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Frequency specific contribution of 
intrinsic connectivity networks to 
the integration in brain networks
Yeong-Hun Park  1, Jungho Cha2, Viktoriya Bourakova2 & Jong-Min Lee1

Brain networks are integrated and segregated into several intrinsic connectivity networks (ICNs). 
Frequency specificity of ICNs have been studied to show that different ICNs have a unqiue contribution 
to brain network integration along frequencies. The purpose of this study was to evaluate the 
contribution of individual ICN to brain network integration along their frequency. We used 14 ICNs 
and determined 2 frequency bands (LF1, 0.03~0.08 Hz and LF2, 0.009~0.012 Hz) from the hierarchical 
clustering of 101 frequency bins. We proposed a novel measure, called ICN efficiency, representing 
the difference between the global efficiencies of the whole brain network with and without the ICN 
to evaluate the contribution of the ICN to brain network integration. We found that each ICN had a 
different ICN efficiency at 2 frequency bands. We also found that the distinct subregions of the same ICN 
had a frequency specific contribution to brain network integration. Futhermore, the integration with 
other ICNs of the distinct subregions of the same ICN were different at 2 frequency bands. In conclusion, 
the contribution of each ICN to brain network integration is frequency specific and distinct subregions of 
the same ICN have functionally distinct roles with other ICNs at 2 frequency bands.

Functional connectivity (FC) is defined as the correlation of low frequency (0.009~0.08 Hz) fluctuations among 
anatomically distinct brain areas on resting-state functional magnetic resonance imaging (fMRI)1. FC has been 
widely used to gain insight into the fundamental functional architecture of the brain2 and to identify intrinsic 
connectivity networks (ICNs), which are determined by spatially independent and temporally correlated FC3. 
There have been reported 10~14 ICNs associated with intrinsic functions such as vision, hearing, language, work-
ing memory, visuospatial attention, salience processing and episodic memory in the resting-state brain4–10.

Several studies revealed specific frequencies for ICNs within the low frequency spectrum of blood oxygen level 
dependent (BOLD) signal and suggested that different ICNs likely have unique intrinsic frequencies11–15. Mantini, 
et al.15 showed that 6 ICNs that fluctuate at slightly different BOLD signal frequencies were correlated with spe-
cific electrophysiological rhythms. Wu, et al.14 showed that cortical networks concentrate within ultra-low fre-
quency range (0.01~0.06 Hz), while connections within limbic networks distribute over a wider frequency range 
(0.01~0.14 Hz). Sasai, et al.12 and Thompson and Fransson13 showed the frequency specificity of ICNs from the 
viewpoint of whole brain network integration and segregation. Chen, et al.11 demonstrated that ICN information 
of the slow-4 (0.027~0.073 Hz) and slow-5 (0.01~0.027 Hz) frequency bands are complementary in classifying 
between autism spectrum disorder and healthy controls. Among the low frequency divisions of previous studies 
(Table 1), the most used frequency bands are the slow-4 and slow-5 frequency bands of Zuo, et al.16. The criteria 
for slow-4 and slow-5 frequency bands were based on electro-physiological data from rats17. Observing the fre-
quency specific contribution of ICN is an analysis in terms of the connectivity network, so it may be more appro-
priate to determine the frequency band based on connectivity matrix constructed using the BOLD signal rather 
than based on the electro-physiological frequency bands.

Brain networks combine to form one integrative complex network linking all brain regions and multiple ICNs 
together into one complex system18. Global and nodal efficiencies have been widely adopted to observe the inte-
gration of the brain network as graphical measures based on the shortest path length19,20. Sasai, et al.12 evaluated 
the integration of a brain network composed of 3 ICNs using global efficiency and detected hubs by considering 
the nodal degree and eigenvector centrality. However, global and nodal efficiencies are insufficient to evaluate 
the contribution of each ICN to brain network integration because they are indicators for the overall network or 

1Department of Biomedical engineering, Hanyang University, Seoul, Korea. 2Memory and Aging center, Department 
of neurology, University of california, San francisco, San francisco, cA, USA. correspondence and requests for 
materials should be addressed to J.-M.L. (email: ljm@hanyang.ac.kr)

Received: 26 June 2018

Accepted: 22 February 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-40699-z
http://orcid.org/0000-0002-0941-1637
mailto:ljm@hanyang.ac.kr


2Scientific RepoRts |          (2019) 9:4072  | https://doi.org/10.1038/s41598-019-40699-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

each node. Also, since the definition of functional integration is commonly based on the concept of a path21, the 
hub defined by nodal degree and eigenvector centrality are insufficient to evaluate functional integration than the 
hub defined by path-based measures. Unlike Sasai, et al., Thompson and Fransson13 evaluated the contribution of 
an ICN to the integration of a brain network composed of 10 ICNs using the strength contribution and detected 
hubs by considering the betweenness centrality (BC) based on the concept of a path. However, this may also not 
be sufficient for evaluating the contribution of an ICN to the integration of the brain network because it is based 
on each edge’s value over the sum of all edges and only considers the first degree of each node.

Separating an ICN from the whole brain network and computing its efficiency could not evaluate the contri-
bution of the ICN in brain network integration properly. A general approach to measure the efficiency of a specific 
node is to calculate the inverse of the average shortest path length between the first neighbors of the node in the 
condition while excluding the node19. This approach is known as local efficiency and indicates how efficiently 
the node’s first neighbor communicates when the node is removed. We applied the same concept to measure 
the efficiency of the ICNs and proposed a novel measure, called ICN efficiency (EICN), defined as the difference 
between the global efficiency and the efficiency of the whole brain network excluding the ICN. This could result 
in evaluating the contribution of an ICN to whole brain network integration.

The purpose of this study was to evaluate the contribution of an ICN to brain network integration using 
EICN along the frequency. First, the connectivity matrices along the frequency band were constructed from 
time-varying frequencies of the brain network consisting of 14 ICNs. Hierarchical clustering analysis was con-
ducted to choose 2 frequency bands. EICN was calculated at each frequency band.

Results
Dividing the low frequency range into the frequency bands. We divided the low frequency range 
into 101 bins to construct connectivity matrix at each bin. The average silhouette values for ward clustering 
were obtained as a function of k. The number of clusters were determined as 2 because the silhouette value 
was the highest when using k = 2 (Fig. 1b). (See Supplementary Fig. S1 and Table S1 for the silhouette value 
about the number of clustering iteration). The resulting frequency bands were LF1 (0.03~0.08 Hz) and LF2 
(0.009~0.012 Hz) (Fig. 1c).

Changes of EICN along the frequency bands. EICN was calculated to determine whether the contribution 
of ICNs to brain network integration differs along the frequency bands (Fig. 2 shows significant differences in 
t-values with Bonferroni correction (p < 0.005)). The number of BC hubs were plotted as the indicator of EICN 
together. Note that the statistically significant difference in EICN and the difference in the number of BC hubs were 
consistent in the Auditory network (AN), Default mode network (DMN), Salience network (SN) and Precuneus 
network (PCN). Most ICNs had a positive EICN value except that basal ganglia network (BGN) had a negative EICN 
value. There are 3 distinct groups according to the pattern of EICN values along the frequency bands; (1) higher 
at LF2 than at LF1: DMN, Language network (LN), Sensorimotor network (SMN), SN and Visuospatial network 
(VSN), (2) lower at LF2 than at LF1: BGN, Visual network (VN) and PCN, (3) similar at LF1 and LF2: AN and 
executive control network (ECN). These results suggest that the contribution of each ICN to brain network inte-
gration is frequency specific.

Different integration between distinct subregions of the same ICN along the frequency 
band. Three well-known ICNs that can be divided into distinct subregions were determined and EICN was 
calculated along the frequency bands with 6 sub-ICNs: dorsal DMN (dDMN), ventral DMN (vDMN), left ECN 
(lECN), right ECN (rECN), posterior SN (pSN) and anterior SN (aSN) (Fig. 3 shows significant differences in 
t-values with Bonferroni correction (p < 0.008)). Note that the statistically significant difference in EICN and the 
difference in the number of BC hubs were consistent in dDMN, pSN and aSN. The dDMN showed greater EICN at 
LF2, but the vDMN showed a similar EICN. The rECN showed greater EICN at LF2, but the lECN showed a similar 
EICN. The pSN and aSN showed greater EICN at LF2. These findings show that the distinct subregions of the same 
ICN had a frequency specific contribution to integration of brain network.

In addition, the efficiency between each sub-ICN and the other ICNs (EICN-ICN) was calculated along the fre-
quency bands (Fig. 4). Comparing each sub-ICN pair, the vDMN showed a greater EICN-ICN with other ICNs 
except for DMN and LN than dDMN at LF1. However, the vDMN showed a greater EICN-ICN with AN, VN, SN, 
PCN and VSN than dDMN at LF2. The lECN showed a greater EICN-ICN with DMN, VN, LN, SN,PCN and VSN 
than rECN at LF1. However, the lECN showed not difference in EICN-ICN with all other ICNs compared from 
rECN at LF2. The aSN showed a greater EICN-ICN with AN, BGN, DMN, LN, ECN, SN and PCN than pSN at LF1. 

Previous studies Frequency

Wu et al.14 Ultra-low frequency (0.01–0.06 Hz), Wider frequency (0.01–0.14 Hz)

Zuo et al.16 Slow-5 (0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz)

Baria et al.57 LF (0.01–0.05 Hz), MF1 (0.05–0.10 Hz), MF2 (0.10–0.15 Hz), HF (0.15–0.20 Hz)

Sasai et al.12 Very low frequency band (0.01–0.03 Hz), Low frequency band (0.07–0.09 Hz)

Qian et al.58 IMF5 (0–0.015 Hz), IMF4 (0.01–0.025 Hz), IMF3 (0.025–0.05 Hz), IMF2 
(0.05–0.11 Hz), IMF1 (0.11–0.22 Hz)

Thompson and Fransson13 F1 (0.016 Hz), F2 (0.028–0.037 Hz), F3 (0.071–0.08 Hz)

Table 1. The low frequency division in previous studies.
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However, the aSN showed a greater EICN-ICN with SN than pSN at LF2. The difference in results was corrected with 
Bonferroni correction (p < 0.0025). The results suggested that the efficiency of each sub-ICN pair with the other 
ICNs is more different at LF1 than at LF2.

Consistent tendency of EICN to frequency of other data sets. The EICN was calculated in two data sets 
to prove that the results of EICN are not data set dependent. When the EICN results of Human Connectome Project 
(HCP) S900 data and Beijing Normal University (BNU) data were compared, the results of BNU data differed 
from the results of HCP data in statistical significance of DMN, VN, SMN, PCN and VSN, but the tendency of 
EICN to frequency was maintained (Fig. 5a). Although there was a statistical difference, the tendency of EICN to 
frequency of BNU data was the same as the tendency of EICN to frequency of HCP data. This result indicates 
that ICN’s frequency-specific contribution to the integration in brain networks is robust. In addition, when the 
6 sub-ICN efficiency results of HCP data and BNU data were compared, the statistical tendency of sub-ICN did 
not reverse (Fig. 5b).

Discussion
In this study, we showed that ICNs make frequency specific contributions to the integration within the brain 
network (Fig. 2) and that the distinct subregions of the same ICN showed different characteristics along the fre-
quency bands (Figs 3 and 4).

We determined 2 frequency bands (LF1, 0.03~0.08 Hz and LF2, 0.009~0.012 Hz) by hierarchical clustering 
which considered the FC matrix based on the BOLD signal. The FC frequency bands were slightly different from 
the electro-physiological frequency bands (slow-4, 0.027~0.073 Hz and slow-5, 0.01~0.027 Hz). The slow-4 range 
was included in LF1 and the slow-5 range was overlapped with LF2. Zuo, et al.16 showed that slow-4 fluctuations 

Figure 1. Construction of the connectivity matrix and division frequency bands. (a) A connectivity matrix 
was constructed for each frequency bin by using Pearson’s correlation coefficient of each power spectral density 
(PSD) time-course through all nodes. The black rectangular small box indicates PSD time-course of specific 
frequencies. A 141 × 141 connectivity matrix of specific frequencies with a total of 101 frequency bins is 
presented. (b) The hierarchical clustering between group averaged connectivity matrices of each frequency was 
calculated by using Jensen Shannon divergence. For the highest silhouette value, 101 frequency matrices were 
clustered into 2 subbands. (c) Probability of clustering index for each frequency bin. Since the probability of 
the intermediate frequency band is uncertain, only the frequency bands at both ends were defined as the final 2 
subbands (LF1: 0.03–0.08 Hz, LF2: 0.009–0.012 Hz).
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are higher in the subcortical regions and several sensorimotor regions than slow-5 and slow-4 fluctuations are 
lower in the ventromedial regions than slow-5. Since then, many clinical studies of neurological and psychi-
atric disease11,22–24 have used slow-4 and slow-5 to reveal regions of different brain activity from normal con-
trols. Although many significant results were observed using slow-4 and slow-5, the slow-frequency bands are 
pre-defined frequency bands based on electro-physiological data from rats17, as mentioned earlier. Therefore, it 
was necessary to find the frequency band by considering the FC matrix, and the LF1 and LF2 we obtained could 
be considered as fine-tuned frequency bands from slow-4 and slow-5 frequency bands. In future studies, it is bet-
ter to use the fine-tuned frequency bands LF1 and LF2 than to use the slow-4 and slow-5 frequency bands when 

Figure 2. EICN and number of BC hubs along the frequency band. The EICN of the 10 ICNs was compared 
using a paired sample t-test analysis between the 2 frequency bands. The results were corrected by Bonferroni 
correction (p < 0.005). The tendency of EICN and number of BC hubs along the frequency bands were different for 
each ICN. The tendencies of EICN and number of BC hub along the frequency bands were similar in AN, DMN, 
SN and PCN. The abbreviations used were as follows: auditory network (AN), basal ganglia network (BGN), 
default mode network (DMN), visual network (VN), language network (LN), executive control network (ECN), 
sensorimotor network (SMN), salience network (SN), precuneus network (PCN), visuospatial network (VSN).

Figure 3. EICN and number of BC hubs along the frequency band. The EICN of the 6 sub-ICNs was compared 
using a paired sample t-test analysis between the 2 frequency bands. The results were corrected by Bonferroni 
correction (p < 0.008). The tendency of EICN and number of BC hubs along the frequency bands were different 
for each ICN. The tendencies of EICN and number of BC hub along the frequency bands were similar in dDMN, 
pSN and aSN. The abbreviations used were as follows: dorsal default mode network (dDMN), ventral default 
mode network (vDMN), left executive control network (lECN), right executive control network (rECN), 
posterior salience network (pSN) and anterior salience network (aSN).
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analyzing frequency-specific brain networks rather than analyzing frequency-specific brain activity measured by 
amplitude of low frequency fluctuation.

We proposed EICN as a novel network measure for evaluating the contribution to brain network integration. 
While the global efficiency represents the integration of the whole brain and strength contribution considers the 
first degree neighbors only12,13, EICN is a path-based method which considers whole brain network nodes as a 
quantitative indicator of the contribution of ICN to the integration of the whole brain network. The fact that EICN 
changes along frequency bands illustrates how the contribution of an ICN to brain network integration differs 
across frequency (Fig. 2). Note that each ICN had a different pattern of EICN values along frequency, which is 
similar to the frequency characteristics of each ICN observed through strength contribution in another study13. 
EICN of BGN had a negative result at all frequencies. Although BGN is known to have FC with other regions of the 
cortex25, the results indicate that BGN interferes with brain network integration, therefore, more research about 
the contribution of BGN to brain network integration is needed.

We examined EICN with sub-ICN of three ICN along frequency bands to investigate different integrations 
between distinct subregions of the same ICN along the frequency band (Fig. 3). We also calculated EICN-ICN with 
sub-ICN of three ICN to investigate different integrations with other ICNs (Fig. 4). A central component of the 
DMN resides in the posterior cingulate cortex (PCC), which is functionally correlated and separated into dorsal 
and ventral areas by cytology26. The dorsal PCC is strongly functionally connected with the DMN and with the 
cognitive control network (CCN), which is typically involved in the control of externally directed behavior, while 
the ventral PCC is more strongly integrated with the DMN27–29. In our study, the dDMN and vDMN had a dif-
ferent EICN along the frequency band. The vDMN showed a larger EICN-ICN with other ICNs than dDMN at LF1. 
This suggests that the vDMN integrates with other ICNs more than dDMN at LF1. To the best of our knowledge, 
this study is the first to demonstrate that distinct subregions of DMN play functionally distinct roles with the 
other ICNs in the frequency domain. The lECN and rECN showed a different EICN along the frequency band 
in spite of having the same region of interest (ROI) in the corresponding hemisphere. The lECN and rECN are 
known to associate different temperaments in motivation30, which is probably related to the observation that the 
lECN showed a larger integration with other ICNs than rECN at LF1. The SN is divided into the aSN and pSN by 
structural and functional connectivity with the anterior and posterior insula31,32. The aSN and pSN had the same 
number of BC hubs at LF1, but the aSN showed a larger integration with other ICNs than pSN at LF1. The aSN 
plays a critical role in switching between the ECN and DMN33, which may be one of the explanations for the aSN 
showing a larger EICN-ICN with the DMN and ECN than pSN at LF1. From these observations we confirm that 

Figure 4. EICN-ICN between sub-ICN and other ICN along the frequency band. The EICN-ICN were calculated at 
LF1 and LF2. The patterns of EICN-ICN were mainly different at LF1. The results were corrected by Bonferroni 
correction (p < 0.0025). The abbreviations used were as follows: dorsal default mode network (dDMN), ventral 
default mode network (vDMN), left executive control network (lECN), right executive control network (rECN), 
posterior salience network (pSN), anterior salience network (aSN) auditory network (AN), basal ganglia 
network (BGN), visual network (VN), language network (LN), sensorimotor network (SMN), precuneus 
network (PCN), visuospatial network (VSN).
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the DMN and ECN are integrated centering on the aSN at LF1, indicating the frequency specificity of ICN to the 
integration in the brain network.

The present study has several limitations. First limitation is that different pre-processing methods lead to 
slightly different results (See Supplementary Fig. S2). The EICN results of three pre-processing pipelines differed 
from each other in statistical significance, but the tendency of EICN to frequency was maintained. These results 
indicate that the censoring step and global signal regression (GSR) step do not necessarily impact the magnitude 
of EICN along the frequency. In the end, we decided to include the preprocessing step by determining whether 
it was necessary or not, rather than judging whether the result was right or wrong. Therefore, we included the 
censoring step because it was necessary to exclude the large motion effect from the BOLD signal. However, the 
GSR step was not included because it was assumed that the nuisance-signal was already sufficiently removed 

Figure 5. Impact of the data set on EICN by frequency. (a) Difference of EICN by frequency according to the data 
set. The EICN result of BNU data differ from the EICN results of HCP data in statistical significance of DMN, VN, 
SMN, PCN, and VSN, but the tendency of EICN to frequency is maintained. (b) Difference of EICN of 6 sub-ICN 
by frequency according to the data set. The statistical tendency of sub-ICN not reverse. The abbreviations used 
were as follows: dorsal default mode network (dDMN), ventral default mode network (vDMN), left executive 
control network (lECN), right executive control network (rECN), posterior salience network (pSN), anterior 
salience network (aSN), auditory network (AN), basal ganglia network (BGN), visual network (VN), language 
network (LN), sensorimotor network (SMN), precuneus network (PCN), visuospatial network (VSN).

https://doi.org/10.1038/s41598-019-40699-z


7Scientific RepoRts |          (2019) 9:4072  | https://doi.org/10.1038/s41598-019-40699-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

in the ICA-fixed step. Second limitation is selection of hyperparmeters for the Morlet wavelet transform. An 
angular frequency ω0 = 6, known to provide a good tradeoff between time and frequency localization, was set 
as in the previous13,34–36. For other hyperparameters, there was no information to set by reference. Nevertheless, 
our purpose was not to compare each frequency bin, but to compare the frequencies after clustering them into 
subbands, so we have compared clustering results under various conditions (See Supplementary Fig. S3). When 
the frequency clustering results are compared by changing the smallest scale ‘s0’ and spacing between scales ‘ds’, 
cluster colution 2 had the highest silhouette value under any conditions.

Methods
fMRI data. The present study used HCP S900 data (http://humanconnectome.org/) released in December 
201537. In the HCP S900, 352 subjects (178 females and 173 males, age 22–36) were selected after excluding twin 
subjects for further analysis. The experiments were performed in accordance with relevant guidelines and regu-
lations and all experimental protocol was approved by the Institutional Review Board (IRB) (IRB # 201204036; 
Title: ‘Mapping the Human Connectome: Structure, Function, and Heritability’). Written informed consent was 
obtained from all participants. Our data analysis was performed in accordance with ethical guidelines of the 
Hanyang University ethics committee. Data were collected on a customized Siemens 3 T Connectome Skyra mag-
netic resonance imaging (MRI) with a standard 32-channel head coil at the Washington University in St. Louis. 
Echo planar imaging (EPI) time-series scans consisted of 1200 volumes and lasted for approximately 15 minutes 
with the following imaging parameters: TR = 720 ms; TE = 33.1 ms; flip angle = 52°; field of view = 208 × 180 
mm2; matrix size = 104 × 90; a multiband factor of 8; 72 slices; with voxel dimension = 2 × 2 × 2 mm3. 
Participants were instructed to rest with their eyes open with relaxed fixation on a projected bright cross hair 
on a dark background during each scan. We used ‘ICA-FIX cleaned’ resting-state fMRI data only, which was 
preprocessed for co-registration, normalization, head motion correction, and artifact rejection38,39. The ICA-FIX 
cleanup preprocessing step regressed out non-neural contributions from fMRI data. The non-neural contribu-
tions are motion-related timecourses and artefact components identified using independent component analysis 
(ICA) with a new FSL tool FIX (FMRIB’s ICA-based X-noisfier)40. For the additional pre-processing step, volume 
censoring was applied by using the frame-to-frame displacement (FD) method41. If the FDs exceeded a threshold 
of 0.35 at a time point, the time points values were censored and replaced by interpolated neighboring non-cen-
sored values. 51% of the total data included the censoring volume, with an average 13.2 out of 1200 volumes 
(1.1% of the fMRI data per subject). Among them, the censored volume ratio of two data were 25% and 35.91% 
respectively, and the analysis was carried out with a total of 350 data excluding the two data. We didn’t include 
the GSR step because the ‘ICA-FIX cleaned’ data was already sufficiently regressed out the nuisance signals and 
the GSR step had a controversy42. We repeated the EICN using the State Key Laboratory of Cognitive Neuroscience 
and Learning at BNU  (n = 100), which is part of the 1,000 Functional Connectomes Project (http://fcon_1000.
projects.nitrc.org/)43. The BNU EPI time-series scans consisted of 225 volumes and lasted for 7.5 minutes with 
the following imaging parameters: TR = 2000 ms; 33 slices; with voxel dimension = 3.125 × 3.125 × 3.6 mm3. The 
fMRI data pre-processing proceeded according to our previous study28,44–48. The pre-processing included despik-
ing, slice-timing, head motion correction, ANATICOR method49 and volume censoring.

Constructing the nodes of the brain network. We selected 141 functional ROIs as nodes covering 14 
ICNs consisting of the AN, BGN, dDMN, vDMN, higher VN (hVN), primary VN (pVN), LN, lECN, rECN, 
SMN, aSN, pSN, PCN and VSN9 from 499 functional ROIs originally defined by Richiardi, et al.50.

Constructing the connectivity matrix. We decomposed the averaged preprocessed time-series within 
each ROI into the time-frequency domain by convolving them with the complex Morlet wavelet function51 and 
obtained power spectral density (PSD) maps by calculating the square of the magnitude of the continuous wavelet 
transform coefficient across time. For the Morlet wavelet, the hyperparmeters were used as follows: angular fre-
quency ω0 = 6, smallest scale s0 = 1, spacing between scales ds = 1, and number of scales NbSc = 128. We generated 
101 frequency bins with a frequency resolution of roughly 0.001 Hz in the low frequency range (0.009~0.08 Hz) 
and constructed a connectivity matrix for each frequency bin using the Pearson’s correlation coefficient among 
the PSD time-courses of the nodes (Fig. 1a).

Dividing the low frequency range into frequency bands. We randomly selected 100 subjects from 
the 350 HCP subjects and constructed a group connectivity matrix with 101 frequency bins. The differences 
among the group-averaged connectivity matrices of each frequency bin were calculated using Jensen Shannon 
divergence52,53. The hierarchical clustering of connectivity matrices along the frequency band was performed to 
cluster the 101 frequency bins. We repeated the above procedure 100 times. The average silhouette values for ward 
clustering were obtained as a function of k (Fig. 1b). Since the silhouette value was highest when using k = 2, the 
frequency bins were clustered into 2 frequency bands. The probability of the clustering index at each frequency 
bin was calculated to decide robust frequency range (Fig. 1c). Since the probability of the intermediate frequency 
band is uncertain, we defined both end frequency bands as the final 2 frequency bands: LF1, 0.03~0.08 Hz and 
LF2, 0.009~0.012 Hz. The 101 connectivity matrices for each subject were averaged to the 2 connectivity matrices 
according to the 2 frequency bands. If the ICN efficiency was considered in an uncertain low frequency (ULF) 
between LF1 and LF2, there was an ICN with a statistically significant difference in ULF from LF1 or LF2, but the 
tendency of ICN efficiency to frequency was maintained (See Supplementary Fig. S4). Thus, we analyzed contri-
bution of ICN to brain network integration only in LF1 and LF2.

https://doi.org/10.1038/s41598-019-40699-z
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Sparsity of the connectivity matrix. We constructed the connectivity matrices with 7 different sparsity 
levels (1%, 3%, 5%, 7%, 9%, 10% and 15%) because the sparsity level of connectivity matrix affects graph theo-
retic measures54. We decided upon a 5% sparsity level for further analysis because the sparsity levels surviving 
the minimum correlation value of 0.3 or greater were from 1% to 5% and the sparsity levels satisfying criteria for 
small-world properties [i.e. knet > log(n)55] were from 5% to 15% (See Supplementary Fig. S5).

ICN efficiency (EICN). We defined EICN to evaluate the contribution of ICN to brain network integration more 
directly. EICN was defined as
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shortest path length between nodes i and j. EICN can detect the change of the shortest path length of the brain net-
work when ICN was excluded and indicates the contribution of an individual ICN to brain network integration. 
Note that EICN cannot distinguish which region of the ICN affects the change of the contribution.

Betweeneess centrality (BC) hub. We investigated the number of BC hubs as the indicator of EICN 
together. The BC measurement of nodes is the rate at which each node passes through the shortest path between 
other nodes56. BC was defined as

∑
ρ

ρ
=

− − ∈
≠ ≠ ≠

BC i
k k

i
( ) 1

( 1)( 2)

( )

(3)
h j K

h j h i j i

hj

hj,
, ,

where, K is the set of all nodes in the whole brain network, k is the number of K and ρhj is the number of the short-
est paths between h and j, and ρ i( )hj  is the number of the shortest paths between h and j that pass through i. BC 
can detect the extent to which particular regions of an ICN involve the shortest path lengths within a brain net-
work. BC hub was determined as the node that was one standard deviation above the network average BC12.

Efficiency between each ICN and the other ICNs (EICN-ICN). We computed the EICN-ICN to investigate 
different integration with other ICNs of each sub-ICN along the frequency band. The EICN-ICN is the shortest path 
length between ICN and other ICNs. EICN-ICN was defined as

∑ ∑=
∗−

∈ ∈

−E
k k

d1

(4)
ICN ICN

ICN ICN i K j K
ij
1

a b ICNa ICNb

where, KICN is the set of nodes of ICN, kICN is the number of KICN and dij is the shortest path length between nodes 
i in ICNa and j in ICNb. EICN-ICN can detect how many shortest paths each ICN has with other ICNs.

Statistical evaluation. A paired sample t-test between the EICN of 2 frequency bands was performed to 
investigate whether the contributions of an ICN to brain network integration along the frequency bands were dif-
ferent from each other. The paired sample t-test of EICN was corrected by the significance level of p-value <0.005 
with Bonferroni correction (Figs 2 and 5a). A paired sample t-test between the EICN of 2 frequency bands in 
sub-ICN was performed to investigate wheter the contributons of an ICN to brain network integration along the 
frequency bands were different from each other. The paired sample t-test of EICN in sub-ICN was corrected by 
the significance level of p-value <0.008 with Bonferroni correction (Figs 3 and 5b). Two sample t-test between 
the EICN-ICN of sub-ICN pair was performed to investigate the different integration with other ICNs along the 
frequency bands. The two sample t-test of EICN-ICN of sub-ICN was corrected by the significance level of p-value of 
0.0025 with Bonferroni correction (Fig. 4).
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