2
m? =m? + 2 =m?+ =

(C50)

The indices a, b only run over 7 and {. From the action, one
can obtain the equations of motion for the complex scalar,

[9°(Va = iqA,)(V), — igA,) — m2]dp = 0. (C51)
which can be written as
2i 2,2 m%fz
(82-6%—% o5 §22)¢’=:o, (C52)

where ¢ = ¢(t,{). For pure AdS, case as in Eq. (B5), one
has m. By doing Fourier transformation from the time
coordinate to the frequency space, the equation becomes,

202
2= (o) Jpwo =0 e

where the =+ sign corresponds to out/in going waves
(0; =F iw and 0, — +ik), respectively.

b. IR correlation functions of scalars

Firstly, let’s consider the case in the infinite boundary
conditions,

-0, d=1:z-0.

d22: ¢~ “x

T (C54)

The EOM is dominated by the singularity at z, — O,

mie3 — g*e?
<a§ - %)qﬁ(a}, ¢) =0.

The asymptotic behavior of the solution is

(C55)

P(0.0) = A(@) (1 + 0(0)] + B(@)T ™1 + O(0)]

~A(@)A + Bw)(*, (=0, (C56)
where the two exponents are, respectively,
R_ 1 1 202 _ 2,2
Al :Ei’/k» v = Z+mkf2—q e;. (C57)

For pure AdS, case in (1 + 1)-dimensional spacetime, one
has 7, =1, k =0, and e; = u. Thus,

11
Af =3E g Tm —aw

It is worthy of emphasizing that it is possible that the v,
become pure imaginary, once the electric charge g becomes

(C58)

sufficiently large. Then, v, becomes imaginary for suffi-
ciently small k> < k3 (for a given m, this always occurs for
a sufficiently large ¢g) with

d>2: X :fzf\/kﬁ—kz,
r*

UV = —M,k,

(C59)

1
—m?)£3 - Z) >0, (C60)

where z, = #?/r, and the local chemical potential y; is
defined as in Eq. (C63). By observing the conformal
dimension in neutral background as in Eq. (C21). It can
be viewed that the background electric field acts through
the charge as an effective negative mass square, which
make it possible that the total mass square m?> — g’u’
becomes negative and resulting in an imaginary conformal
dimension.

For a neutral scalar operator with ¢ =0 in AdS,,,
spacetime, one can obtain the oscillatory region mass
window,

d? dd-1
—Z<m2f2<—(4 ),

(C61)

where the lower limit comes from the stability of vacuum
theory, i.e., Breitenlohner-Freedman (BF) bound of AdS,
and the upper limit comes from the condition k3 > 0. For
the AdS, case, one has

1
AdSZ: - Z < mzfz < 0. (C62)
By using Eq. (C37), we obtain the chemical potential y; for

a local observer with charge ¢ in the bulk (the spatial part is
flat),

Ceq qeq
d>2: =g\ J'A, =g =2F5%,
24 UL =49V g Ay = (¢ 4, ¢ ‘5
d=1:p; = qu, (Co63)
when this local chemical potential exceeds the mass of a

charged particle,

2,2
. q-e
dZZ.,u%ZTZd>mZ,
2
d=1: 3 = qg*u® > m?, (Co4)
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the system will be the Bose-Einstein condensation. This
gives the bulk origins of the scalar instabilities in the
parameter region in Eq. (C60). Physically, in the near
horizon region of the extremal black brane geometry
(T =0), at each point in the bulk geometry, e.g.,
AdS, x R%! there is a local d-dimensional Fermi surface
with Fermi momentum k,, which upon projection to the
boundary theory, would result in a (d — 1)-dimensional
Fermi disc, in which there are gapless excitations at each
point in the interior of the disc in the (d — 1)-dimensional
momentum space. For a pure AdS, bulk vacuum spacetime
in (1 4+ 1)-dimensional spacetime, if p; = gu > m there
will be Bose-Einstein condensation for scalar bosons, while
for fermions there is no Fermi surface, since by definition
ko = 0, while there is still a critical chemical potential

: (C65)

FN -

pi = m? +

at which, the NFL phase (since v, < 1/2) of CFT, is
separated into steady and oscillatory due to the charge
instability.

It is worthy of noticing that at v, = 0, or equivalently

1 1 dd—-1) 1
mk:r?z\/qzef‘_ft:\/”%_ o My

(C66)

which is impossible for neutral black brane with ¢ = 0,
since m; > 0 is always positive unless m =0 and k =0
(no scalar at all). As a result, the original two independent
solutions are degenerate. In this case, the equation of
motion of charged scalar in the infinite boundary conditions
at IR fixed point in Eq. (C55) become

2_1/4 1
<a§—7”k CZ/ >¢= <a§+4—§2)¢=o, (C67)

where ¢ = ¢p(w, (). The asymptotic behavior of the sol-
ution are

P(0.0) ~A(w)in\/C + B(@)lt, -0, (C68)

where ¢ > 0. Secondly, let’s consider a more generic case
of the solution. In frequency space ¢(t,{) = e~ “'p(w, (),
the equation of the motion for a charged scalar ¢ can be

written as
m2¢2 2
vo= (o2
(C69)

[0z = V(0)]g = 0.

where the plus and minus sign corresponds to the out/in
going waves (0, —F iw). Note that @ can be scaled away

by redefining (, reflecting the scaling symmetry of the
background solution. the potential can be expressed as a
function depending on the dimension of operators in the
infinite boundary conditions,

v =1 2ge
V() =5t -0 F qu

, (C70)

where in the last identity, we have used the Eq. (C57).
According to the asymptotic behavior of the solution in
Eq. (C56) and the EOMs above, it is obviously that the
frequency @ dependence in the potential V({), can be
scaled away from by redefining the { — ge,/w so that the
EOMs recovers Eq. (C67). Thus, the solution to the generic
case will be of form

- C %+vk é’ %—yk
¢=B|=| [1+0]+A(=) [1+0()]. (C71)
o) w
where as { — 0, one has
Bratt, A~ art (C72)

Thus after imposing the infalling boundary condition on ¢,
the correlated functions are expected to be of form

B
Gr x 1"~ . (C73)

This implies a coordinate space correlation function by
doing an inverse Fourier transformation,’'

1 + sgn(t) e

R(£) —
g (l) = |t|1+2yk \/ﬂ

[[1 + 2uy] sin(27y ) ~ prg

(C74)

with the conformal dimension A of the boson operator O
givenby A = 1/2 + v, which is nothing but A'R defined in
Eq. (C57). It is worthy of noticing that the dimension A
depends on the charge ¢ through v;. In particular, it is
possible for v; to become imaginary when the charge ¢
becomes sufficiently large. This implies that in the constant
electric field A, = e,/ with sufficiently large charge ¢ can
be pair produced, which cause an instability for scalars.
When v, is imaginary, there is an ambiguity in specifying
Gg since one can choose either A or B as the source term.

"Note: for gf ~ |w|2"k, the inverse Fourier transformation gives
the result —+/2/x|t|~' 241 + 2uy] sin(zyy) ~ 1722,
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c. Zero temperature case

The solution turns out to be>

D) = C\Miye, -, (2i0l) + CoWyg, _,, (2i0), in going et~k (9, - +iw)
¢(C> = CIM—iqed,yk (ZIQ)C) + CZW—iqed.yk (leC), out gOing €_imt+ikx(8t - —la)) (C75)

where M, ,(z) and W, are both the Whittaker functions, which can be converted to be Kummer confluent hypergeometric
function F(a, b;z) and confluent hypergeometric function U(a, b; z), respectively, as below,

1 1
My, (z) = e™/271/2+F, <2 +v—k 1+ 20, z), Wi, (z) = e‘z/zz’““/zU(2 +v—k 1+ 20, z). (C76)

M., (z) is zero at z = 0 for m > 0, while W, ,,(z) is infinite at z = 0 for integer m > 0, and has a branch cut discontinuity
in the complex z plane running from —oo to 0. The Kummer confluent hypergeometric function F(a, b, z) = F(a, b; z),
has the series expansion

> (a)kz_k_ a ala+1)

F =Nk 142
(@b =2 MVSRE TSy

Bk @+ o), S
k=0 :

and the confluent hypergeometric function U(a, b, z) has the integral representation

Ula.b,z) = ﬁlm e~ (1 + 1)b=eldr = Zl—a (1 _all +Za ~b)  alta)iy ;Z_z eta=b), 0(l>>.

(C78)

Therefore in the z — oo expansion, one has M, ,(z) ~ €377, W, ,(z) ~ e73z%, which basically implies that Whittaker
M, (z) is divergent in the large z. In the near horizon region { — oo for the out going wave e~ ***(9, > —iw), the
asymptotic

M_iqed.,,k(Zia)C) ~ eiw§(2iwé’)iqed, W ige,nn (2iwg) ~ e‘i“’C(ZiwC)_i"ed + - (C79)
Thus, in the near horizon region,
¢ N Cl e—iwteia)CCiqed + Cze—iwte—iwgz:—iqed ~ Cl e—ia)(t—(—q%dlng) 4 Cze—i(w+é+q%ln )’ (C N OO) (CSO)

and it is obviously that the M-Whittaker function associated with C; is an outgoing solution, while the W-Whittaker
function associated with C, is always an in-going solution. Therefore, in the following, we will only keep the in-going part
from W by setting C; = 0. In the infinite boundary condition { — 0, the Whittaker function can be expanded as

M_ige,,, (2i0C) ~ (2iwl)r ™,

. . 1_ F[21/k] . 1 F[_zyk]
W_ive, . i) ~ Riwl) ™ ——————— + Riwl) ™ ——— C81
gesu (2i006) ~ (2ie0L) I+ v + igey] (2ie) L[5 = v + igey] (80
from which we have
B(w) ) [—2u ] TR + v + igey] _
= —) = 2 v 2 5 a - 5 C82
gk(w) A(Q)) ( la)) F[Zyk} F[% _ I/k + iqed] ( t - la)) ( )

which corresponds to the advanced Green’s function associated with the outgoing modes. If one chooses the ingoing
wave conversion, (9, = iw) (¢ ~ e/'~k%), then in the infinite boundary condition { — 0, the Whittaker function can be
expanded as

*We choose the solution ¢(&) = CiM_ige,., i) + CoW_j4,, ., (2iw(), infout going (0, — +iw), which corresponds to @ +
gey/¢ in the potential.

066001-37



QI SEO, SIN, and SONG

PHYS. REV. D 99, 066001 (2019)

Mige,w,(2i00) = (2iwd)=+ <1 - lzszik Qiwl) + - >
(C83)
1 T'[=2
Wigeyw, (2i0) = (2if)> " F[l#ezk]—vk]
2
+ (2iwg) SErm—
(C84)

The M-Whittaker function is always vanishing at infinite
boundary condition, while the W-Whittaker has both
positive and negative branches labeled by dimensions of
operator AR, Thus, the asymptotic behavior of the complex
scalar ¢ at { — 0 is given by

~ ipey T2
¢~ (2iwg) F[% P
+ (2iwg)* v | ppust 4 agw,

Il —iges + vy
(C85)

Then by comparing with Eq. (C56), one can read the scalar
correlation function at the IR fixed point,

B(@) = (2iw)*

_ [[-20] T + v — ige]
T Aw)

[2u] T - —igey)’
(C86)

Gr(w)

where we have used the notation (0, — iw). It corresponds
to the retarded Greens’ function associated with the in-
falling modes. In summary, the retarded scalar function of
the IR CFT is given by [75,76]

F[—Zyk] F[% - iqed =4 l/k]

: 20)%,
I2u] T —iges — vy (20)

GE (@) = (=i

(_i)ka — e—im/k ,

(C87)

which has the form of the retarded two-point function of a
scalar operator in a (1 + 0)-dimensional conformal quan-
tum mechanics CFT;. The advanced Green’s function is
given by

T[=20 T3 + igeq + vy]

Ge(@) = O T T T T fgey — v

260)2”" ,

(i)Quk — eiﬂl/k.

(C88)

For a scalar, from the correlator functions above, one
finds that

GF(w) _ c(k)
G w) e (k)

e—Zﬂuki + e—Zﬂqed

_cos[r(v + igeq)]
cos[r (v — igey)]
(e—2ﬂuki + e—Zﬂqed)Q

— e—2m’u = e2iyk

= T mid T e2maed = |2l 1 = 2mde]? (C89)
where we have introduced the notation that
G (w) = c(kjo™, (k) =|c(k)le™,  (C0)
with ¢(k) denoting the prefactor,
c(k) = (=i)*e(ve) = (i) |e(uy)]e™.
c* (k) = e (b)) = 2 |e(wy) e, (€91)
where 6, is the phase of c(v;):
clwr) = e et =y 2Tz i0ea i

TR2u] Th—iges—u]

Thus, by writing G®(w) = ¢(1})(—iw)** and G, (w) =
c* (v) (iw)**, then

G* (o) — 2w c(v)
G4 (@) c*(ve)
for real vy, the equation in Eq. (C89) gives the phase of

¢(vy), and for imaginary v, the equation gives the modulus
of ¢(vy). Therefore,

_ e_ZEin€2i9k ,

(C93)

Q20 cos[z(v; + igey)]
cos[z(vy — igeq)]

= et (C94)

from which one can obtain the quantity related to the
effective IR charge parameter [55],

_sin (7A +0)

eZn’qed — ,
sin (7A — 0)

(C95)

where = —z/2 — 0, € (zA, z(1 — A)) for the boson. The
dimensionless, temperature-independent effective IR cou-
pling parameter e, can be redefined to be related to the
frequency shift w, at finite temperature as [55]

w, =2rqe,T. (C96)
(1) For real v: The ratios G¥(w)/G* (w) become a pure
phase and one find that

vi = arg[[[=2u(e72™ + e~2mc0)]. (C97)
The factor e+ and thus c(k) always lies in the
upper-half complex plane, while for scalars e/++27ii
always lies in the lower-half complex plane. Namely,
for v, € (0,1/2),
(C98)

Yi + 2y, > 7, = 71—y < 2ayy.
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(2) For pure imaginary v, = —id;(4; > 0), the ratio becomes real and give the modulus of c(k).

e—27zﬂk + e—27rqe,,

—4rly — L2irk
€ < 2 1 g-2maed e < 1. (C99)

(3) For generic v, Gi(w) and GR (w, k) have a logarithmic branch point at @ = 0. One can choose the branch cut along
the negative imaginary axis, i.e., the physical sheet to be 8 € (—z/2,3z/2), which resolves into a line of poles along
the branch cut when going to finite temperature.

d. Finite Temperature case

For a charged scalar field at finite temperature, the near horizon region is a charged black brane in NAdS, x R%"!
spacetime at finite charge density, the background metric and gauge field are given by Eq. (C36)

2_5‘;%_ _2>2(C121|é2
=5 -(1 z)" g el ran

where the physical coordinates are listed as below

IR horizon r, <ry <r < oo, UV boundary
2, 220=>22>0,
Co28o20>0,

where the coordinates with %, 0 and no subscript correspond to the radius for the zero black brane (extreme one), finite
temperature black brane, and ordinary black brane, respectively. By definition, we have

2

d(d—=1)(z. —z)’

o
d(d—1)(z, - 2)

¢

>0, gUE

where z = #?/r. In this case, the finite temperature with respect to 7 is defined by

1
_271'{:0‘

The scalar action in the background is given by Eq. (C44), from which, one can obtain the equations of motion for the
complex scalar as in Eq. (C45), which explicitly become

P — 2 1-5 )&+ -9, -2 B -5 - -
K -2 prrel Ut ¢ o) e\ Ta)%t e cz L) T2 a

¢ =0. (C101)

where ¢ = ¢({,1,x). In the momentum space(out/in going:0, —F iw, 9, — +ik), the EOM can be reexpressed as

(-G (-Glee) s [ (-2 - (o 50) (- )oo e

where ¢ = ¢({,1,x). In the infinite boundary conditions z = 0, { — z,/d(d — 1) < 1, the EOM is dominated by the
singularity at z, — O,

202 _ 202
(ag —W) $(&) = 0. (C103)
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where for simplicity we have denoted ¢({) = ¢(¢, w, k) and the equation of motion is just the same as that in Eq. (C55).
The asymptotic behavior of the solution is the same as that in Eq. (C56) with exponent indexes like those in Eq. (C57). The
full EOM above can be simplified as

222 o F qeaz =3P B
e Ost0) + <c2<1——>+ o Jocr=o (C104)

0

2C

9zp(8) +

where m% is define in Eq. (C50) and v, is defined in Eq. (C57). In the following, we will chose the out-going wave
conversion 0, — —iw. The two linearly independent solutions turns out to be

+ o\ w1 1 , 2
d() = (g - §2> {Cl <1 + ?) 2 F <§ +u— 1qed,§+ v +igey —iwly; 1 + 21/k,C C&))

—rtv 1 1 2
+ CQ(—2)_2D" (1 + g-;) ’ kzF] <§ — Vi — l.qed,z — Uk + iqed — la)Co, 1 - 2Uk,—é’>:| . (ClOS)

Or, the two linearly independent solutions turns out to be

1y i ed_"“io 1 1 ’
o0 =6 <1 - ?) <g€:+ gj) q 2F <§ Ut iqed’§ — v tigey — ifow; 1 — 2Dk;—é, _§€0>

Co\ % (€4 o) 12
1 =20
* Cz( c) (c— co>

where the hypergeometric function is defined by

1 1 , 2¢
F1<§+1/k+lqed5+1/k+lqed ’COwl—FZVk’é' §0>

> a(l +a)b(1 + b)
Fi(a.b.;c,;z2) = )ilb ——1+——+ 24 0(%). (C106)
2 kz:; () 2¢(1+c¢)

In the near horizon limit, { — ¢, the special function associated with the coefficients C; and C, in Eq. (C105), respectively,
have the following expansion

1 1 2L
Fil\=+v,—ige;,—+v,+ ige;, —iwly; 1 + 2uv;;
21(2 k C]d2 k qeq o kC+Co)

in

~— 42
sinh(zw,) [+ 20

(ﬁ)—iwco 1
X ( §0—§ p— )a
U+ v — igegU + vy + igeq — w8y T[1 + iwlo] T+ vp + ige U + v — igeq + i1 — i)

1 1 2
2F1 (5 —Vp — iqed,— — Uy + iqed - la)Co, 1 - 2Uk,—é>

2 {+¢%
in
~— 1 -2
sinh(zw{) [ vl
260 \—ia¢
o« ( (go_og) 0 B 1 >
I — v — lqed]r[l —yp +igeg — wlo|T[1 + iwly] T — v + ige TS — vy — igey + il T[1 — iwdo]

Considering an out wave conversion 0, - —iw, then it is worthy of noticing that without the expansion wave factor

(éi_"é,)‘i“’§0, the solution are pure in-falling wave, since for fixed phase,
é’ _|_ é‘ Wgo . 1 Lo t+¢ t
e—ta)l( 0 > e_lw[t_igo Wm)] = é’ = 50 tanh <—> . (C107)
o—¢ So
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While the solution associated with the expansion wave factor will become out-going wave, since
2 —iwd, . 2%
( 50@) ~ emi@li=20n G+ (G=0) = ¢ = G- . (C108)

e iwt (Z-:O + Z_:) 1w2§0
Co—¢ o=

Thus, one needs to choose the proper coefficients so that the expansion wave factors are completely canceled and only the
in-falling wave solution are present in the near horizon region. It turns out that one has to choose

¢

Ci_ _(_1)2vk T[1 =20 TR+ v — ige) T+ vy + igey — i)
G

[ + ZVIJ [— — Vg — lqed} F[— —v, +ige; — zw(o}
=20 T3 + v — iqe) T3 + v + igeq — i)

_ C109
T2y ] T — v —igey T — v + igeq — iwlo] ( )

where we have used that I'[1 + a] = al'[a] and (—1)** = 1. In this case, the final solution of bulk equation in Eq. (C105)
with a pure infalling wave near the horizon becomes,

$() = (C + CO) T Cy(=2)" [(1 n @> _szF1 G — e — igey, % C e+ igey — iwCy; 1 — 2yk;i)

{=2o ¢ )
c U 1 1 2
+C—;(—2)2Uk (1 +%) 2F1 <§+Uk_ iqed,i—l—l/k—l—iqed la)Co,l +2Uk,é, CCO>:| (CllO)

In the infinite boundary condition(z — 0, { — z,/(d(d — 1)) < 1), the EOM is dominated by

2 m22  lgedF=3)P
D2 ——=_9 —— k2 0 =0, Cl11
(0 + e + i e )#© 1)

which give the asymptotic behavior of the solution

N £ U 2 £ v Y é’ U £ T - AR AIR
$(¢) ~ C; + Cy(=2)™ ~(=2)7Cy + C, =A(w)¢* + B(w)¢*+,  (Cl12)
o o o o

where AR = 1/2 + 1. On the other hand, in the infinite boundary condition, Eq. (C105) becomes

iy T e iy IR —AR AR
¢(§):(‘”TC[C1 (fo) TG @ ]:<— DG § (<) e, (1)

from which, we have C; ~ (=2)72%C,, (=2)**C4 ~ C,. Thus, one can read the correlator functions

C (~AR AR C ARR_ARR C —2u
G ) = 51 = (=g = T (e :51(%) | (C114)
2 2

By using Eq. (C109), we obtain the retarded Green’s function as

“2 T[=2u | T + v — iged T+ vy + igey — i
R c11s)
2 TRuy] T[5— v —igey) T — v + iqe, — i)
By using that finite temperature definition 7" as in Eq. (C101), we have
20 ] TR + v —ige ] T+ v + i
G (0. k) = (4nT) [—2u] [2]+Vk %qed] [1 v t+iqeq — iz = Ty, (Vk, @ ) (Cl16)
2ui] T3 = v —igey) T — vk + ige, — i5%] 2zT

where g, is a scaling function given by [75,76]
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T2 ] T3 + v — igey]
T2vy] T - v —igey]
y I+ vy + igey — ix]

Il — v + igeq — ix]”

9p (i X) = (47)*

(C117)

It is worthy of noticing that at zero temperature the original
branch point at @ = 0 disappears and the branch cut is
replaced at finite temperature by a line of poles parallel to
the next imaginary axis. In the zero temperature limit
(T — 0), these pole line emerges as a branch cut. At finite
low temperature, the near horizon geometry is a black brane
in AdS,. This IR geometry results in the Green’s functions
at the finite temperature. The fermion self-energy at finite
temperature becomes

T+ v+ igeg — i5%]

®
X(w,T) = T**yg, (—) ~ (4nT ) - .
T Tl — v + igeg — i5%]

. ) 2y
L 0(477.'T)2y" <—l ﬁ) ~ cka)z”" .
v/

(C118)

In the zero temperature limit, i.e., 7 — 0, the line of
discrete poles of the Gamma function at finite temperature
emerges as a branch cut for @* at T = 0.

Last but not the least, the finite temperature metric in
Eq. (C100) is equivalent to a zero temperature Poincare
AdS, metric as

fZ
ds* = = (—dr* + do?), (C119)
c
through a coordinate transformation as
T+ 0 = (oeRre (C120)
At the AdS, boundary, one has
1 2Tt
T = 277,'—T e s (C] 21 )

which is the transformation that generates a uniform
accelerating Rindler space in the 7 coordinate from the
vacuum in the 7 coordinate. This is related to the Euruh
effect, which states that the background becomes warm in
an accelerating reference frame. An unifromly accelerating
observer will observe the ground state of the initial observer
as one in thermodynamic equilibrium with a finite
temperature.

e. Disordered state:quantum liquid phase

At the moment, let’s discuss the physical properties of
the boundary field theory in the IR, namely CFT;, or
(0 + 1)-dimensional conformal quantum mechanics. The
physics is totally characterized by the dimension of the

operator @ at the IR fixed point, which should be matched
by the operator of the boundary field theory O from the
bulk scalar field ¢(z, x, z). Thus, the retarded function of ¢,
at the IR fixed point can be written as in Eq. (C87)

c(vi) (i),
v T [— —igey + vy
['2u4] [‘ —igeq — vy

Gi(w) =

c(vy) = 2% r-2

. (C122)

where conformal index v, is given in Eq. (C57), which can
be reexpressed as

1 k*¢?
d>?2: ukz\/1+<m + 2 —qfsd)zf%,

1
Z‘f—mz—ﬂz.

d=1:v = (C123)

As the physical consequences, the boundary operators with
larger momentum k become less relevant in the IR, while
the boundary operator with larger g will have more
significant IR fluctuations. In the infinite AdS, boundary,
the electric field linearly blows up and becomes strong field
A,(8) = 4/ 0. The spectrum weight scales with  as
a power for any momentum |k|

4l

ImGy () = (=1)“Ime(y)]w ~ Vi,

(C124)
which indicates that the presence of low-energy excitation
for all momenta (including those at larger momenta,
although it will more suppressed due to larger scaling
dimension). The conformal index v, can be rewritten as

1 d(d-1) , R >
+(m?*+5-24% )2
«/d(d—l)\/ 4 ( 2

Vi =
o2 121
=————/5+k N Vi) = F7—————
Jdd=1)r. Jdd—1)r. ¢
(C125)

where v, has a branch point at k = ié~!, and &

RNCEN W
o[ T Gy

is the correlation length. By using the definition that r, =
£?/z, in energy coordinate, as defined as z, = #%/r, =

\/d(d=1)gr/v/2(d = 2)u. the dimension index and cor-

relation length can be expresses as

(C126)
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vy = \/7_1“24- K2,

ézm[\/4+( 2 - qze%i)}_l. (C127)

In the limit that |X| < & |k| < &1, 13 & 1o, one only
need to focus on the time component of the Fourier
transform from w to ¢, the retarded function of ¢, at the
IR fixed point is

IR T |
1 ~ 1 ! \/z[(d—l)"*g.

I one only needs to focus

on the spatial component of the Fourier transform from k to
X, the correlation function decays at least exponentially as

_(d-2)

300, :
gR(t x) ~ ekl — o~ 5 ~ e w2 Vath 434 ed”‘x"

(C129)

where E indicates it is in Euclidean spacetime. Intuitively
speaking, the system are separated into independent
domains of size of order ¢, according to Eq. (C129),
domains separated by distances larger than &£ are uncorre-
lated with one another. Within each of the domain, the
dynamics of the domain are controlled by CFT|, namely a
conformal quantum mechanics in the time direction with a
power law correlation, according to the Eq. (C128). Given
the system has a nonzero entropy density, each cluster has a
nonzero entropy that counts the number of degrees of
freedom inside the domain.

To be brief, the correlation functions and the scaling
dimension index in Eq. (C122) describes a disordered state,
or a quantum liquid phase, where the space factorizes into
independent domains of correlation length £ Within each
domain, one has scale invariance along the time direction.
However, it is worthy of emphasizing that the scaling
behavior within each cluster here describes not the behavior
of a single site, but the collective behavior of a large
number of sites over a size of order £ The correlation
function G, and scaling dimension index v; depend non-
trivially on k. Generally speaking, a generic point in
parameter space the dependence of v, and G, on k is
analytic and only through k/z, ~ kr,. Near certain quan-
tum critical points (QCP), the dependence of v, and G; on k
at k = 0 becomes nonanalytic.

3. Spectral asymmetry

For finite temperature case, Eq. (C116) can be reex-
pressed as [55]

GR(w,T) = G (0, T)

1 [[1 -2A] T[A —ige,]

T (4aT)AT2A — 1T — A — igey]
[[A +ige, — i5%]
[1 — A+ ige,; — i5%]
—iCe™™  T[A- 2/— (0 — wy)]
T BT A i L (- w,)] (C130)

where A = v, 4+ 1/2, and we have removed the subscript
index k for gf'A, which is not k dependent explicitly. ¢ =

|c(A—=1/2)| is a real constant with ¢(v;) as defined in
Eq. (C92)

() = le(wy)]e® = —iCe™™
1 T[1-24] TI[A-ige,
C2IAT2A — 1] T[1 — A — igey]

. (C131)

and the phase 6, = —z/2 — 0. Generally speaking, the
phase 8, is not independent of the momentum k in high
dimensional spacetime. In the above deduction, we have
used Eqgs. (C95) and (C96). It depends upon the normali-
zation basis one has chosen as in Eq. (C109).

The fermionic retarded Green’s function has a same form
as the Bosonic one, except that the scaling dimension

becomes Ay = 1/2 £y, with v, = /mi¢3 — g€ [56],

and Eq. (C95) becomes [35,41,55]

sin(7A+6) _ (C132)

eZn’qed — ,
sin (zA — 0)

where in the second equality we have used Eq. (C96) for
finite temperature case and 6 € (—zA, zA) for fermion. A
nonvanishing e,, thus w, characterize the spectral asym-
metry when the particle-hole symmetry is not kept [53]. It
is useful to express the numerator and denominator as

sin(27A) et

sin (zA 6
( )= V2+/cos(2zA) + cosh(2zge )

. (C133)

and the spectral asymmetry angle 6 can also be reexpressed
in terms of e, given A as

0 = arctan[tan(zA) tanh(zge,)]. (C134)

The phase @ = 0 corresponds to the particle-hole sym-
metry. In this case, one just obtains sin (zA) = sin (2zA)/
V/2(1 + cos (2zA)). The spectral asymmetry angle as a
function of e, and A are plotted in Fig. 15.

The universal quantity e; plays a role of spectral
asymmetry which can be calculated as [77]

dreg =2 — (%
mea="4n~ "\or

(C135)
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(a)0(eq, A)

FIG. 15. Spectral asymmetric angle 6 and number density n vs effective IR charge e, and conformal scaling dimension A: (a) 6(ey, A);
(b) n(n, A). Where 6 is given in Eq. (C134) and n is given in (C136). For A = 1/2, the number density n has a typical Fermi liquid like
behavior at zero temperature, since it becomes as a step function of e;. The spectral asymmetric angle also has a similar behavior at

A = 1/2 but is vanishing when A = 0.

where s is the entropy density, n is the particle number density defined as n = ng — 1/2 € (—=1/2,1/2) with the average
fermion number n, = N‘IZ%Z)Q is proportional to the two-point correlator as [16,41,53]

ny=g"(z=0") E%zn:glr(ia)n)ei“’n0+ = limi/_:czl—;)ei(“’Jrie)’gF(w) = —1/_+00 dop(w)np(w)

—0" T ) _x

2

2

16 1\ sin(2¢) 1 arctan(tan(zA)tanh(zge,)) (2A — 1) sinh(27gey)
B < ) sin (274) 2 m = 2(cos(27A) + cosh(27rj]ed)) | (C136)

where ny € (0,1),0 € (—n/4,7/4), G is the Feynman Green’s function on the real axis. In the last equality, we have used
Eq. (C134). Therefore, the value of spectral asymmetry angle 8 can be related to the particle number density n. The density
number 7 as a function of e, and A is plotted in Fig. 15. u is the chemical potential y = (9F /On); is defined through the
free energy given temperature fixed. For SYK, case (A = 1/4), SYK, (A = 1/2) and SYK,,_,, respectively, one has

a=1/a1 arctan(tanh(zgey)) 1
0= 57 -
2 b4

For RN-AdS,, | case, e, is just the IR effective electric
field in AdS, region. The e, is independent of the temper-
ature f provided n is held fixed. The particle number
density n. is a monotonically decreasing function from 1 to
0 as ge, is increasing from —oo to +oo. Intuitively,

1
gey = (—0,0, +0), S ny = (1,2,O>,

(1, !
n*2’727

which corresponds to the cases that the band is full filling,
half filling and empty, respectively. The half-filling case
(ng=1/2) corresponds to the particle-hole symmetric
case [53].

(C138)

a. Zero temperature case

At zero temperature limit, one just recovers Eq. (C87),
which plays a role as an ansatz for the form of the low

2 tanh(2zge,),

A=1/2 A=0

1
ny = 1, n —Etanh(nqed). (C137)

frequency IR conformal invariant retarded Green’s function
at finite chemical potential as

G*(@) = G (@) = [e(k)|e ™ = (=i)|c(uy)]e 0

o—i(TA+0)

= —iCe " (—i(w—w,))** ' =C 5

(C139)

(w - a)s)

where C is a real constant to be determined self-
consistently in SD equation, for SYK model as shown
in Eq. (C172). A is the fermion scaling dimension,
Im(w) > 0 and the complex frequency |w| < J. 0 is the
spectrum asymmetry phase determined in Eq. (C134). For
GR ~ |w|**, the inverse Fourier transformation gives the
result  —+/2/z|t|71724T[1 + 2u] sin(avy) ~ 722, This
implies a coordinate space correlation function by doing
an inverse Fourier transformation,
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in/3C(|t] + 1)emi@slii+0)

R ) = — ~ =,
g |£]?240(1 — 2A) A

(C140)

with the conformal dimension A of the bosonic operator
Op given by A = 1/2 + 1. By doing transformation to the
Euclidean time coordinate, i.e., t = iz, the retarded Green’s
function becomes

\/%C(M =+ iT)|T|—2Ae—i(w:|r\+9)

R —
Gi(x) = oT(1 - 24)
1 4
— BZQE(iwn)e—lwnr
1 )
- _2—7ﬁ/cdamF(a))gE(ia)n)e_"""T, (C141)
where ny = (e/” + 1) = [1 — tanh (Bw/2)]/2 is the

Fermi-Dirac distribution and G (iw,,) is the Green’s func-
tion at the Matsubara frequencies, which can be analyti-
cally continue to Lorentzian signature inside the integral as

Gt iw,) = / ' dre'*G(7), (C142)

0

where @, = 2z(n + 1/2)/f is Matsubara frequency for
fermion (For bosonic case, they are w, = 2zn/f) and the
retarded and advanced Green’s function can be expressed,
respectively, as

GR(w) = GE(iw, = w + ie) = G (w),
G w) (C143)

Gtiw, = w — ie),

+7>0 © dw
+0)E ¢ [ p(rw)etor = ———
G(+7) A . p(fw)e T prL

C . 2
=F ———<sin(zA + H)e:FZT"WF <2A, F ?ﬂqedr), +r>>J7'>0, —Re(w,) >0,

x| £ 1?4

where 6 € (—zA,zA) (for boson case, 0 € (zA,
z(1 —A))) and he particle-hole symmetry is exact at
0 =0, namely, A =0, or p = c0. ['(z,a) = [ r#e~'dt
is the incomplete gamma function, and I'(z,0) = I'(z) only
in the z > 0 range, since the former has a branch cut
discontinuity in the complex z-plane running from —oo to
0, while the later has no branch cut discontinuities.

In the asymmetric case (w; # 0), the retarded Green’s
function can be estimated as

+es0 (1, €2m9¢4)
~ |T|2A ’

(G(+7),G(-1)) (C148)

where € is a positive infinitesimal. The fermionic Green’s
function is defined as G(7) = —(Ty(z)y"(0)) in imaginary
time 7 coordinate (For bosonics case, it is defined as
G(z) = (T.(z)$"(0))), and it can be continued to all
complex frequencies by taking a Hilbert transform in the
spectral representation as

Glo) = [ "L

; (C144)
w T w—w

and the retarded and advanced Green’s functions turns out
to be GR4 = G(w + ie), respectively, where p(w) is the
zero temperature spectral function defined as imaginary
part of retarded Green’s function

p(w) = ImGR (a))i"go — Csin(£zA + 0)

X (£(@—w,))**1' >0, +Rew >0  (C145)
where we have used Eq. (C139).

The two-point correlation function can be obtained by
using spectral representation as [53]

G(r) = & /_ )

0—— +7 > 0,
o 1+3_ﬁw

7€ [0,/].

(C146)

According to the sign of 7z, after imposing the inverse
Fourier transform, one obtains the zero temperature
(f = ) Green’s function as below

sin (A % 0)eT* T (2A, F tw,)

(C147)

|
where we have used the definition of spectral asymmetry e,
in terms of the phase of fermionic retarded Green’s function
in Eq. (C132).

In the spectral density symmetric case (w; = 0), the zero
temperature retarded Green’s function can be rewritten as [55]

O(dr) =F jmsin (A £OT(24),  (C149)

7|

where £7 > J7! > 0, F Re(w,) > 0, A > 0.
In the small asymmetric case (w; < 1), the zero temper-
ature retarded Green’s function can be expanded as
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= C.. F(ZA) (0)57)2 (a)Sr)3 (0)51)4
G(x7) =F _sin (zA £ 6) L T oph (1 F o, + 5 F 3 + TR
(] N 2@?
20, 27A0 [ s r 3
vl (2A Foapa+1) T2apa Ay T o) N : (C150)

In the large asymmetric case (w,; > 1), the zero retarded Green’s function behaviors as

T c . 1 2A—1_(2A—1)(A-1) 1
G(+7) =" F e sin (7A + 0)w?” (:F . + . ¥ =y +0 Foi) ) (C151)
|
For SYK, case (p = 2,A = 1/2), one has E,(z) = [ r"edt, erfc(z) is the complementary error
c function erfc(z) = 1 —erf(z) defined through the error
G(+7) Z"— —cos(d), +r>J7'>0. (Cl52)  function as erf(z) =2y [fe " dr.
T In the infinite p limit (p — oo or A = 0), the Green’s
For SYK, case (p = 4,A = 1/4), one has function becomes
c . [z ot p-e C .
G(£7) =¥ - sin g0 )™ erfe(/F 1oy), G(+7)"="=sin(0)e T E;(+w,r),  (C154)
aVE=Y m
+r>J7'>0, (C153)
where E;(z) = — [ r"'e™"dt is the exponential integral
where we have used I'(1/2,z) = \/ZE, »(z) = \/merfc(y/z),  function.
where Ej;(z) is the exponential integral function In the large p limit (small A limit), one has
|
p>0 C . 3.0 1’ 1 2
G(£r)'= ——=sin@eT7 (0, F w,7) + 2A( G35 | F 100y 0.0.0 + [rcotd £ 21In (—w,)|T(0, F wer) | + O(A?) |,
71- ’ bl 9
(C155)

where G;:g is the Meijer-G function defined in Eq. (4.14).
For SYK,, model, Eq. (C139) is the IR ansatz at complex frequency for the Green’s function and effective action is

-_— ﬂ p
§ = —InDet[0, +p — ()] + up + / do(2(2)G(~7) + (=1)P21[G(2)G(~1)]2), (C156)
0
where In Det[- -] = Trln[- - -]. The last term is just the Luttinger-Ward functional [53,77] @,y = [¥ dz[G(7)G(—7)]?/2. By
doing variation with respect to G(—7) = —G(f — r) from and the self-energy X(z), respectively, one just obtains the self-

energy and SD equation of generalized SYK model at large N saddle point as [55]

0Dy

2(7) 50(~1)

=—(=D"2pPG)PG(=0l* . Gl(o+ie) = Z(w + ie) = G~ (o + ie), (C157)

where p = A7!, Gy(w) = (w + ie —u)~" is the Green’s function for noninteracting fermions and we have make the
replacement iw,, = w + ie for the freely interacting Green’s functions without interactions at the Matsubara frequency is

Gy (iw,) = i@, + p. (C158)

At the IR limit (w — 0), the kinetic term 9, is irrelevant, the SD equation are invariant under the time-reparametrization. For
SYKy, SYK, and SYK|, according to Eq. (C157), the self-energy can be respective represented in terms of correlation
functions, respectively, as X(7) = —4J2G(7)*G(—1), X(r) = 2J?G(7), £(r) = —iJ?. For p = 1 case, the self-energy is a a
constant, thus, the correlation function is G(w + ie)‘1 =w+ie—u+ iJ?. The decay width or inverse decay time is
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I’ = —2ImX(z) = 2J2, thus in the strongly coupling limit (/ — co), the quasiparticle is unstable and will decay rapidly in
SYK; case (p = 1). For SYK, case (p = 2) case, it is straightforward to solve the self-consistent SD equation to obtain [54]

. . 2 2
So) = 2FETE V(W) —op =2ty o - <wT+”> . (C159)

Thus, the DOS of SYK, turns out to be a semicircle centered at x4 as

(o) = ImG(w) = %ﬂImZ(a)) - zijz 2% - <wT+,4>29(J - |“;j;§”|>. (C160)

Therefore, for p = 2 case, the Green’s function has non-Fermi liquid like behavior, e.g., there is no quasipatrticle pole. For
SYK,, one may also obtain its self-energy in the strong coupling limit as

J=oo w+p  (0+p) 1/2
D) Z VR - T O, (C161)

In the following, we will mainly focus on p > 2 case.
At zero temperature, by substituting the zero temperature Green’s function ansatz in Eq. (C147) into the gap equation in
Eq. (C157), one obtains zero temperature self-energy as

pJ?
———[-G(0)G(-7)]P/?
G0
crt | F A T (24, —tw,)T (24, +7w,)]P/? [sin (zA + 6) sin (zA — 0)]7/?
Pt + 7|PA| — 7|PA (24, +rw;) sin (zA F 0)
(S P e 24, —10 )T (24, +70,)]"" [sin (zA + 0) sin (zA — 6)]7/2
T4 (24, +rw;) sin (7A F 6) ’

(1) = —pS[=G(+0)P2G(F )P =

=¥ pJ?

; (C162)

where we have used the zero temperature Green’s function ansatz in Eq. (C147), and also (—1)?/? = ¢=7/2,
For particle-hole symmetric case (w, = 0), the self-energy function becomes

S(dt) = p? (CF(2A)) p=1|  7|>=P)A [sin (zA + 0) sin (zA — 0)]P/? (C163)

| £ z|P2 sin (zA F 0)
After doing Fourier transformation, one has
+w>0 [f-o
Y(w) = drX(+7)eTo"
0

= _p]2<M

T

[sin(zA + ) sin(zA — 6)]P/?

24=D=1 (Cle4
sin (zA F 0) @ (C164)

p—1
)" ra - 280 - D01,
and by using I'(a, +00) = 0, and Euler’s reflection formula I'(1 — x)I'(x) = z/ sin (zx), one obtains

w2 (p=D-1, (C165)

() — apJ? CT'(2A)\ P! [sin(zA + ) sin(zA — 6)]7/?
@) ==t —1a) < 7 > sin (2A(p — 1)7) sin (7A F 0)

By using Eq. (C134), the zero temperature self-energy can be reexpressed as

) et e rea)el L (o
V24/cos(2zA) + cosh(2zge,) P?AP-D\ 72hs”

S(r) = pJA(=C)r-! (

where C is determined in Eq. (C172) with p = 1/A. By comparing with the G(z) in Eq. (C149), one may make a new
notation Ay = A(p —1) = 1 — A as the conformal scaling dimension for the self-energy.
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Similarly, the self-energy X(7) can be transformed to the
X(iw,) through

1 . B .
2(r) == Z(iw,)e """, = Z(iw, :/ drX(z)e' ",
() ﬂ%: (iw,) (f,) = | d72()
(C167)
In the frequency spacetime, one has the imaginary part

of the self-energy, I'(w) = —Im(X(w)) = -X"(w) > 0,
namely, the decay width or inverse life time as

S0)E" + / P S (dr)eTor — —p2p (%)
% ™ [sin(zA — ) sin(zA + 0))7/2
['(2A(p — 1)) sin(zA(p — 1)x) sin (zA F 6)

x (Fw)?AP=1-1 (C168)
where we have sgn(ImZ(w + i€)) = sgn(X'(w + i€)) =
—sgn(w + ie), assumed ReX(0) =X(0)=pu at T =0.
The self-energy X(w) can be expressed in the spectral

|

representation  with  the function o(w)=

ImX(w) = X' (w) as

2o) = "L

/
o T O—®

spectral

(C169)

The gap equations should be satisfy also at the IR limit
(the kinetic term 0, is absent), i.e., the interacting Green’s
function at Matsubara frequency is

Gliw,)™' = —iw, + u — Z(iw,), (C170)
which leads to G(w + ie)™! = w + pu — Z(w + i€) + ie,
namely, by using Eq. (C139) with @, =0, it should
be CletiP+0)p! =25 — _(S(w) —p) + ie = —[ilmX(w) +
ReX(w)—pu] with u = ReZ(0), and at the low temperature
(w0 < Z(w), with (o > Z(w) as the Fermi liquid, since the
interaction becomes), in which limit, the SYK model has an
asymptotic exact infrared time reparametrization symmetry
under 7 — f(z). By comparing with the imaginary parts in
both sides, one has

1 r'(2A)\r-1 )
P=% ~J*pCr (Q) (1 —2A(p —1))[sin(zA — 0) sin(zA + 0))7" = 1, (C171)
/4
from which the constant C can be determined as
. ﬂ'p.,2 F(ZA) =l . 21
CP=- A—-6 A+6
T2A(p—1))sin 22(p - 1)A) \_ = [sin(zA — ) sin(zA + 0)
p=A"! nJ? r(2Aa)\s! sin(2zA) 32
= . . (C172)
AT(2(1 = A))sin(2zA) \ = V24/cos(2zA) + cosh(2rge,)

where we have used Euler’s reflection formula as I'(—x) = —

back the phase constant € in Eq. (C133).

z[[(x + 1) sin (zx)]~! and in the last equality, we substitute

The constants C and 6, or equivalently the density asymmetry e, can be determined exactly for the microscopic models,
which depends upon the UV completion of the theory, which is not universal. For the original SYK, model case (p = 4 and

A = 1/4), the constant C turns out to be

azJ? [ 7w \31 n i zcosh (2zgey)\
C*=—""(=) =cos26, =C= = .
6 (r(l)) 2% (4]2 cos (29)) ( 472 >

2 2

For the SYK, model (p =2 and A = 1/2), the constant C
turns out to be C = 1/V2J2.

b. Finite temperature case

The finite temperature solutions for G’ (w) and X7 (w)
can be obtained by using the fact that an IR time
reparametrization symmetry is asymptotically exact as in
Eq. (A8). One can map t — f(z), i.e., from a line ¢ €
(—o0,+o0) at T=0toz€ (0,6) at T #0 as

(C173)

s

1t
t - f(1) zitan—ﬁ;tangr, (C174)

2

where we have restored the common factor in Eq. (2.39)
by rescaling ¢ — 2x/ft. = is the periodic imaginary
time coordinate with period f. Since f'(r)=sec*(xz/p),
the emergent conformal symmetry, or time-
reparametrization symmetry in Eq. (A8) can be expressed
more explicitly as
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G— |sec(nz/p) sec(ze'/B)2G(f (7). f (7).

5 = Isee(wr/) sec(ne' /B)FI-NE(f(r).£(¥)).  (C175)

where ¢(7) is a function with normalization condition
¢g(0) =1. By imposing the Kubo-Martin-Schwinger
(KMS) boundary condition G’ (7 + ) = -G’ (z), one

where we also used the constraint p = 1/A in Eq. (C171) obtains

for SYK model.

The finite temperature retarded Green’s function can be g(t+p) M = g(2). (C177)
obtained from Eq. (C149) with symmetric density of sin (7A — 0)
spectrum through the conformal transformation above as

By using Eq. (C132) again, one has
1 2A I'(2A)

T(+7) =F C — | sin(zA+6 , e 2nge

G (&) =% (o) (ﬁsin(i;r)) (s £0)—2 g(e + p)es = g(z) = g(z) = 25 (CI78)
+7€(0,p) (C176)  Therefore, Eq. (C176) can be expressed more explicitly as

sin(27A)e*m4¢

—2nqe s
e g
V24/cos(2zA) + cosh(2zge,) <§ sin(:t%r)

Gl(&r) =¥ C ~—,  Fre€(0,5)

T

1 >2AF(2A) 1 (€179)

and its Fourier transformation leads to the Eq. (C130). This implies that there is a frequency shift w,f arising from the
nontrivial source of the gauge field as

2rqey
ﬂ b

which turns out to be self-consistent with Eq. (C96). In the zero temperature limit (f — o0), Eq. (C179) becomes

(C180)

g =

sin(2zA) et 7724 T'(24)

Ggl'(xr)=FC , £z € (0.p). C181
(&) V2\/cos(2zA) + cosh(2zge,) (+7)** = 0.5) ( )
For original SYK model (A = 1/4), one just recovers
—2rqe 5 1
e s 1 2 1 1
( ) + /1 +e:F47Z6]6’d gsln(i%'l') \/E J%
[z cosh (2zge,)]s e 1 5

= , +7 €0, C182
< V2712 V1 eFHmaea \psin(+57) r€0.) (C182)

where we have used Eq. (C172). In the zero temperature limit, one has

- ~__ ([mcosh (2nqey): 1 1

o =% (PO S 2S00 (15

At finite temperature case, the self-energy, according to Eq. (C157), and by using KMS relation G7 (-7) = —=G7 (8 — 1), it
turns out to be

2(s) = p2IG" (2)P2IGT (- )]/
sin(2zA)

JAH(=C)r! ( )"‘1 < : >2A(H> 7qeq g=2m9¢05 <F' (ZA)> -
= - e l e I
p V24/cos(2zA) + cosh(2zge,) g sin(57) "

T
2(1-4) .
en’qed e—zmiedﬁ.

fl 2(_1)i-1 ”712 A=l sin(2zA) 2(1-4) 1
— AJ (1) (A(l - 2A)> (\/i\/cos(erA) + cosh(zﬂqed)> (ﬁ sin(%r)

4

(C184)

If there is no spectral density asymmetry (e; = 0),
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1 L (A1 =2A) tan?(zA) (1-8) 1 2(1-4)
o(t) = —J*A (-1 K‘l( — . C185
(z) A (=1) b3 2 gsin(% 7) ( )
By doing a Fourier transformation, after changing from the imaginary time to the real time coordinate, i.e., 7 = —it, one

obtains the finite temperature self-energy with density asymmetry as

oo . © . it l 2 -1 77,'_]2 o !
3(w) = A dri(r)e ™" = —i /O drE(=ir)e™ = —i - J*(=1)s (A(1—2A)> (—2i)2(1-4)

X < Sin(Zﬂ'A) )2(1_A) /oo dteia)teﬂqede-ﬂﬂqedﬁi( 1 )2(1_A)
V24/cos(27A) + cosh(2zge,) 0 2/37 sinh(% )

=iogal e , C186
n! TN T S cosea) Teosh(angey)) R aricibio-o (C136)

where o, = 27ge,/ with # > 0 and Imw > 0, we have used Eq. (D11), the 19 is defined in Eq. (D9). The inverse lifetime
for the fermions are defined by the 7! = —2Ims(0) = —ImZ(w + i€).
Take SYK, as an example, one has

5(0) = - VJem¢a(—1)3/4sech’/*(2xge,) 4n %l"(% - —iﬂ(u;a)“>) A (C187)
v V2r!/4 B) Tl Blo—o XV
4 2z
where we have used Eq. (D9). For density symmetric case (e; = 0), one has
V27 TG —22) r—0v2J
(@) =~ 14(£>2 . 2ﬂ)T:0 14\/—5’ (C188)
AN\ TG T AR

where the zero temperature self-energy is consistent with Eq. (C168) for A = 1/4 case.

4. Residual entropy

In this section, we calculate the 7 = 0 residual entropy of the SYK,, model with the density spectral asymmetry, as a
generalization to the special result in SYK, [1].

By substituting back the saddle-point solutions as the self-consistent ones to the SD equation in Eq. (C157) into the
effective action in Eq. (C156), one can obtain the full free energy density for the system can be reexpressed as

Fe % — —Inde[g-1(z)] = (1 — p1) /Oﬂ dr2(2)G(=1) = Fy — (1= p~1)Fy. (C189)

a. Zero temperature case

For the free energy density F, due to the kinetic term of interacting fermion, one has

F,=-TrinG! :Trlng:TranO—i—Trlngg, (C190)
0

where we have used the standard procedure of adding and substracting the contribution of a free local fermion.
The first part of the F, is

1 , . I e du 1 =01
Trlngoz_len(_lwn+ﬂ)e n — dﬂﬁzlwn_ﬂ: 1+eﬂM:_Eln(1+e ”): —EIHZ, (Clgl)

iw, iw,

and it is worthy of noticing that it can also be expressed as [*® dw[0(—w) — 1|ny = (0 + ' Inng)|,—g = =" In2.
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The second part of F| turns out to be

Trin ;2 inli=io, + )G(i0,Je = 5L [ do (0~ wG(0)ns )
- [ [ dom[w-) 2 np(wre — -t [ 0= w5l (o)
__ [dw mln 9(w) np(w)e @0 = do arcang/<w) T 20(~0) | np(w)e@0
- /nl " Go(w) ") i /;:( an gy T2 7 )) rlw)e™, (C192)

where we have also used that the identity that arctan(w) + arctan (1/w) = z/2 — z0(—w). ny is the Fermi-Dirac
distribution with np(w) = (¢/? +1)7! = —[tanh (Bw/2) — 1]/2. G =G +iG" and Gy(iw,) = (iw,)™" is the Green
function of free electrons after setting u = 0.

Combine the above two contributions together, and one obtains [53]

Fy = _%1n2 + Tr1ng = %/er da)<ar0tan gle) _z)np(w)

o o G (w) 2
=L [ donp@)last) - art-o + 1 [" dofar() - ar-o)
=02 [ onp(w)ap(w e wlar(®) — ar(w = —0
= ﬂ/o d F( ) F( )+”/_ood [ F( ) F( )]’ (C193)

where we have used np(—w) = 1 — np(w) and ap(w) is defined in Eq. (C195). It is worthy of emphasizing that we have
subtracted out a term ay(—o0) in the integrand, otherwise the integral has a singularity at @ = —oo. In the last equality, with
the assumption that 8 = 0, ap(®) = ap(—w).

For finite temperature correlation functions in Eq. (C130), one obtains

_iCe—i0
G(w) = W F(A - i% (w— a)s)) ’ sin [ﬂ(A + izﬁﬂ_ (w— a)s))] , (C194)
from which, one obtains ap
tan[ap(w)] = G() esc*(0) — cot(0)

(@) cot(zA) tanh (3 f(w — ws)) + cot(6)
_ tan(zA) tanh(zge,) — cot(zA) tanh (fw/2 — nge,) ges=

0
1 + tanh(zge,) tanh (Bw/2 — nqe,) — cot(zA) tanh (fw/2), (C195)

where in the last second equality, we have changed all 8 into e, by using Eq. (C134).
For spectral density symmetric case (e; = 0), since ar(—w) = —ap(w) the free energy can be expressed as

F = ! / ® do eﬁ“’1+ . (arctan[cot(;zA) tanh (fw/2)] + g)

T —o0
BENE 1 tanh (fw/2)\ 1 [0 tanh (fw/2) |
= A dw Jo il [ Arctan (7&“1 (7d) ) - /_ . dw {arctan <7tan N ) + arctan <tan (ﬂA)>:| (C196)

According to Eq. (AYS), the zero temperature entropy density turns out to be

[ 1 0
OF, _ 2/ gy, dretan (x/1) N %/ gy, dretan (x/t) + arctan (1/1)
0 —

= p? =- , C197
1=/ p = 1 +x 7)o 1 —x? ( )

where we have denoted x = tanh (wf/2) and t = tan (zA). After finishing the integral, it just recovers the zero temperature
entropy of SYK model as [1,5,6,16]
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I (=€) 102 cos(rA)) — = [Lia (=23 — Lip (=242, (C198)

S0 = — -
7 i

For A =0, it gives 5o = In2 = 0.693147, and for SYK, case (A = 1/4), it gives 5o = C/zx 4+ In2/4 ~ 0.464848, where
C =2 ,(-1)%(2k + 1)72 is the Catalan’s constant, while for SYK, case A = 1/2, it gives sy = 0.
For spectral density asymmetric case (e, # 0), since ap(—w) # —ap(w), the free energy can be expressed as

F - 1/00 o 1 aretan tan(7A) tanh(zge,) — cot(xA) tanh (fo/2 — nge,)\ =«
n ePr 41 1 + tanh(zge,) tanh (fw/2 — nqe,) 2

= /O+°°[HF(0) + wy)ap(w+ wy) —np(w — wg)ap(—(0 — wy))] + /0 [ap(w + wy) — ap(—0)].  (C199)

—0o0

To be more explicitly, by making notations as x = tanh (wf3/2), u = tanh (zge,) and ¢ = tan (zA), one obtains entropy
density s; with an exact analytic formula as

Udx [u-1 u—x u+1 Pu+x 2 [0 dx 1(1+x)
51 = arctan - arctan +— | ——arctan 5 s
o X+ 1 |ux—+1 tux +t ux — 1 t — tux T )gx =1 xX—t

= %(1 —2A)In[2(cos(2zA) + cosh(2zge,))]

_ 4L [Liz(_eZn(qed—iA)) 4 Liz(_e—Zn(qedJriA)) _ Liz(_eZﬂ(qe,1+iA)) _ Liz(_eZinA—aned)L (Czoo)
T

where in the second integrand, we have used the identity arctan(x) =+ arctan(y) = arctan [(x £ y)/(1 F xy)] to simplify. It
is obvious that the second integral is always density symmetric since it is independent of e,. It’s worthy of noticing that, at
the large p limit (A — 0), one has

Osy _ m(2A —1)sin(274)
OA  cos(2zA) + cosh(2zge,)

cos(2zA) — cos(26)
sin(27A)

= —2(2A-1) (C201)

implies that s; has an extremal value at @ = zA, combining with s/(6 = zA) < 0 with the prime denoting the derivative
with respect to A. Thus, s; achieves its minimum at 8 = zA. While, for density asymmetric case (e; # 0), the zero
temperature entropy will also obtains an extra contribution from the chemical potential u = (OF/0n); = py — 2nqe, T +
-~ with yy = Oey/On from the contribution of zero energy ey, it is associated with the particle density n through F; + npu,
so that the 7 = 0 residual entropy is [53]

0
So = 8 +1’l<8;€>

where we have used the thermodynamic Maxwell relation in Eq. (C135)

0.
=5 — n 2l = s1 + 2mgeyn. (C202)
T=0 on

Js 8_;4

sin(zA — 0
= "ar = —2nge; = 1In ( )

-0 sin(zA + )"

(C203)

For A = 1/4 case, the result recovers Eq. (12) in Ref. [41]. The density n can be obtained through the Maxwell relation in
Eq. (C135) as

1 0Os, (2A — 1) sinh(27ge,) i [ (Lt e?rlaca=ih) tn 1 4 e~2raea+2ina
n=-—-—_——= - —— —
2rnqdey;  2(cos(2zA) + cosh(2zge,)) 4rm 1 + e27(qeatit) 1 + e2nlqeatia)
1 sin(26)

— L in(e ), (C204)

—-(A-1
2( )sin(27rA) 4z

where in the last equality, we have used Eq. (C134), and it just recovers the number density given in Eq. (C136). The
spectral asymmetry parameter 0 obeys 0 € [—zA, zA].
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‘\\:ﬁ

05

(b)s1(n, A)

(f)s0(0,A)

FIG. 16. Residual entropy s, at zero temperature: (a) s (eq4, A); (b) s1(n, A); (¢) 51(0, A); (d) so(eq, A); () so(n, A); (f) so(6, A). sy is
in Eq. (C200) and s, is in Eq. (C202) with the relation s; = s in the density symmetric case (e; = 0 or @ = 0, n = 0). ¢, is the IR
effective gauge coupling, # is the number density as in Eq. (C136) or Eq. (C204), @ is the spectral asymmetry angle in Eq. (C134). We
have chosen the parameter ¢ = 1, e; € [-1/2,1/2], n € (0,1), 6 € [-x/2,7x/2] and A € [0,1/2].

The T = 0 residual entropy s, as a function of charge
density e, density number n, and spectral asymmetric
angle 0, respectively, are plotted in Fig. 16, from which,
one can observe that

S()(I’l =7 05) = So(ed = Ztl) =0,

so(n =0) =s9(eq =0) =In2, (C205)

which indicates that the zero temperature entropy is
vanishing if the band is empty (n = —0.5) or full filling
|

F,= /ﬁ dr=(0)G(—7) = %Zz(iwn)g(iwn) = EZ[gal(iwn)g(iwn) -1] =

0 iw, ﬂiwn

[ Lo 1 [dol [ (0= (o)
= 2m_/cda)(y a))g(a))ztanh 5 _2ﬂi/(; _ /da) e neg(w),

(n = 0.5), while it achieves its maximum as In 2, if the band
is half filling (n = 0), when the particle-hole symmetry is
restored (e, = 0). It also indicates the state is one with two
different corresponding microstates at zero temperature.

b. Finite temperature case

For the free energy density F, due to self-energy of
fermions in Eq. (C189), by using the spectral representation
of G(—7) and the definition of X(z), we obtain the second
term as [77]

53 (=i, + )i,

(C206)

where we have firstly performed a Matsubara sum over discrete imaginary Euclidean frequencies to rewrite the sum over
frequencies as a contour integral, secondly used the spectral decomposition in Eq. (C144) and thirdly do an contour integral.

Then, the integral can be rearranged as

066001-53



QI SEO, SIN, and SONG

PHYS. REV. D 99, 066001 (2019)

- +eo dw (0 — pu)p(@w +eo dw 0 dw
P [TERMOZ 00 [ o ip(e) + (o wp(-llnr) + [ - wpte). (C20)
o TP+ 0 n o T
where in the last equality, we have subtracted a term in the integrand so that the integral is not singular at @ = —o0.
Assuming that the spectral density is symmetric (p(w) = p(—w)), one obtains
_— +oo dw wp(w) 0 dw 1
P2 [T [T = o) = o))~ (c208)
|
where in the last estimation, we have substituted the  Then the longitudinal A, can be solved through
spectral density p(w) at finite and zero temperature in '
Egs. (C130) and (C145), respectively, into the above A — lw (C212)

formula. One can obtains the finite temperature entropy
density, according to the thermodynamics relation in
Eq. (AS), as

a ﬁ2 1
~ar” 8ﬁ Y

which does not contributes to the zero temperature entropy
s in the density symmetric case (e, = 0 or 8 = 0).

5= (C209)

5. Conductivity

For (0 + 1)-dimensional quantum system, the conduc-
tivity can be obtained by making perturbation upon the A,,
i.e., the frequency dependent sector. In generic RN-AdS,;
spacetime, to calculate the conductivity on the boundary
with the CFT; symmetry, one needs to study fluctuations of
vector gauge fields on the background spacetime. At linear
order, the gauge fields satisfy the Maxwell field equa-
tions d,(\/=g9""¢"°F ,,) = 0.

Consider turn on both e~ kA (z) and e~ A (z)
as the perutrbation term, which depends on both frequency
and momentum. The linearized Maxwell equation without
the metric corrections are the field equation of motion along
longitudinal y direction can be generalized to be one in
AdS, | spacetime as

d-3 K? ko

A”_TAI fAt_TAyZO’
WA, + kfA, =0,
" d-3 ko
A/yur(J}_Z >A’+f2A o A, =0, (C210)

where for the RN-AdS,, | case, referring to Eq. (C11), f =
1-(2/20)" = 0%2%(z5 7 =2"?) and A, =p(1-(z/29)*7?).
The gauge field along the transverse direction, i.e., x # t,
Z, Y s

y _ 12
A§+<§—d 3>A;+wfka ~0.
Z

(C211)

Y _a)2 _szE/y'

Alternatively, one can combine the first two equations to
give the field equations from A, as

(3) f/ "y (Zf/_f) w _k2f> /
A (G s (e o Y=o

(C213)

The generic field equation for A, becomes

" d=-3
A (-

2 /

+ {w kS _d4-3 <Ji—l>}A; —0, (C214)
f Z [ z
and it can be viewed as a second-order equation for A}. By
making a gauge-invariant combination in terms of electric
gauge field E, = 0,A, — 0,A, = i(kA, + wA,), the field
equations for longitudinal gauge field components E,
becomes

Y o> f! _d=3\,
B+ (<w2 By VI )E *

with f(z) =1 —(z/z9)¢ for pure AdS,,;. One rename
E,=E; and A, = Ey;, where L and T denotes the
longitudinal and transverse direction, respectively. Then
the equations of motion can be reexpressed as

o’ f _d-3 o =k f
E“(U ehf z)E“ g =0

" fod=-3\, @ -kf
B+ (G- ) m

2 2
el

(C215)

ET - O
(C216)

It is obvious that for k = 0, E; = Ey = E satisfy the same
equation as
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o (f _d=3\, o f=1+0*)(1-2)=(1+4*)(1-2) and A, = p(1 = z7"),
E"+ (7 - —> E + Iz E=0. (C217) where we have set the horizon radius to be z, = 1. In the
following, we will just focus on the pure AdS, case, the
For d =1 case, k is always vanishing. As the physical  result for the RN-AdS, case can be obtained by making a
consequence, one can not distinguish the longitudinal  replacement upon the frequency as @ — @/ (1 + p?).
and transversal conductivity. For pure AdS, case For AdS, case (d = 1) case, the wave function of
(d=1), one has f = 1 — z, while for RN-AdS,, one has  covariant gauge field E(z) turns out to be
|

E(z) = Cie™(1 —z)7 @, F|(miw — V1 —a? + 1,—iw+ V1 —a?+ 1;1 =2iw;1 —z)

+ e (1 = 2)@,F, (i — V1 — @ + 1iw+ V1 - + 1320+ 151 )

z—1

2'Ciem(1 = 2)7@ 4+ Cre (1 — z), (C218)

where e~'(1 — z)~™ corresponds to the in-falling wave, thus the in-falling boundary condition is C, = 0. In the UV
boundary condition, the asymptotic behavior of the Green’s function is
Cie™I'(1 = 2iw) <1 ) >
——In(z)+1+4+iw—-H , /—=—-H /—5 . |. (C219)
F(l —iw— \/—)F(l —iw+ \/1_—) io—V1-w? l-w’—iw

The retarded Green’s function turns out to be

E(Z)ZZO

B
QA(a))zzzl—ZyE—i-iw—y/(o)(l V1-0?-io) -y (1 +V1-0?-io)+InA, (C220)

where the subscript A indicates that it the Green’s function for the perturbation of gauge field 54 ,, In A is a renormalization
dependent contact term and y(%)(z) = I"(z)/T(z). The finite temperature result can be obtamed as

2 2 A
Tw)=1-=2yp—i— — 0 (2 ;2 ) _,0 (2 ) ;. In[ —— ). 221
Ga(@) TE ’2 i ( <27zT ‘ot ) Y 277) ") P ) (€22

The poles of the Green’s function at —iw + V' 1 — w?> = —n with n € Z, results in the frequency modes as

w= —é <n - 1), (C222)

which are all in the lower half of the complex plane.
In the zero temperature case, the spectral function of the gauge field in AdS, is

p() = ImG, () = 3 a(cothla(w — VT - o)] + cothla(w + iv/T- 0?)])

7 sinh(2zw)

= . (C223)
cosh(2zw) — cos (2zV'1 — w?)
It is worth of noticing that the low frequency behavior of the spectral function is
w—0 1 7T2 1 1 71'4
=0 2 r_Z - 0 C224
p) a)+<3 4)“”( 16 45)‘”+ (@). (C224)

While in the large frequency limit, one has lim,_ p(@)/@ = 1.
Thus, the conductivity is

o(w) = M = ,i[l =27 —iw =y O (=1 = 0* —iw) =y O (V1 - @? = iw) + In Al (C225)

110} L
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where we have used that (%) (1 + iz) = w(©)(iz) — i/z. The low frequency behavior (@ < T) of the conductivity is

22T i (1 A 4z’ =3  iw(4¢(3) - 1)
=——-——|(z+h— O(w?). C226
O i <2 * n27rT> 4T serr 0@ (C226)
The large frequency behavior (w > T) of the conductivity is
1 1 (7 20\  #(z*-3) 1 1
=—+4+—(=+i(ypg—-1 i In— ——T+0|— =. C227
o(@) 2;:T+w<2+’(” )+’“A>+ 6 N\) ST (€227)

a. DC conductivity

The exact form of the real part of the conductivity,
namely, the direct current (DC) conductivity, is

zsinh(2) w—o027T

Re[o(w)] = — - L = —
@ Cos (27: 1- #) — wcosh(%) @

+ 2 4 0(w). (C228)

6T

b. Optical conductivity

The imaginary part of the conductivity satisfy the
Kramers-Kronig relation, which give the optical conduc-
tivity as

w |2 22T 872277
(C229)

APPENDIX D: SUSCEPTIBILITY

To appreciate the quantum phase transition with an
order parameter, an important observable is susceptibilities,
which characterize the dynamical nature of the quantum
phase transition. Suppose that the order parameter is given
by the expectation value of some bosonic operator O, then
the corresponding susceptibility y(w, I_é) is given by the
retarded function of O. To be concrete, the uniform/
zero momentum/dynamical susceptibility [38,41] y(w)

-

and momentum dependent static susceptibility y(k) can
be defined, respectively, as

-

(@) =GR(w.k=0),  y(k)=GR(w=0,k), (DI)

and the full dynamical susceptibility y(w, k) is defined as

2(@.k) = GR(w, k). (D2)

Then, the existence of growing modes with instability are
reflected in the singularities of susceptibility in the upper
complex momentum space. Thus, it can be indicated by the
divergence of uniform static susceptibility y(0), The critical
behavior of quantum phase transition, is different from the
Landau’s phase transition where one expects that the
uniform susceptibility always diverges when approaching
a critical point, e.g., near the critical point, ¥(0) is
characterized by a critical exponent y, y(@) ~ |g— g.|™"
where g is the tuning parameter and g, is the value at critical
point. Instead, at the critical point, the uniform static
susceptibility remains finite, i.e., ¥(0) ~ const., while the
singularity behavior of y(0) around @ — 0 can be indicated
by taking a derivative with respect to w, thus one finds that
x'(0) is divergent.

In momentum space, the advanced and retarded Green’s
function as well as the positive/negative Wightman func-
tions are defined as [53,78]

G (w) = i /_ % di0(=1)e G (1),

o]

GR(w) = —i /_ " d0(1)e G (1),

[

o

Except for the Pauli-Jordan commutator function G(7)=
([O(1), 0(0)]), there are also other real-time two-point
functions such as the Hadamard two-point function
GH (1) = ({O(1), 0(0)}) and the Feynman two-point func-
tion G (1) = 0(1)(O(1)0(0)) + O(—1){O(0)O()) can be
expressed by linear combinations of the above Green’s
functions. In momentum space, the finite temperature
generalization is Fenman’s Green’s function as G (w, ) =
(1 = ny(w))GR(w) + ny(w)G®*(w) where n,(v) statistic
distribution functions, e.g., s = F' to denote Fermi-Dirac
statistics for fermions, or s = B to denote Bose-Einstein
statistics for bosons. In imaginary time, the retarded
Green’s functions and the Wightman functions are defined
as GR(7) =[G(r+¢€)—G(r—€)]0() and G*(7) =G(r *e),

Gi(t)TioG(T + f/2) with = = it. The spectral functions of

dte’™ (O(1)0(0)),

d1e ' (O(0)O(t)). (D3)
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quantum liquid is defined as imaginary part of retarded
Green’s function as

plw) x —%ImGR(a)). (D4)

The local spin-spin correlation function is directly
related to the Green’s function and defined as

Sroe (@) / e GHOGH =), (D)

and the local dynamical susceptibility is defined by [38]

Ai(@) =7 / " dup, )5 (v = )y (0 = @) = 1, (),

(o]

(Do)

where p,(v) is spectral function with spin index s and
frequency v. The static local susceptibility x| (@ = 0) is
defined as

1
Aol =0) = [ a0l

> (D7)

In dealing with the Fourier transformation for the retarded
Green’s function with loop corrections, it is useful to
introduce a set of integral formulas as follows [53,79]

(0,1.2) +oo (ZJT/ﬂ)d[eiwt 2r 27\ 2 5
I, = B 1 1 omA I,—t(— )t
A5 Jo [g;sinh5] p\p

2
_ 70 _, (0 (1) (0)
_IA—'%{I’ wA—i%’WA—i%+ <WA—ifzi;;> }

1
O<A<§, B >0, Ime > 0, (D8)
where
47\2AT(1 = 2A)T(A = L2
9, = (ﬂ> ( )T ( ‘ 2;1)’ (DY)
A\ P r(1-A-22

and we have defined a series of new functions though
digamma function y(z),

n _ipo\ ) _ipo
Vi =V <A 2ﬂ> w1 -A ) (D10)

where y")(z) = d"w(z)/dz" is the n-th derivative of
the digamma function y(z) = w(%(z) = I"(z)/T'(z) which
satisfy the reflection formula, y(1—z)—w(z) =zcot(xnz).

At low frequency limit (w < 1), or large temperature

limit (f < 1), the leading-order behavior of the function
o (&) (1 -

age =17 cot(zA), y!!
2z

A)} + O(wp),

which are constants and independent of frequency. If one
shifted A - A + 1, then

J012) _ [t (2x/p)die™ 127, (2= 2,
A+1-L2= | W ﬁt’ B !

2
(0) (0) (1 (0)
N ‘/*”{1 RSN SN /"‘+(WA+1—/§—‘;> }

A<{-1/2,0,1/2}, >0, Imw>0. (D11)

For A€ (0,1/2) case, one has ISAO+11 o = 0, but

1 (Azll so 7 0. It is intuitive to observe that the high-point
I

integral can be obtained through

/0 ) E/+oc> (2z/B)dte™" (27r> y
At1-%2 0 [ Slnht2ﬂ]2A+2 ﬁ

2z\" 1 d"
= T I ifws
ﬁ l da)n A+1- /

where n > 3. As would be expected, the higher-order

(D12)

derivatives to the digamma function, i.e., W(A"Ziﬂw Jon

be present. Similarly, one also obtains another series of
nonvanishing integrals as

) will

o B [%sinh(%%”)]M“ B\
ia) ( ) i 27 (0)
A A ‘/’”{1 _EF_WA—/ZL;;’
2i27 (o) (0) (1

@ FWA—I'% + (V/A_i/xw) + WA ﬂa,}

A<{0,1/2,1/2}, p>0, Imw>O0. (D13)

To simplify Eq. (D13), we have also used the relation that

n!
xn+1 ’

y) (=x) — (1= x) (D14)

as well as the relation as below
o _ ‘ .
W ipe = HA-I-%? a H-A—%’

where H,, = >, 1/iis the n-th harmonic number. This is
due to the identity H,=w(z+ 1)+ yg where yp=~
0.577216 is Euler-Mascheroni constant. In low temperature
limit (f > 1), or large frequency limit (@ > 1), one has
_ipo i2A+ 1)z
Hy po=yg+1n Py 12A+ Dr 0(872).
2z po
(D15)

In the low frequency limit (w < 1) (but with finite temper-
ature), one has

W= 0

WA +1
HAlﬂw—HA —()

ipoy
S ——+0(?). (DI6)
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take A = +1/2 and A = +1/4 as an examples, one has

1
H, o =2—In4d ——infw +
T m 4

2ifw
r

+ O0(0?),

1
H_%_@ = —ln(4) - Zlﬂ'ﬁw + 0(0)2)7

V3

ifw

Hp= Z ~In(8) - 2 (z2 = 8C) + O(w?).

) 2

(8C =16 + 7%) + O(?),

(D17)

where C = "% ((=1)"/(2n + 1)* ~# 0.915966 is Catalan’s constant.
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