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An Inductively-Powered Wireless Neural
Recording and Stimulation System for
Freely-Behaving Animals

Byunghun Lee

Abstract—An inductively-powered wireless integrated neural
recording and stimulation (WINeRS-8) system-on-a-chip (SoC)
that is compatible with the EnerCage-HC2 for wireless/battery-
less operation has been presented for neuroscience experiments
on freely behaving animals. WINeRS-8 includes a 32-ch record-
ing analog front end, a 4-ch current-controlled stimulator, and a
434 MHz ON-OFF keying data link to an external software- defined
radio wideband receiver (Rx). The headstage also has a bluetooth
low energy link for controlling the SoC. WINeRS-8/EnerCage-HC2
systems form a bidirectional wireless and battery-less neural inter-
face within a standard homecage, which can support longitudinal
experiments in an enriched environment. Both systems were ver-
ified in vivo on rat animal model, and the recorded signals were
compared with hardwired and battery-powered recording results.
Realtime stimulation and recording verified the system’s poten-
tial for bidirectional neural interfacing within the homecage, while
continuously delivering 35 mW to the hybrid WINeRS-8 headstage
over an unlimited period.

Index Terms—Artifact rejection, behavioral neuroscience, bidi-
rectional neural interface, enriched environment, neural recording
and stimulation, wireless power transmission.
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1. INTRODUCTION

IRELESS neural interfacing technology can improve
W the patients’ quality of life in clinical usage by eliminat-
ing the need for hardwires breaking the skin barrier for chronic
monitoring and treatment [1]-[5]. In preclinical research appli-
cations, wireless neural interfaces allowed for untethered animal
subjects but typically relied on batteries, which imposed limi-
tations in terms of large payload and need for battery replace-
ment, which potentially affect the animal behavior [6]-[12]. In
addition, uninterrupted experiment duration is a limitation that
prevents conducting long term electrophysiology experiments
over the span of several days, weeks, or months, particularly on
smaller animal subjects, such as rodents.

In an attempt to overcome the limitations imposed by the bat-
tery charging and hardwired connection, several wireless power
transmission systems have been developed to either directly
power the wireless neural interface or recharge the batteries
through the inductive link [13]-[18]. However, these systems
can only power or recharge the wireless neural interfaces within
the limited range and area, with a small amount of power, which
may not be suitable for uninterrupted animal experiments on the
freely behaving animals.

As development of wirelessly-powered and -communicated
systems that provide continuous power for the longitudi-
nal experiments on small freely behaving animals progresses
[19]-[26], several inductively-powered wireless neural inter-
faces are demonstrated for neural recording or stimulation ap-
plication [27]-[32]. However, most of these devices only sup-
port either recording or stimulation function, both of which are
necessary for bidirectional neural interfacing in behaving ani-
mal subjects, due to either lack of enough power/area budget
or missing bidirectional communication between the stationary
unit and neural interface. These devices only record or stimu-
late locally [27], [26], [32] or need external back pack devices to
process neural data and control stimulation in different regions,
forming bulky additional devices, which are another burden for
freely behaving animals [28], [30], [31].

In our prior work, the prototype inductively-powered wire-
less neural recording system (WINeR-7) was presented in [27],
which is compatible with wirelessly-powered homecage sys-
tem (EnerCage-HC) [25] eliminating the need for batteries.
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Fig. 1. A simplified conceptual representation of the proposed inductively-
powered wireless neural recording and stimulation (WINeRS-8) system used in
a headstage inside the EnerCage-HC2 system for long-term electrophysiology
experiments on a freely-moving animal subject (rat).

Although 8-ch analog front-end (AFE) in WINeR-7 demon-
strated the local field potential (LFP) recording with dual-slope
charge sampling (DSCS) to generate pseudo-digital time divi-
sion multiplexing pulse width modulation (TDM- PWM), the
signal-to-noise ratio (SNR) of the complete system was vulner-
able to RF interference from power carrier harmonics due to
wideband pseudo-digital data communication that was needed
with a customized receiver. In addition, changing recording pa-
rameters or applying electrical stimulation during the experi-
ment were not feasible due to the absence of a bidirectional data
communication.

Here we present a new inductively-powered neural recording
and stimulation (WINeRS-8) system, which is fully compati-
ble with the EnerCage-HC2 system [26], as shown in Fig. 1.
The proposed design is equipped with: 1) 32-ch recording AFE
and 4-ch current-controlled stimulation (CCS), 2) bidirectional
data communication between 434 MHz on-off keying (OOK)
RF transmitter (Tx) and two software defined radio (SDR) re-
ceivers (Rx) for wideband uplink data from the headstage [33],
3) wireless power receiver, and 4) Bluetooth Low Energy (BLE)
for narrow-band downlink data to the headstage instead of the
near-field data communication used in the implantable version
of the WINeRS-8 for peripheral nerve recording [34]. An im-
planted device in the animal body typically shows higher cou-
pling between Tx and Rx coils than the headstage because of
its proximity to the bottom of the homecage. During the exper-
iment, a Microsoft Kinect camera performs automated animal
tracking and behavior recognition using both 2D color and 3D
depth images in real time [35]. An overview of the WINeRS-8
system is presented in the following section. WINeRS-8 system
architecture is described in Section III. The system software is
discussed in Section IV, followed by in vivo experiment results
in Section V, and conclusions.

II. ENERCAGE-COMPATIBLE WINERS-8 SYSTEM OVERVIEW

Fig. 2 shows a simplified schematic diagram of key building
blocks involved in the wireless power and data transfer between
the proposed WINeRS-8 headstage and EnerCage-HC2 system.
An RFID reader (TRF7960) on the EnerCage-HC2 drives L
to power the headstage through a 4-coil inductive link inside
the standard homecage [26]. Wireless power is delivered by a
carrier signal at 13.56 MHz, an operating frequency approved
by Federal Communications Commission (FCC) for industrial,

scientific, and medical (ISM) applications. A CC2540 micro-
controller unit (MCU) controls the RFID reader and DC-DC
converter via hardwired connection for closed-loop power con-
trol. The MCU also sends the setting parameters and stimulation
commands to the headstage through a BLE link. When BLE link
in the EnerCage-HC2 is not sending the command parameters to
the headstage, it is utilized for receiving the monitoring data in
the headstage, such as rectifier voltage information for closed-
loop power control in this prototype.

The WINeRS-8 headstage is composed of Rx coils, a Schottky
rectifier (BAS4002), an Rx MCU (CC2541), and the WINeRS-
8 ASIC. Since the WINeRS-8 on-chip LDOs (1 V and 2 V)
cannot provide high enough voltage for the MCU, an additional
2.5 V off-chip LDO (MCP1700) is used in the headstage. The
WINeRS-8 ASIC includes a 32-ch neural recording AFE, a 4-ch
CCS, and three LDOs for 1 V analog, 1 V digital, and 2 V sup-
ply voltages. The WINeRS-8 ASIC can be controlled by FWD
Data/FWD CK via BLE link to change the recording/RF param-
eters or perform the stimulation during the operation. Since the
BLE link does not have enough bandwidth to carry the recorded
raw data from 32-ch AFE, the 434 MHz OOK Tx is imple-
mented in the WINeRS-8 ASIC along with wideband SDR Rx
to deliver the recorded data to the PC station. Moreover, a new
multi-SDR Rx is utilized to extend the RF coverage over the
experimental arena, and demodulate/ unpack the received RF
data packet from the WINeRS-8 headstage [33]. A graphical
user interface (GUI) in the PC provides the control interface of
the headstage and data storage/display in real time during the
experiment.

III. WINERS-8 SYSTEM ARCHITECTURE

Fig. 3 shows a block diagram of the proposed WINeRS-
8 headstage including a WINeRS-8 ASIC that implements
32-ch adaptive averaging AFE, 4-ch CCS with stimulus arti-
fact rejection, digitization, RF Tx, and control blocks.

Every 2-channels of the AFE share a 50 kS/s 10-bit SAR
ADC for digitization depending on ‘CH_sel’ bit, resulting in
25 kS/s for each individual channel [36]. The digitized data
packet includes 13-bit preamble from a preamble generator. It
is sent to 434 MHz On-Off Keying (OOK) Tx for uplink data
transmission. The carrier frequency of Tx is generated by the in-
ternal phase-locked loop (PLL) based on the reference clock of
13.56 MHz. The downlink data from the BLE link is sent to the
control block by serial data (FWD Data) and synchronized clock
(FWD CK) signals for setting the recording/RF parameters or
performing stimulation, depending on two different preambles.
The 4-channel CCS is implemented for the positive (P) and neg-
ative (N) stimulations, each equipped with individual 4 MUXs.
The stimulation flag signal is synchronized by the stimulus ar-
tifact rejection signal to prevent the saturation of AFE channels
during the stimulation period.

A. DC-Coupled Adaptive Neural Recording AFE With Input
Offset Rejection

The 32-ch AFE in WINeRS-8 adopts the adaptive averaging
topology, in which a number of AFE channels can be combined
by a 32-to-n analog multiplexer (MUX) to reduce the input
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Fig. 2.

Schematic diagram of the key building blocks involved in the wireless power and data transmission between the proposed WINeRS-8 headstage, which

is a combination of an ASIC and COTS components, and the EnerCage-HC2 system.
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Fig. 3. Block diagram of the WINeRS-8 headstage, which is compatible with
the EnerCage-HC?2 system [26].

referred noise of the AFE [36]. The effective input referred
noise for m-channel combination, V,,; ;15,4 F £,m, Would be,

Unirms,AFE,1

Jm (1
where m is 32/n,n = 2, 4. .. 32, for the 32-ch neural recording
AFE and V,,; ;1 s,4rp,1 for the input referred noise of 1-ch
AFE.

The closed-loop DC-coupled low noise amplifier (LNA) and
the variable gain amplifier (VGA) in the AFE channel is shown
in Fig. 4(a). The LNA has a large open-loop gain of A, and the
LNA output, Vzy4, is low pass filtered in a feedback loop
with feedback gain of 5= (1+ jwR,Cy)/(1+ jwR,Cy +
JjwRyCy) and high cut-off frequency of fo = 1/(27R;Ch).
Then, the feedback signal, V7 pr, is subtracted from the input
signal, V7, after a capacitive attenuator to provide high pass
filtering (HPF) and amplification with low cut-off frequency
and mid-band gain of f5 = 1/(27R,Cy) and Ay pya4 = Ay =
1+ C1/Cy, respectively. The closed-loop LNA transfer func-
tion can be expressed as,

Vina 1

Vin B

Uniorms, AFE,m —

ijlRl
1+ ijQR1 ’

2

Ay pna =

The AC-coupled VGA is utilized to eliminate the residual
DC offset at the electrode-electrolyte interface. The HPF and
overall gain of the AFE can be controlled by the downlink
data telemetry through BLE link, which digitally adjusts Ry
and C;. Therefore, the overall transfer function of AFE can be
expressed as,

JwCy Ry . JwCs3 Ry 3)
1+ jwCyRy 14 jwCy Ry '

Both R, and Ry are implemented using pseudo-resistors to
obtain ~G (2 resistance, with R, being 3-bit adjustable for dig-
ital control of the HPF. Cy can be changed by 3-bit gain control
according to C5 /Cy. Specifications of the AFE are summarized
in Table I.

Av are = (1 +

B. Four-Channel Biphasic Current Controlled Stimulator With
Stimulus Artifact Rejection

A 4-ch biphasic CCS is included in the WINeRS-8 ASIC.
Compared to the voltage controlled stimulation (VCS), CCS
shows more reliability in terms of the charge balancing and accu-
rate stimulation control although it provides lower efficiency due
to the output voltage of stimulator necessary to drive predeter-
mined current through variable electrode and tissue impedances
[37].

Block diagram of the 4-ch biphasic CCS is shown in Fig. 4(b),
which stimulation parameters are summarized in Table I. The
WINeRS-8 stimulation control block receives the FWD Data
and FWD CK through the BLE link. When incoming 13-bit
preamble matches with the stimulation preamble, the stimula-
tion control block reads those parameters, and sends the recog-
nized 30-bit stimulation parameters to the timing controller and
CCS channel with the flag pulse. The timing controller, which
includes a series of clock dividers and delay cells, generates the
corresponding stimulation pulses, Stim.P and Stim.N, based on
the 6 parameters in Table I. Since all of digital controllers are
designed for Vppr = 1V supply to reduce power dissipation
mainly in the clock dividers, level shifters are included to drive
the CCS operation in higher supply voltage (Vppp ), which
is more suitable for stimulation. The passive charge balancing
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Fig. 4. Schematic diagram of (a) the DC-coupled neural recording AFE with
input offset rejection, and bode plot of the AFE blocks and its feedback network
and (b) 4-channel biphasic CCS for closed-loop recording and stimulation.
(c) Measurement waveforms of in-situ experiment for biphasic stimulation and
stimulus artifact rejection with Randles equivalent tissue model.

(CB) pulse removes the residual charge in the tissue if the posi-
tive and negative stimulation pulses are not perfectly balanced.
The passive charge balancing method is implemented with a
3-bit controller to limit the amount of current between two elec-
trodes during charge balancing. The stimulation current, I;,, ,
can be controlled by the 5-bit current- steering digital-analog
converter (DAC) from 60 pA to 1.86 mA. The 4-ch MUX at the
output of the individual CCS can provide the active site selection
based on 2-bit control signals.

The timing controller also generates the stimulus artifact re-
jection pulse during the entire stimulation period to prevent the
saturation of AFE channels due to the strong stimulating pulses.
The AR pulse, generated by the timing controller in Fig. 4(b),
forces the LNA output and VGA in the AFE channels to stay at
the reference voltage, Vp p 4 /2, through the buffer to enable the
recording function of the AFE channels right after the stimulat-
ing pulse trains from the CCS. Fig. 4(c) shows the measurement
waveforms of in-situ experiment for the stimulation and stim-
ulus artifact rejection. The Randles equivalent circuit model in

TABLE I
RECORDING & STIMULATION INTERFACE SPECIFICATIONS

Parameters | Measured Value
Recording Interface
Supply Voltage 1V
Supply Current 11 pA/channel
LNA Gain 44 dB
VGA Gain 7.6 dB — 32 dB (3-bits)

Low Cut-off Frequency 20 Hz — 400 Hz (3-bits)

High Cut-off Frequency 15 kHz
Input Referred Noise 3.0 uVims
NEF 2.95
PSRR 41dB
Zin @ 1 kHz 61 MQ
DC rejection DC-coupled (0.2 V~0.1 V)
ADC Sampling Rate 50 kS/s
ADC Resolution 10 bit

Power Consumption 11.7 uW/channel
Stimulation Interface
°101010101010011” (15-bit)
Positive/Negative (1-bit)
13 — 414 Hz (5-bit)
9.5 us — 304 ps (5-bit)
9.5 us — 304 ps (5-bit)
60 pA — 1.86 mA (5-bit)
Channel 1 to 4 (2-bit)
1 —16 (4-bit)
3 bit

Preamble
Polarity (Pol)
Stim. frequency (fyin)
Stim. width (7))
Stim. delay (7,)
Stim. current (Zyim)
Stim. channel
# of Stim. (N)
Charge balancing (CB)

[38] is used for the tissue model in this experimental setup.
When the stimulation parameters and flag signal are transmitted
to the WINeRS-8 stimulation control block, AR signal is gen-
erated by the timing controller in the CCS in order to prevent
saturation of the AFE from the large stimulus artifact and to en-
able the recording function after the stimulation. The recovery
time of the AFE was less than 0.2 ms in the in-sifu experiment.

C. Control Block for Bidirectional Neural Interface

One of the differences between WINeRS-8 system and our
prior work in [27] (WINeR-7) is the stimulation function to
enable wireless bidirectional neural interfacing, controlled by
the PC via bidirectional data transmission. The downlink data
telemetry does not need a high data rate to control the stimula-
tion compared to the uplink data telemetry used in transmission
of the continuous digitized neural data stream with the data rate
of 9 Mbps, as described in Section III. Therefore, the BLE link
is a suitable method to establish the low data rate communica-
tion channel between WINeRS-8 headstage and EnerCage-HC2
system.

A simplified block diagram of control block in the WINeRS-8
ASIC is shown in Fig. 5 with its conceptual waveforms of the
downlink data flow. The transmitted data from the PC is sent
to Rx MCU via the BLE link and MCU generates FWD CK
and FWD Data. FWD Data is shifted by FWD CK in the data
buffer, which consists of 47 D-type flip-flops (DFFs), to detect
the “Recording & RF” preamble or “Stimulation” preamble
in two different preamble detectors. When the RF preamble
matches, C'Kgy;y, is triggered instead of C Kpp¢ to activate
the stimulation with the given stimulation parameters as shown
in Table I.
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Fig. 6. (a) Block diagram of PLL and OOK PA in WINeRS-8 ASIC for
wideband RF data transmission. (b) Measured transient waveforms of the PLL
and 9 Mbps data stream packet with 434 MHz OOK PA output voltage matched
with 50 €2 impedance of the antenna.

D. Wideband OOK RF Transmitter

The OOK RF Tx in the WINeRS-8 ASIC is composed of
a phase-locked loop (PLL) and OOK power amplifier (PA), as
shown in Fig. 6(a). A three-stage current-starved ring oscilla-
tor is adapted to reduce the supply and temperature sensitivity
[39]. The ring oscillator structure also has advantages in terms
of size and wide tuning range compared to the LC oscillator.
The implemented ring oscillator operates up to 1.6 GHz. The
generated clock from the ring oscillator is divided by 5-stage
DFFs and compared to Ref.CK, provided by an external oscil-
lator, f,s. = 13.56 MHz. The charge pump charges/ discharges
the integration capacitor, C\;,, to control the bias current of
the ring oscillator based on ‘Up’/’Down’ pulses from the phase
detector, followed by the RC filter for loop stabilization. When
the loop is stabilized, the frequency of ring oscillator, fpy,
becomes 32 X f,5. = 433.9 MHz. The power consumption in
the PLL block is 108 W with 1 V supply voltage.

The output power of the OOK PA is adjustable with 5-bit
resolution, PA powery_y4, or 32 levels. The maximum output
power of the PA is 0.2 dBm (~1 mW) with the data rate of
9 Mbps. The measured transient waveforms of the PLL and
9 Mbps packet data stream with 434 MHz OOK PA output
voltage matched with 50 €2 impedance of the antenna are shown
in Fig. 6(b).

IV. SOFTWARE SUBSYSTEM OF WINERS-8 AND
ENERCAGE-HC2 SYSTEM

Since two different RF data communication methods are im-
plemented in WINeRS-8 and EnerCage-HC2 system, 1) the
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Fig. 7. Flowchart of the bidirectional data communication link between the

WINeRS-8 headstage MCU and EnerCage-HC2 MCU via a BLE link as part
of the diagram shown in Fig. 2.

bidirectional BLE link for setting the parameters/monitoring
data and 2) the uplink wideband RF data through 434 MHz
OOK Tx and SDR Rx, the software subsystem of BLE link and
RF receivers is required to control the wireless link and properly
process the data in real time. Fig. 7 depicts the data commu-
nication algorithm between the headstage and EnerCage-HC2
system via the BLE link, implemented in C/C+ in PC and two
aforementioned CC2540 and CC2541 MCUs in EnerCage-HC2
and the headstage, respectively. The PC station sends the com-
mand to the EnerCage-HC2 MCU through USB connection, and
the MCU delivers the command data to the headstage MCU via
the BLE link. The headstage MCU receives the command and
determines whether the received command is for recording/RF
parameter setting, stimulation parameters, or monitoring the
headstage, which is Vi g sampling in the prototype. In the for-
mer case, the headstage MCU generates the proper preamble and
data stream is converted into FWD Data and FWD CK, as shown
in Fig. 5. In the latter case, the headstage MCU repeatedly sam-
ples the Vi g and sends it back to the EnerCage-HC2 MCU for
the closed-loop power control until the headstage MCU receives
another command.

The SDRs provide a flexible RF front end as opposed to a pre-
defined hardwired implementation, by providing flexibility in
defining the carrier frequency, bandwidth, gain, and modulation
method [40]. This is why the wideband WINeRS-8 Rx was
implemented using a pair of commercially available off-the-
shelf (COTS) SDRs, called BladeRF x40 from Nuand (San
Francisco, CA) [33]. As a receiver, BladeRF offers 300 MHz
—3.8 GHz radio spectrum with full duplex, 12 bit ADC/DAC
with 40 MS/s sampling rate, and 40 k/115 k logic elements in
its field-programmable gate array (FPGA) [41].

The software subsystem was developed in the GNU radio
environment, which is an open-source SDR development tool,
widely used in research, education, and proof-of-concept pro-
totype development because it offers many useful signal pro-
cessing modules [42]. The GNU radio applications are often
written in Python programming language. In the WINeRS-8
Rx software subsystem, RF signal processing was performed
by the GNU radio and custom routines in C++ for unpacking
the recovered data packets and displaying the acquired data in
real-time, as shown in Fig. 8. C4+ was chosen over Python
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Fig. 8.  Software subsystem of the wideband WINeRS-8 Rx that is based on

a pair of identical software-defined radios (SDR), in charge of the receiving
the 434 MHz uplink signal and processing it for data recovery, followed by
visualization on the GUI and storage in the PC hard disk (HDD).

(a)

Fig. 9. (a) Prototypes of the battery- and inductively-powered WINeRS-8
headstages. (b) WINeRS-8 headstage key components and the die photo.

for its faster runtime and more efficient utilization of the PC re-
sources. The GNU radio sets the parameters of center frequency,
RF LNA/VGA gain, bandwidth, and sampling rate of the ADC
in the BladeRF.

The incoming 12-bit digitized I/Q signals, oversampled by
4 times, are converted to magnitude, and 1st moving average
filter with M = 3 is applied to reduce noise as the number
of points in the filter, M, increases at the cost of the edges
becoming less sharp. The 2nd moving average filter of M =
2 k is utilized to generate the adaptive threshold for needed for
OOK demodulation, which is also an indicator of the average
power of the received RF signal. The demodulated OOK data
is demultiplexed and sent to GUI software for real-time display
of the 32-channel recorded data. In the prototype, the center
frequency of SDR is set to 434 MHz with 14 MHz bandwidth,
while the ADC in SDR samples the RF signal at 36 MHz.
Two SDR receivers were utilized simultaneously in the study
to extend the wireless coverage of the experimental arena, and
eliminate blind spots caused by the antenna directivity.

V. ACUTE In Vivo EXPERIMENTAL RESULTS

To demonstrate the functionality of the proposed WINeRS-8
system with the EnerCage-HC2 in in vivo experiments, both
battery- and inductively-powered WINeRS-8 headstages were
designed and constructed, which are shown in Fig. 9(a). Fig. 9(b)
shows the main headstage components consisting of two PCBs,
WINeRS-8 ASIC, power harvesting unit, and a 3D-printed box.

TABLE II
SPECIFICATIONS OF THE ENERCAGE-HC?2 COILS ON THE HOMECAGE (POWER
Tx) AND WINERS-8 COILS ON THE HEADSTAGE (POWER RX)

Ly Las
Parameter L Loy L L3 Ly
Inductance (nH) 5.46 231 1.64 0.67 1.50
Q-Factor 116 109 93 143 142
Outer diameter (cm) 13 - - - -
Inner diameter (cm) 12.8 - - - -
Length (cm) - 42 23 - -
Width (cm) - 25 22 1.9 1.9
Diameter (mm) 1.45 - - 0.4 0.4
Number of turns 3 1 1 4 6
Type of coil AWG AWG AWG AWG AWG
15 14 14 26 26
Frequency 13.56 MHz
Nominal distance 7 cm
PTE 20.5%

% NeRS-8 +
EnerCage-

Fig. 10. 'WINeRS-8 proof-of-concept in the EnerCage-HC system. L; and
its driver (DCDC converter + RFID + PA) are located at the bottom of the
homecage, and four resonators cover the homecage to power the headstage.

The ASIC was fabricated in 130-nm standard CMOS process,
occupying 2.4 x 5 mm?. The overall power consumption of
WINeRS-8 ASIC is 18.9 mW, which adds to that of the MCU
with built-in BLE, dissipating 16.1 mW at 2.5 V supply voltage.
In the inductively-powered headstage, the battery is replaced
with a 0.21 F super capacitor to supply the headstage when the
received power is interrupted, for instance when there is more
than 80° tilting of the headstage or more than 18 cm elevation
from the bottom of the homecage. 2.4 GHz PCB antenna was
implemented for the BLE link, while a monopole antenna was
used for 434 MHz wideband RF Tx. The inductively-powered
headstage prototype measures 19 x 19 x 30 mm?® and weighs
5.7 g, including its packaging. A 16-ch Omnetics connector is
extended from the bottom of the headstage, and mechanically
reinforced with a small magnet, to connect the headstage to
implanted electrodes. To maximize PTE inside the EnerCage-
HC2, sizes of L3 and L4 were optimized as they were wrapped
around the headstage box, as shown in Fig. 9(a). All WPT coil
dimensions are summarized in Table II.

Fig. 10 shows the WINeRS-8 headstage in the EnerCage-
HC2 system. A 46 x 24 x 20 cm? standard rat homecage from
Alternative Design (Siloam Springs, AR) was used to construct
the EnerCage-HC2, as described in [26]. Power Tx coil, L;, and
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Fig. 11. Experimental design of (a) the configuration of the headstage with
alternating stimulating and recording electrodes used in the in-vivo experiment
and (b) an illustration of the anatomical location of these electrodes within the
rat hippocampus.

its driver (DC-DC converter + RFID + PA) were located at the
bottom of homecage and Lo; — Loy, made of 15-AWG copper
wire encompassed it. The driver was covered with copper foils
to reduce the high frequency magnetic interference generated
from the EnerCage-HC2 system. The power transfer efficiency
(PTE) from the EnerCage-HC?2 to the headstage was ~20% at
7 cm nominal elevation from the bottom of the homecage.

For the in vivo experiment, which was conducted with prior
approval from the Institutional Animal Care and Use Commit-
tee (IACUC) at Emory University, a Sprague Dawley rat was
anesthetized with isoflurane and placed in a stereotactic frame.
After confirming the sedation, an incision was made exposing
the skull. The head was then adjusted so that cranial suture
points, lambda and bregma, were level within 100 um. Five
2.0 mm stainless steel screws (Plastics One) were affixed to
the skull to serve as structural support, as well as reference
and ground contacts. An oval craniotomy was then performed
with two poles at 2.6 mm ML/2.7 AP and 3.6 mm ML/4.3 mm
AP. A 16-channel microelectrode array (MEA) from Tucker
Davis Technologies (Alachua, FL) with two rows of eight elec-
trodes, offset by 1 mm, was driven ventral from the pia while
continuously recording using a TDT-RZ2 system, as shown in
Fig. 11(a). The electrodes were driven at 50 pm increments us-
ing single unit spiking to ascertain the location of the electrodes
within the layers of the hippocampus. This was continued until
single units were detected on both the longer and shorter elec-
trodes — approximately 3.5 mm and 2.5 mm ventral from the
pia, respectively. These electrodes are customized based on the
hippocampus anatomy for simultaneous recording from both
CA1 (short) and CA3 (long) regions. The reference and ground
wires were wrapped around the cranial screws and the surgical
opening sealed with dental acrylic.

| Hardwired
| Record

Rx Ant#1

Fig. 12. In vivo experimental setup for (a) hardwired recording and
(b) WINeRS-8 headstage prototype inside the EnerCage-HC2 system. In this ex-
periment, hippocampal multi-electrode array recording was conducted in CAl
and CA3.

A month following the surgery, the implemented elec-
trodes of the awake and behaving animals were connected
to a hardwired commercial headstage (Fig. 12(a)), as well as
battery- and inductively-powered WINeRS-8 headstages within
the EnerCage-HC2 system for comparison at different times.
Fig. 12(b) shows in vivo experimental setup for the WINeRS-8
headstage prototype inside the EnerCage-HC2 system with a
freely behaving rat. The EnerCage-HC2 continuously delivers
35 mW to the headstage without any interruption while the max-
imum transmitted power from Tx coil, 2.5 W, is still less than
allowable specific absorption rate (SAR) limit, 10.7 W, based on
[26] in the worst case of scenario [43]. The electrophysiology
signal was bandpass filtered (BPF) between 20 Hz and 300 Hz
to obtain the LFP and fair comparison between three different
recording methods.

The recorded neural waveforms are compared after apply-
ing the same BPF from 20 Hz to 300 Hz. The hardwired,
battery-powered WINeRS-8, and wirelessly-powered WINeRS-
8 recordings in the EnerCage-HC2 system from the same
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Fig. 13.  LFP recording from (a) the hard-wired system, (b) battery-powered

WINeRS-8 system, and (c¢) inductively-powered WINeRS-8 system with a band-
width from 20 Hz to 300 Hz.

8 electrodes are shown in Fig. 13(a)-13(c), respectively. One
of the characteristics of these hippocampal multi-electrode ar-
ray recordings is that the signals from different channels are
highly correlated. The spectrograms of the part of recorded sig-
nal for ~4 min from randomly selected CA1 (electrode #15) and
CA3 (electrodes #2) for hardwired recording, battery-powered
recording, inductively-powered are shown in Fig. 14(a)-14(c),
respectively. The spectrograms from 20 Hz to 200 Hz show sim-
ilar frequency and power density spectrums in CAl and CA3
regions in these three cases. Fig. 15 shows the RMS amplitudes
of LFP for n = 10 samples from CA1 (electrodes 9, 11, 13, and
15) and CA3 (electrode 2, 4, 6, and 8) recorded by hardwired,
battery- powered, and inductively-powered devices. It demon-
strates that WINeRS-8 headstage, inductively-powered by the
EnerCage-HC2 system can replace the conventional hardwired
or battery-powered recording systems. Fig. 16(a) and (b) show
the normalized power of averaged time-varying LFP for CAl
and CA3, respectively, right after the stimulation at t = 0 s. The
normalized power spectral density (PSD) within 20 ~ 40 Hz in
CALl and CA3 regions are integrated for comparison between
the stimulated and not-stimulated conditions [44]. Higher LFP
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Fig. 14.  Spectrograms of the recorded signal between 20 Hz and 200 Hz
for ~4 min recording from selected CA1 and CA3 electrodes, electrode #15
and #2 in Fig. 13 for (a) hard-wired recording, (b) battery-powered WINeRS-8
recording, and (c) inductively-powered WINeRS-8 recording in EnerCage-HC2
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Fig. 15.  RMS values of the LPF recorded from CA1 and CA3 regions in 10

samples of in vivo experiment conducted by hardwired, battery-powered, and
inductively-powered recording.

powers from the stimulations are observed in both CA1 and CA3
regions. Fig. 17 shows the instantaneous phase synchronization
of the evoked LFPs in 20—100 Hz from 39 trials of 60 pA stim-
ulation, which verifies the electrical stimulation functionality of
WINeRS-8 headstage within the EnerCage- HC2 system.

VI. DISCUSSION

An inductively-powered neural recording and stimulation
(WINeRS-8) system, fully compatible with the EnerCage-HC2
system, has been presented for conducting long-term experiment
on small freely behaving animals. Table III compares this system
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TABLE III
BENCHMARKING OF THE WIRELESSLY-POWERED NEURAL INTERFACES
Parameter This work 2017 [26] 2016 [29] 2016 [27] 2017 [45] 2015 [32] | 2016 [28] 2016 [30] 2018 [46]
Power Frequency 13.56 MHz | 13.56 MHz 1.5 MHz 13.56 MHz 346.6 MHz 2.3 GHz 2 MHz 13.56 MHz 1.85 MHz
Coupling 4 coil 4 coil 2 coil 3/4 coil 2-coil Antenna 2-coil 2-coil Ultrasound
Distance (cm) <18 <20 <15 <18 <18" <20 NA > 1 ~0.5
Recording 32-ch spike No 64-ch EEG 8-ch spike 1-ch ECG No 16-ch EMG | 16-ch LFP No
Stimulation 4-ch CCS 1-ch CCS 64-ch CCS No No 1-ch Opt | 160-ch CCS No 1-ch CCS
Uplink data OOK/BLE BLE UWB/FSK FSK 2.4 GHz RF Tx No LSK/WiFi LSK/BLE LSK
Downlink data BLE BLE ASK No No No DPSK/WiFi No OOK
Dimensions (mm’) | 19x19x30 | 20x22x11 20%20 25%35x8 14x25x14 38%60x7 5x5%x5"" 17x20™ | 3.1x1.9x0.89
Power Cons. (mW) 35 43 6.9 51.4 6.4—13 0.1 NA 0.25 0.15
PTE 20.5% 26.6% 40% 27.8% 5.7% NA NA 73% 3.4%
Weight (g) 5.7 7 NA NA 4.29 0.016 0.7 NA 0.01
Backpack device No No No No No No Yes Yes Yes
Size of Experiment | 1 46,00 | 24x46x20 26 x 45 30x28x18 61x61x30 30%30 NA NA NA
arena (cm’)
[n Vivo, fre.ely Yes Yes NA" Yes Yes Yes Yes No No
behaving animal

*Experimental setup not described s*Estimated ##xExcluding external backpack device on the animal body
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Fig. 16. Normalized power of averaged time-varying LFP within 20~40 Hz
for (a) CAl and (b) CA3 regions after stimulation (at O s), compared to LFP
powers without stimulation in inductively-powered WINeRS-8.

Stim (10 ms)
| .
Pi

2Pil3

Pi/3

Time (s)

Fig. 17. Instantaneous phase synchronization of recorded LFP signal in
20-100 Hz from electrode #2 evoked by 39 trials of 60 pA electrical stim-
ulation in inductively-powered WINeRS-8.

with previous works related to wirelessly-powered neural inter-
faces for preclinical studies. Compared to our own prior work,
WINeR-7 [27], WINeRS-8 is a bidirectional interface equipped

with electrical stimulation function to be used in closed-loop
neuromodulation. A new adaptive averaging method allows
users to tradeoff between input referred noise and number of
channels, supporting its usage in peripheral nerve interfacing
[34], [36]. Moreover, higher input impedance, use of SAR ADC,
and robust bidirectional wireless data link are among other fea-
tures in WINeRS-8 that increase its accuracy while reducing
power consumption compared to its predecessor.

In [28] and [30], the wireless backpacks need to be pow-
ered by fairly large batteries. Although this type of neural in-
terface imposes less limitations compared to hardwired setups,
duration of the experiment would always be at odds with the
bulk of battery, and a limiting factor in design of behavioral
experiments. There is an alternative approach in making the
device carried by the animal very small, at the cost of for-
going proper control or data communication with the neural
interface [32]. While this type of devices are good for proof-of-
concept demonstrations, they cannot ensure the level of accu-
racy and reproducibility needed in scientific experiments, and
do not inform the user about the status of the device. Previous
works in [26], [27], and [45] demonstrated in vivo experiments
with wirelessly-powered neural interface on freely behaving
animal subjects. However, they could only support a handful
of recording or stimulation channels, which does not address
todays’ demand in neuroscience community for high-density
bidirectional neural interfaces in complex behavioral experi-
ments. Although both recording and stimulation functions with
high number of channels are available in [29], the experimental
verification on freely behaving animals is missing. Moreover,
the AFE in WINeRS-8 has larger bandwidth and lower input
referred noise than the ECoG/EEG recording AFE in [29] to
be able to support both central and peripheral nerve interfacing
applications.

Recently, small (mm-sized) wireless implantable devices are
developed that are powered by ultrasound [46], [47]. Although
the ultrasonic power/data telemetry have advantages in terms
of size, weight, and lower interference, particularly for targets
that are deeper in the tissue, they inherently suffer from the
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fact that ultrasound waves are significantly attenuated through
air or bones. They are also very sensitive to misalignments and
motion artifacts to the extent that to the best of our knowledge
no experiment on awake freely behaving animals has yet been
conducted.

To minimize the RF interference from the EnerCage-HC2
system, rules of thumb for noise reduction were carefully fol-
lowed both in RF driver under the homecage and headstage
designs. Nonetheless, in Fig. 14 ECoG spectrograms it can be
seen that the upper half of Fig. 14(a) (hardwired) is slightly
darker than Fig. 14(b) (battery-powered), which is in turn some-
what darker than that of Fig. 14(c) (inductively-powered). This
would suggest that the noise is slightly higher in the upper fre-
quency bands of the recorded signals in inductively-powered
setup but still well below the desired ECoG signals. In the past
we have conducted detailed analysis of various sources of noise
in WINeR SoCs [10].

The size and weight of the current headstage prototype, shown
in Fig. 9, are higher than desired, particularly for smaller species,
such as mice, voles, and songbirds. This is because of the
relatively high average power consumption of the headstage
(35 mW), which in turn stems from the use of COTS compo-
nents, such as a general-purpose MCU. It is conceivable and has
even been demonstrated that all of these components/functions
can be customized and integrated on the same SoC, cutting the
power consumption by an order of magnitude or more [31],
[49]. This will allow us to reduce the size and weight of the next
generation of the WINeRS headstage down to below 2 cc and 2
g, respectively, significantly expanding its usage.

The WINeRS-8 combined with the EnerCage-HC2 offer a
complete solution for conducting longitudinal behavioral ex-
periments involving bidirectional interfacing with the central
(CNS) and peripheral (PNS) nervous systems of small freely
behaving animals. However, there is still considerable room for
further improvements, such as adding signal processing on-chip
for pre-processing, data compression, better artifact rejection,
and real-time closed-loop neuromodulation [48], [49]. More-
over, now we are at the stage that we can run in vivo studies,
not just to demonstrate the system functionality, but to execute
actual closed-loop neural interfacing paradigms for evaluating
neuroscience research hypotheses and new preclinical neuro-
modulation strategies.

The WINeRS-8 + EnerCage-HC2 designs have focused on
smaller animals, like rodents, because larger animal subjects,
such as non-human primates (NHP), porcine, etc. can carry
battery-powered wearable or implantable devices fairly easily
without biasing their behavior [50], [51]. Nonetheless, the En-
erCage concept is still applicable to larger animal housing to
extend duration of such experiments by recharging batteries
without interruption [52], [53].

VII. CONCLUSION

We have presented an inductively-powered neural record-
ing and stimulation (WINeRS-8) system that is fully compat-
ible with the existing EnerCage-HC2 smart wireless experi-
mental arena for conducting longitudinal electrophysiology and

behavioral neuroscience experiments on small freely behaving
animals, such as rodents. The WINeRS-8 headstage supports
32-ch neural spike recording and 4-ch biphasic stimulation ca-
pabilities for bidirectional neural interfacing. It has wideband
RF data transmission for uplink data and BLE for narrow band
downlink data, all powered by the EnerCage-HC2 at 13.56 MHz.
The complete system functionality was verified in vivo on a
freely behaving rat and compared with conventional hardwired
and battery-powered systems.
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