RESEARCH Open Access

Application of the product net technique and Kadec–Klee property to study nonlinear ergodic theorems and weak convergence theorems in uniformly convex multi-Banach spaces

H.M. Kenari¹, Reza Saadati^{2*} and Choonkil Park³

Abstract

Let Y be a uniformly convex multi-Banach space which has not a Frechet differentiable norm. We use the technique of product net to obtain the nonlinear ergodic theorems in Y. Finally, let the dual of uniformly convex multi-Banach space have the Kadec–Klee property, we instate the weak convergence theorem in the case of reversible semi-group.

MSC: Primary 39A10; 39B72; secondary 47H10; 46B03

Keywords: Reversible semi-groups; Kadec–Klee property; Asymptotically nonexpansive mapping; Almost orbit; Uniformly convex multi-Banach space

1 Preliminaries

Dales and Polyakov in [1] introduced a multi–normed space by using the concept of operator sequence space, operator spaces, and Banach lattices; for more details and application, we refer to [1-3].

In this paper assume that $(Y, \|\cdot\|)$ is a complex normed space, and let $\ell \in \mathbb{N}$. We denote by Y^{ℓ} the vector space $Y \oplus \cdots \oplus Y$ consisting of ℓ -tuples (y_1, \ldots, y_{ℓ}) , where $y_1, \ldots, y_{\ell} \in Y$. The linear operations on Y^{ℓ} are defined coordinate-wise. The zero element of either Y or Y^{ℓ} is denoted by 0. We denote by \mathbb{N}_{ℓ} the set $\{1, 2, \ldots, \ell\}$ and by Σ_{ℓ} the group of permutations on ℓ symbols.

Definition 1.1 Suppose that *Y* is a vector space, and take $\ell \in \mathbb{N}$. For $\sigma \in \Sigma_{\ell}$, define

$$B_{\sigma}(y) = (y_{\sigma(1)}, \dots, y_{\sigma(\ell)}), \quad y = (y_1, \dots, y_{\ell}) \in Y^{\ell}.$$

For $\beta = (\beta_i) \in \mathbb{C}^{\ell}$, define

$$K_{\beta}(y)=(\beta_j y_j), \quad y=(y_1,\ldots,y_{\ell})\in Y^{\ell}.$$

^{*}Correspondence: rsaadati@eml.cc
2Department of Mathematics, Iran
University of Science and
Technology, Tehran, Iran
Full list of author information is
available at the end of the article

Definition 1.2 Assume that $(Y, \| \cdot \|)$ is a complex (respectively, real) normed space, and take $m \in \mathbb{N}$. A multi-norm of level m on $\{Y^{\ell} : \ell \in \mathbb{N}_m\}$ is a sequence $(\| \cdot \|_{\ell} : \ell \in \mathbb{N}_m)$ such that $\| \cdot \|$ is a norm on Y^{ℓ} for each $\ell \in \mathbb{N}_m$, such that $\|y\|_1 = \|y\|$ for each $y \in Y$ (so that $\| \cdot \|_1$ is the initial norm), and such that the following Axioms (a1)–(a4) are satisfied for each $\ell \in \mathbb{N}_m$ with $k \geq 2$:

(a1) for each $\sigma \in \Sigma_{\ell}$ and $\gamma \in Y^{\ell}$, we have

$$||B_{\sigma}(y)||_{\ell}=||y||_{\ell};$$

(a2) for each $\beta_1, \ldots, \beta_\ell \in \mathbb{C}$ (respectively, each $\beta_1, \ldots, \beta_\ell \in \mathbb{R}$) and $y \in Y^\ell$, we have

$$||K_{\beta}(y)||_{\ell} \leq (\max_{j \in \mathbb{N}_{\ell}} |\beta_j|) ||y||_{\ell};$$

(a3) for each $y_1, ..., y_{\ell-1}$, we have

$$||(y_1,\ldots,y_{\ell-1},0)||_{\ell} = ||(y_1,\ldots,y_{\ell-1})||_{\ell-1};$$

(a4) for each $y_1, ..., y_{\ell-1} \in Y$,

$$\|(y_1,\ldots,y_{\ell-2},y_{\ell-1},y_{\ell-1})\|_{\ell} = \|(y_1,\ldots,y_{\ell-1})\|_{\ell-1}.$$

In this case, $((Y^{\ell}, \|\cdot\|_{\ell}) : \ell \in \mathbb{N}_m)$ is a multi-normed space of level m. A multi-norm on $\{Y^{\ell} : \ell \in \mathbb{N}\}$ is a sequence

$$(\|\cdot\|_{\ell}) = (\|\cdot\|_{\ell} : \ell \in \mathbb{N})$$

such that $(\|\cdot\|_{\ell} : \ell \in \mathbb{N}_m)$ is a multi-norm of level m for each $m \in \mathbb{N}$. In this case, $((Y^m, \|\cdot\|_m) : m \in \mathbb{N})$ is a multi-normed space.

Lemma 1.3 ([3]) Let $((Y^{\ell}, \|\cdot\|_{\ell}) : \ell \in \mathbb{N})$ be a multi-normed space, and take $\ell \in \mathbb{N}_m$. Then

- (a) $\|(y,\ldots,y)\|_{\ell} = \|y\| \ (y \in Y);$
- (b) $\max_{j \in \mathbb{N}_{\ell}} \|y_j\| \le \|(y_1, \dots, y_{\ell})\|_{\ell} \le \sum_{j=1}^{\ell} \|y_j\| \le \ell \max_{j \in \mathbb{N}_{\ell}} \|y_j\| \ (y_1, \dots, y_{\ell} \in Y).$

It follows from (b) that if $(Y, \|\cdot\|)$ is a Banach space, then $(Y^{\ell}, \|\cdot\|_{\ell})$ is a Banach space for each $\ell \in \mathbb{N}$; in this case $((Y^{\ell}, \|\cdot\|_{\ell}) : \ell \in \mathbb{N})$ is a multi-Banach space.

Example 1.4 ([1]) The sequence $(\|\cdot\|_{\ell}:\ell\in\mathbb{N})$ on $\{Y^{\ell}:\ell\in\mathbb{N}\}$ defined by

$$\|(y_1,\ldots,y_\ell)\|_{\ell} \coloneqq \max_{j\in\mathbb{N}_\ell} \|y_j\| \quad (y_1,\ldots,y_\ell\in Y)$$

is a multi-norm called the minimum multi-norm.

Example 1.5 ([1]) Assume that $\{(\|\cdot\|_{\ell}^{\beta}: \ell \in \mathbb{N}): \beta \in B\}$ is the (non-empty) family of all multi-norms on $\{Y^{\ell}: \ell \in \mathbb{N}\}$. For $\ell \in \mathbb{N}$, set

$$\|(y_1,\ldots,y_\ell)\|_k := \sup_{\beta \in B} \|(y_1,\ldots,y_\ell)\|_\ell^\beta \quad (y_1,\ldots,y_\ell \in Y).$$

Then $(\|\cdot\|_{\ell}: \ell \in \mathbb{N})$ is a multi-norm on $\{Y^{\ell}: \ell \in \mathbb{N}\}$, called the maximum multi-norm.

By the property (b) of multi-norms and the triangle inequality for the norm $\|\cdot\|_k$, we can get the following properties. Suppose that $((Y^\ell, \|\cdot\|_\ell) : \ell \in \mathbb{N})$ is a multi-normed space. Let $\ell \in \mathbb{N}$ and $(y_1, \ldots, y_\ell) \in Y^k$. For every $i \in \{1, \ldots, \ell\}$, let $(y_m^i)_{m=1,2,\ldots}$ be a sequence in Y such that $\lim_{m\to\infty} y_m^i = y_i$. Then for each $(z_1, \ldots, z_\ell) \in Y^\ell$ we have

$$\lim_{m \to \infty} (y_m^1 - z_1, \dots, y_m^{\ell} - z_{\ell}) = (y_1 - z_1, \dots, y_{\ell} - z_{\ell}).$$

A sequence (y_m) in Y is a *multi-null* sequence if, for every $\varepsilon > 0$, there exists $m_0 \in \mathbb{N}$ such that

$$\sup_{\ell\in\mathbb{N}}\|(y_n,\ldots,y_{m+\ell-1})\|_{\ell}<\varepsilon\quad (m\geq m_0).$$

Let $y \in Y$. We say that the sequence (y_m) is *multi-convergent* to $y \in Y$ and write

$$\lim_{m\to\infty} y_m = y$$

when $(y_m - y)$ is a multi-null sequence.

Assume that G is a semi-topological semi-group. In this article, C is a nonempty bounded closed convex subset of a uniformly convex Banach space X. Let X^* be the dual of X, then the value of $u^* \in X^*$ at $u \in X$ will be denoted by $\langle u, u^* \rangle$, and we associate the set

$$J(u) = \{u^* \in X : \langle u, u^* \rangle = ||u||^2 = ||u^*||^2\}.$$

It is clear from the Hahn–Banach theorem that J(u) is not empty for all $u \in X$. Then the multi-valued operator $J: X \to X^*$ is called the normalized duality mapping of X, also $\Im_k = \{J_k(t): t \in G\}$ is a reversible semigroup of asymptotically nonexpansive functions acting on C. Let $F(\Im_k)$ denote the set of all fixed points of \Im_k , i.e., $F(\Im_k) = \{u \in C: J_k(t)u = u, \forall t \in G\}$. For each $\epsilon > 0$ and $p \in G$, we put

$$F_{\epsilon}(J_k(p)) = \{u \in C : \|(J_1(p)u - u, \dots, J_k(p)u - u)\|_k \le \epsilon\}.$$

Note that if, for any $\epsilon > 0$, there exists $p_{\epsilon} \in G$ such that for all $p > p_{\epsilon}$, $u \in F_{\epsilon}(J_k(p))$, then $\lim_{p \in G} J_k(p)u = u$; moreover, $u \in F(\mathfrak{I}_k)$ by the continuity of elements $\{J_k(p), p \in G\}$ (for more details, we refer to [4-9]).

We denote the set of all almost orbits of \mathfrak{I}_k and the set $\{J_k(p)u_k(\cdot): p \in G, u_k \in AO(\mathfrak{I}_k)\}$ by $AO(\mathfrak{I}_k)$ and $LAO(\mathfrak{I}_k)$, respectively. Denote by $\omega_\omega(u_k)$ the set of all weak limit points of subnets of net $\{u_k(t)\}_{t\in G}$.

Lemma 1.6 ([10]) Assume that X is a Banach space and J is the normalized duality function. Therefore

$$||u + v||^2 \le ||u||^2 + 2\langle v, j(u + v)\rangle$$

for all $j(u + v) \in J(u + v)$ and $u, v \in X$.

Lemma 1.7 ([11]) Assume that $\{(X^k, \|\cdot\|_k)\}_{k\in\mathbb{N}}$ is a uniformly convex multi-Banach space and $\emptyset \neq C \subset X^k$ is a bounded closed convex set. Then there exists a strictly increasing continuous convex function $\xi: [0, +\infty) \to [0, +\infty)$ with $\xi(0) = 0$ such that

$$\xi\left(\left\|\left(J_{1}\left(\sum_{i=1}^{n}a_{i}u_{i}\right)-\sum_{i=1}^{n}a_{i}J_{1}u_{i},\ldots,J_{k}\left(\sum_{i=1}^{n}a_{i}u_{i}\right)-\sum_{i=1}^{n}a_{i}J_{k}u_{i}\right)\right\|_{k}\right)$$

$$\leq \max_{1\leq i,j\leq n}\left\{\left\|u_{i}-u_{j}\right\|-\left\|\left(J_{1}u_{i}-J_{1}u_{j},\ldots,J_{k}u_{i}-J_{k}u_{j}\right)\right\|_{k}\right\}$$

for all integers $a_1, ..., a_n \ge 0$, $n \ge 1$ with $\sum_{i=1}^n a_i = 1, u_1, ..., u_n \in C$, and every nonexpansive function J_k of C to C.

Lemma 1.7 implies that, for all $a_1, \ldots, a_n \ge 0$ with $\sum_{i=1}^n a_i = 1, u_1, \ldots, u_n \in C$,

$$\left\| \left(J_{1}(p) \left(\sum_{i=1}^{n} a_{i} u_{i} \right) - \sum_{i=1}^{n} a_{i} J_{1}(p) u_{i}, \dots, J_{k}(p) \left(\sum_{i=1}^{n} a_{i} u_{i} \right) - \sum_{i=1}^{n} a_{i} J_{k}(p) u_{i} \right) \right\|_{k}$$

$$\leq \left(1 + \alpha(p) \right) \xi^{-1} \left(\max_{1 \leq i, j \leq n} \left\{ \| u_{i} - u_{j} \| - \frac{1}{1 + \alpha(p)} \| \left(J_{1}(p) u_{i} - J_{1}(p) u_{j}, \dots, J_{k}(p) u_{i} - J_{k}(p) u_{j} \right) \right\|_{k} \right\} \right)$$

$$\leq \left(1 + \alpha(p) \right) \xi^{-1} \left(\max_{1 \leq i, j \leq n} \left\{ \| u_{i} - u_{j} \| - \| \left(J_{1}(p) u_{i} - J_{1}(p) u_{j}, \dots, J_{k}(p) u_{i} - J_{k}(p) u_{j} \right) \right\|_{k} \right\} + d \cdot \alpha(p) \right)$$

in which $d = 4 \sup\{||u|| : u \in C\} + 1$.

For every $\epsilon \in (0, 1]$, define

$$a(\epsilon) = \min \left\{ \frac{\epsilon^2}{(d+2)^2}, \frac{\epsilon^3}{(3d+2)^2} \xi \left(\frac{\epsilon}{4}\right) \right\}$$

and

$$G_{\epsilon} = \{h \in G : \alpha(p) \leq \epsilon\},\$$

in which $\xi(\cdot)$ is as Lemma 1.7. Then $G_{\epsilon} \neq \emptyset$ for $\epsilon > 0$, and if $p \in G_{\epsilon}$, then for all $t \geq p, t \in G_{\epsilon}$. Note that $G_{a(\epsilon)} \subset G_{\epsilon}$ for all $\epsilon \in (0,1]$.

2 Main result

For studies on ergodic theory and its history, we refer to [4–30]. The results of this paper are an extension and generalization of [31].

Lemma 2.1 For all $p \in G_{a(\epsilon)}$,

$$\overline{\operatorname{co}} F_{a(\epsilon)}(J_k(p)) \subset F_{\epsilon}(J_K(p)).$$

Proof Since $F_{\epsilon}(J_K(p))$ is closed, we only need to prove that, for all $p \in G_{a(\epsilon)}$,

$$\operatorname{co} F_{a(\epsilon)}(J_k(p)) \subset F_{\epsilon}(J_K(p)).$$

Let
$$v = \sum_{i=1}^{n} a_i v_i$$
, $v_i \in F_{a(\epsilon)}(J_k(p))$, $a_i \ge 0$, $i = 1, ..., n$, and $\sum_{i=1}^{n} a_i = 1$. Then

$$\begin{split} & \left\| \left(J_{1}(p)v - v, \dots, J_{k}(p)v - v \right) \right\|_{k} \\ & = \left\| \left(J_{1}(p) \sum_{i=1}^{n} a_{i}v_{i} - \sum_{i=1}^{n} a_{i}v_{i}, \dots, J_{k}(p) \sum_{i=1}^{n} a_{i}v_{i} - \sum_{i=1}^{n} a_{i}v_{i} \right) \right\|_{k} \\ & \leq \left\| \left(J_{1}(p) \sum_{i=1}^{n} a_{i}v_{i} - \sum_{i=1}^{n} a_{i}J_{1}(p)v_{i}, \dots, J_{k}(p) \sum_{i=1}^{n} a_{i}v_{i} - \sum_{i=1}^{n} a_{i}J_{k}(p)v_{i} \right) \right\|_{k} \\ & \leq 2\xi^{-1} \left(\max_{1 \leq i,j \leq n} \left\{ \left\| v_{i} - v_{j} \right\| - \left\| \left(J_{1}(p)v_{i} - J_{1}(p)v_{i}, \dots, J_{k}(p)v_{i} - J_{k}(p)v_{i} \right) \right\|_{k} \right\} + d \cdot \alpha(p) \right) \\ & + a(\epsilon) \\ & \leq 2\xi^{-1} \left(\max_{1 \leq i,j \leq n} \left\{ \left\| \left(v_{i} - J_{1}(p)v_{i}, \dots, v_{i} - J_{k}(p)v_{i} \right) \right\|_{k} + \left\| \left(v_{j} - J_{1}(p)v_{j}, \dots, v_{j} - J_{k}(p)v_{j} \right) \right\|_{k} \right\} \\ & + d \cdot \alpha(p) \right) + a(\epsilon) \\ & \leq 2\xi^{-1} \left(2a(\epsilon) + d \cdot a(\epsilon) \right) + a(\epsilon) \\ & \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Lemma 2.2 For every $p \in G_{\frac{\epsilon}{4}}$,

$$F_{\frac{\epsilon}{4}}(J_k(p)) + B(0, \frac{\epsilon}{4}) \subset F_{\epsilon}(J_k(p)).$$

Proof Let $p \in G_{\frac{\epsilon}{4}}$ and $u = v + w \in F_{\frac{\epsilon}{4}}(J_k(p)) + B(0, \frac{\epsilon}{4})$, where $v \in F_{\frac{\epsilon}{4}}(J_k(p))$ and $w \in B(0, \frac{\epsilon}{4})$, then

$$\begin{aligned} & \| \left(J_{1}(p)u - u, \dots, J_{k}(p)u - u \right) \|_{k} \\ &= \| \left(J_{1}(p)(v + w) - (v + w), \dots, J_{k}(p)(v + w) - (v + w) \right) \|_{k} \\ &\leq \| \left(J_{1}(p)(v + w) - J_{1}(p)v, \dots, J_{k}(p)(v + w) - J_{k}(p)v \right) \|_{k} \\ &+ \| \left(J_{1}(p)v - v, \dots, J_{k}(p)v - v \right) \|_{k} + \|w\| \\ &\leq 2\|w\| + \| \left(J_{1}(p)v - v, \dots, J_{k}(p)v - v \right) \|_{k} + \|w\| \\ &\leq 3\frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon. \end{aligned}$$

Lemma 2.3 Assume that $\epsilon \in (0,1]$ and $p \in G_{a(a(\frac{\epsilon}{4}))}$, so we can find $n_0 \in N$ such that, for each $n \ge n_0$ and $u \in C$,

$$\frac{1}{n}\sum_{i=1}^{n}J_{k}(p^{i})u\in F_{\epsilon}(J_{k}(p)).$$

Proof Let $\epsilon \in (0,1]$ and $m = \frac{2d+1}{a(\frac{\epsilon}{4})}$. There is $n_0 \in N$ satisfying

$$n_0 \ge \max \left\{ \frac{12md}{\epsilon}, 32m^2d(d+1)\left(\xi\left(\frac{a(\frac{\epsilon}{4})}{2}\right)\epsilon\right)^{-1} \right\}.$$

For any $n \ge n_0$ and $p \in G_{a(a(\frac{\epsilon}{4}))}$, we can take a number

$$K = m^2 d \left(1 + 2n\alpha(p) \right) \left(\xi \left(\frac{a(\frac{\epsilon}{4})}{2} \right) \right)^{-1} \quad \left(k < \frac{n}{2} \right).$$

For every $i \in N$ and $u \in C$, we put

$$a_{i}(u) = \xi \left(\frac{8}{9} \left\| \left(\frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+j+1}) u - J_{1}(p) \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+j}) u, \dots, \right. \right.$$

$$\left. \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+j+1}) u - J_{k}(p) \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+j}) u \right) \right\|_{k} \right).$$

By $\alpha(p) \leq \frac{1}{8}$ and

$$\begin{aligned} a_{i}(u) &\leq \max_{1 \leq j,t \leq m} \left\{ \left\| J_{1}(p^{i+j})u - J_{k}(p^{i+t})u, \dots, J_{k}(p^{i+j})u - J_{k}(p^{i+t})u \right\|_{k} \right. \\ &- \left\| J_{1}(p^{i+j+1})u - J_{k}(p^{i+t+1})u, \dots, J_{k}(p^{i+j+1})u - J_{k}(p^{i+t+1})u \right\|_{k} + d \cdot \alpha(p) \right\} \\ &\leq \sum_{1 \leq j < t \leq m} \left(\left\| \left(J_{1}(p^{i+j})u - J_{1}(p^{i+t})u, \dots, J_{k}(p^{i+j})u - J_{k}(p^{i+t})u \right) \right\|_{k} \\ &- \left\| \left(J_{1}(p^{i+j+1})u - J_{1}(p^{i+t+1})u, \dots, J_{k}(p^{i+j+1})u - J_{k}(p^{i+t+1})u \right) \right\|_{k} + d\alpha(p) \right\}, \end{aligned}$$

we get

$$\sum_{i=1}^{n} a_{i}(u)$$

$$\leq \sum_{i=1}^{n} \sum_{1 \leq j < t \leq m} (\|J_{1}(p^{i+j})u - J_{k}(p^{i+t})u, \dots, J_{k}(p^{i+j})u - J_{k}(p^{i+t})u\|_{k}$$

$$- \|J_{1}(p^{i+j+1})u - J_{k}(p^{i+t+1})u, \dots, J_{k}(p^{i+j+1})u - J_{k}(p^{i+t+1})u\|_{k} + d \cdot \alpha(p))$$

$$= \sum_{1 \leq j < t \leq m} \sum_{i=1}^{n} (\|J_{1}(p^{i+j})u - J_{k}(p^{i+t})u, \dots, J_{k}(p^{i+j})u - J_{k}(p^{i+t})u\|_{k}$$

$$- \|J_{1}(p^{i+j+1})u - J_{k}(p^{i+t+1})u, \dots, J_{k}(p^{i+j+1})u - J_{k}(p^{i+t+1})u\|_{k} + d \cdot \alpha(p))$$

$$\leq \sum_{1 \leq j < t \leq m} (d + nd \cdot \alpha(p)) \leq m^{2}d(1 + n\alpha(p)).$$

Suppose that there is an element say t in $\{a_i(u): i=1,2,\ldots,2n\}$ such that if $a_i(u)\geq \xi(\frac{a(\frac{\epsilon}{4})}{2})$, then

$$t\xi\left(\frac{a(\frac{\epsilon}{4})}{2}\right) \leq m^2d(1+2n\alpha(p)).$$

Hence

$$t \leq m^2 d \left(1 + 2n\alpha(p)\right) \left(\xi\left(\frac{a(\frac{\epsilon}{4})}{2}\right)\right)^{-1} = K.$$

So, there are at most N = [K] terms in $\{a_i(u) : i = 1, 2, ..., 2n\}$ with $a_i(u) \ge \xi(\frac{a(\frac{\epsilon}{4})}{2})$. Then, for every i in $\{1, 2, ..., n\}$, there exists at least one term $a_{i+j_0}(u)$ $(0 \le j_0 \le N)$ in $\{a_{i+j}(u) : j = 0, 1, ..., N\}$ hold $a_{i+j_0} < \xi(\frac{a(\frac{\epsilon}{4})}{2})$.

Put

$$\ell_i = \min\left\{j: a_{i+j}(u) < \xi\left(\frac{a(\frac{\epsilon}{4})}{2}\right), 0 \le j \le N\right\},\,$$

 $i=1,2,\ldots,n$. Now, there are at most N elements in $\{i=1,2,\ldots,n\}$ such that $\ell_i\neq 0$. Since

$$\begin{split} & \left\| \left(J_{1}(p) \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j}) u, \dots, \right. \\ & \left. J_{k}(p) \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j}) u \right) \right\|_{k} \\ & \leq \left\| \left(J_{1}(p) \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j+1}) u, \dots, \right. \\ & \left. J_{k}(p) \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{k}(h^{i+\ell_{i}+j+1}) u \right) \right\|_{k} \\ & + \left\| \left(\frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j+1}) u, \dots, \right. \\ & \left. \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j}) u - \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j+1}) u \right) \right\|_{k} \\ & \leq \frac{9}{8} \xi^{-1} \left(a_{i+\ell_{i}}(u) \right) + \frac{d}{2m} \\ & \leq \frac{9}{16} a \left(\frac{\epsilon}{4} \right) + \frac{1}{4} a \left(\frac{\epsilon}{4} \right) < a \left(\frac{\epsilon}{4} \right), \end{split}$$

we can conclude that, for all $p \in G_{a(a(\frac{\epsilon}{a}))}$,

$$\frac{1}{m}\sum_{j=1}^{m}J_{k}(p^{i+\ell_{i}+j})u\in F_{a(\frac{\epsilon}{4})}(J_{k}(p)).$$

By Lemma 2.1, we get, for all $p \in G_{a(a(\frac{\epsilon}{\Lambda}))} \subset G_{a(\frac{\epsilon}{\Lambda})}$,

$$\frac{1}{n}\sum_{i=1}^n \frac{1}{m}\sum_{i=1}^m J_k(p^{i+\ell_i+j})u \in \operatorname{co} F_{a(\frac{\epsilon}{4})}(J_k(p)) \subset F_{\frac{\epsilon}{4}}(J_k(p)).$$

Using Lemma 2.2 and

$$\begin{split} & \left\| \left(\frac{1}{n} \sum_{i=1}^{n} J_{1}(p^{i}) u - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} J_{1}(p^{i+\ell_{i}+j}) u, \dots, \right. \\ & \left. \frac{1}{n} \sum_{i=1}^{n} J_{k}(p^{i}) u - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} J_{k}(p^{i+\ell_{i}+j}) u \right) \right\|_{k} \\ & \leq \frac{1}{mn} \sum_{j=1}^{m} \left\| \left(\sum_{i=1}^{n} J_{1}(p^{i}) u - \sum_{i=1}^{n} J_{1}(p^{i+\ell_{i}+j}) u, \dots, \sum_{i=1}^{n} J_{k}(p^{i}) u - sum_{i=1}^{n} J_{k}(p^{i+\ell_{i}+j}) u \right) \right\|_{k} \\ & \leq \frac{1}{mn} \sum_{j=1}^{m} \left\| \left(\sum_{i=1}^{n} J_{1}(p^{i}) u - \sum_{i=1}^{n} J_{1}(p^{i+j}) u, \dots, \sum_{i=1}^{n} J_{k}(p^{i}) u - \sum_{i=1}^{n} J_{k}(p^{i+j}) u \right) \right\|_{k} \\ & + \frac{1}{mn} \sum_{j=1}^{m} \left\| \left(\sum_{i=1}^{n} L_{1}(p^{i+j}) u - \sum_{i=1}^{n} J_{1}(p^{i+\ell_{i}+j}) u, \dots, \right. \\ & \sum_{i=1}^{n} J_{k}(p^{i+j}) u - \sum_{i=1}^{n} J_{k}(p^{i+\ell_{i}+j}) u \right) \right\|_{k} \\ & \leq \frac{md}{n} + \frac{Nd}{n} \\ & \leq \frac{\epsilon}{12} + \frac{m^{2}d^{2}(\xi(\frac{a(\frac{\epsilon}{2})}{2}))^{-1}}{n} + 2m^{2}d^{2}\alpha(p) \left(\xi\left(\frac{a(\frac{\epsilon}{4})}{2}\right) \right)^{-1} \\ & < \frac{\epsilon}{12} + \frac{\epsilon}{32} + \frac{\epsilon}{8} < \frac{\epsilon}{4}, \end{split}$$

we obtain

$$\frac{1}{n}\sum_{i=1}^{n}J_{k}(p^{i})u\in F_{\frac{\epsilon}{4}}(J_{k}(p))+B\left(0,\frac{\epsilon}{4}\right)\subset F_{\epsilon}(J_{k}(p)).$$

Lemma 2.4 *Suppose that* $u_k(\cdot)$ *is an almost orbit of* \Im_k . *So*

$$\lim_{t \in G} \left\| \left(\gamma u_1(t) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(t) + (1 - \gamma)\varphi - g \right) \right\|_k$$

exist for every $\gamma \in (0,1)$ and $\varphi, g \in F(\Im_k)$.

Proof To complete the proof, it is enough to prove that

$$\inf_{s \in G} \sup_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma)\varphi - g \right) \right\|_k$$

$$\leq \sup_{s \in G} \inf_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma)\varphi - g \right) \right\|_k.$$

We know, for every $\epsilon > 0$, there are t_0 and $s_0 \in G$ such that, for any $t \in G$, $\alpha(tt_0) < \frac{\epsilon}{1+d}$ and $\varphi(ts_0) < \epsilon$, where $\varphi(t) = \sup_{p \in G} \|(u_1(pt) - J_1(p)u_1(t), \dots, u_k(pt) - J_k(p)u_k(t))\|_k$. So, for every

 $a \in G$,

$$\begin{split} &\inf_{s \in G} \sup_{t \in G} \left\| \left(u_1(tss_0) - \varphi, \dots, u_k(tss_0) - \varphi \right) \right\|_k \\ &\leq \sup_{t \in G} \left\| \left(u_1(tt_0as_0) - \varphi, \dots, u_k(tt_0as_0) - \varphi \right) \right\|_k \\ &\leq \sup_{t \in G} \left\| \left(u_1(tt_0as_0) - J_1(tt_0)u_1(as_0), \dots, u_k(tt_0as_0) - J_k(tt_0)u_k(as_0) \right) \right\|_k \\ &+ \sup_{t \in G} \left\| J_1(tt_0)u_1(as_0) - \varphi, \dots, J_k(tt_0)u_k(as_0) - \varphi \right\|_k \\ &\leq \varphi(as_0) + \sup_{t \in G} \left(1 + \alpha(tt_0) \right) \cdot \left\| \left(u_1(as_0) - \varphi, \dots, u_k(as_0) - \varphi \right) \right\|_k \\ &\leq \left\| \left(u_1(as_0) - \varphi, \dots, u_k(as_0) - \varphi \right) \right\|_k + 2\epsilon. \end{split}$$

Hence

$$\inf_{s\in G}\sup_{t\in G}\left\|\left(u_1(tss_0)-\varphi,\ldots,u_k(tss_0)-\varphi\right)\right\|_k\leq \inf_{a\in G}\left\|\left(u_1(as_0)-\varphi,\ldots,u_k(as_0)-\varphi\right)\right\|_k+2\epsilon.$$

Thus, there exists $s_1 \in G$ such that

$$\sup_{t \in G} \| \left(u_1(ts_1s_0) - \varphi, \dots, u_k(ts_1s_0) - \varphi \right) \|_k < \inf_{a \in G} \| \left(u_1(as_0) - \varphi, \dots, u_k(as_0) - \varphi \right) \|_k + 3\epsilon.$$

Then, for every $a \in G$, we get

$$\begin{split} &\inf_{s \in G} \sup_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma) \varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma) \varphi - g \right) \right\|_k \\ &\leq \sup_{t \in G} \left\| \left(\gamma u_1(tt_0 a s_1 s_0) + (1 - \gamma) \varphi - g, \dots, \gamma u_k(tt_0 a s_1 s_0) + (1 - \gamma) \varphi - g \right) \right\|_k \\ &\leq \gamma \sup_{t \in G} \left\| \left(u_1(tt_0 a s_1 s_0) - J_1(tt_0) u_1(a s_1 s_0), \dots, u_k(tt_0 a s_1 s_0) - J_k(tt_0) u_k(a s_1 s_0) \right) \right\|_k \\ &+ \sup_{t \in G} \left\| \left(\gamma J_1(tt_0) u_1(a s_1 s_0) + (1 - \gamma) \varphi - g, \dots, \gamma J_k(tt_0) u_k(a s_1 s_0) + (1 - \gamma) \varphi - g \right) \right\|_k \\ &\leq \varphi(a s_1 s_0) + \sup_{t \in G} \left\| \left(\gamma J_1(tt_0) u_1(a s_1 s_0) + (1 - \gamma) \varphi - J_1(tt_0) \left(\gamma u_1(a s_1 s_0) + (1 - \gamma) \varphi \right) \right) \right\|_k \\ &+ \sup_{t \in G} \left\| \left(J_1(tt_0) \left(\gamma u_1(a s_1 s_0) + (1 - \gamma) \varphi \right) - g, \dots, \gamma J_k(tt_0) \left(\gamma u_k(a s_1 s_0) + (1 - \gamma) \varphi \right) \right) \right\|_k \\ &+ \sup_{t \in G} \left\| \left(J_1(tt_0) \left(\gamma u_1(a s_1 s_0) + (1 - \gamma) \varphi \right) - g \right) \right\|_k \\ &+ \exp_{t \in G} \left(1 + \alpha(tt_0) \right) \xi^{-1} \left(\left\| \left(u_1(a s_1 s_0) - \varphi, \dots, u_k(a s_1 s_0) - \varphi \right) \right\|_k + d \cdot \alpha(tt_0) \right) \\ &+ \sup_{t \in G} \left(1 + \alpha(tt_0) \right) \left\| \left(\gamma u_1(a s_1 s_0) + (1 - \gamma) \varphi - g, \dots, \gamma u_k(a s_1 s_0) + (1 - \gamma) \varphi - g \right) \right\|_k \\ &\leq \epsilon + (1 - \epsilon) \sup_{t \in G} \xi^{-1} \left(\left\| \left(u_1(a s_1 s_0) - \varphi, \dots, u_k(a s_1 s_0) - \varphi \right) \right\|_k \\ &- \left\| \left(u_1(t t_0 a s_1 s_0) - \varphi, \dots, u_k(t t_0 a s_1 s_0) - \varphi \right) \right\|_k + \varphi(a s_1 s_0) + \epsilon \right) \end{aligned}$$

$$+ (1 + \epsilon) \| (\gamma u_1(as_1s_0) + (1 - \gamma)\varphi - g, ..., \gamma u_k(as_1s_0) + (1 - \gamma)\varphi - g) \|_k$$

$$\leq \epsilon + (1 + \epsilon) \xi^{-1}(5\epsilon)$$

$$+ (1 + \epsilon) \| (\gamma u_1(as_1s_0) + (1 - \gamma)\varphi - g, ..., \gamma u_k(as_1s_0) + (1 - \gamma)\varphi - g) \|_k.$$

Then

$$\begin{split} &\inf_{s \in G} \sup_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma)\varphi - g \right) \right\|_k \\ &\leq \epsilon (1 + \epsilon) \xi^{-1}(5\epsilon) \\ &\quad + (1 + \epsilon) \inf_{a \in G} \left\| \left(\gamma u_1(as_1s_0) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(as_1s_0) + (1 - \gamma)\varphi - g \right) \right\|_k \\ &\leq \epsilon (1 + \epsilon) \xi^{-1}(5\epsilon) \\ &\quad + (1 + \epsilon) \sup_{b \in G} \inf_{a \in G} \left\| \left(\gamma u_1(ab) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ab) + (1 - \gamma)\varphi - g \right) \right\|_k. \end{split}$$

Hence,

$$\inf_{s \in G} \sup_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma)\varphi - g \right) \right\|_k$$

$$\leq \sup_{s \in G} \inf_{t \in G} \left\| \left(\gamma u_1(ts) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(ts) + (1 - \gamma)\varphi - g \right) \right\|_k$$

because $\epsilon > 0$ is arbitrary.

Theorem 2.5 Assume that $\{(X^k, \|\cdot\|_k)\}_{k\in\mathbb{N}}$ is a uniformly convex multi-Banach space, and suppose that $\emptyset \neq C \subset X$ is bounded and closed. Assume that $\Im_k = \{J_k(t) : t \in G\}$ for each $k \geq 1$ is a reversible semigroup of asymptotically nonexpansive functions on C. If D has a left invariant mean, then there exists a retraction P_k from $LAO(\Im_k)$ onto $F(\Im_k)$ in which:

(1) P_k is nonexpansive in the sense

$$\begin{aligned} & \| (P_1 u_1 - P_1 v_1, \dots, P_k u_k - P_k v_k) \|_k \\ & \leq \inf_{s \in G} \sup_{t \in G} \| \left(u_1(st) - v_1(st), \dots, u_k(st) - v_k(st) \right) \|_k, \quad \forall u_k, v_k \in \text{LAO}(\mathfrak{I}_k); \end{aligned}$$

- (2) $P_k J_k(p) u_k = J_k(p) P_k u_k = P_k u_k$ for all $u_k \in AO(\mathfrak{I}_k)$ and $p \in G$;
- (3) $P_k u_k \in \bigcap_{s \in G} \overline{\operatorname{conv}}\{u_k(t) : t \ge s\}$ for all $u_k \in \operatorname{LAO}(\mathfrak{I}_k)$.

Proof We know D has a left invariant mean, so there is a net $\{\gamma_{k,\alpha}:\alpha\in A\}$ of finite means on G in which $\lim_{\alpha\in A}\|(\gamma_{1,\alpha}-\ell_s^*\gamma_{1,\alpha},\ldots,\gamma_{k,\alpha}-\ell_s^*\gamma_{k,\alpha})\|_k=0$ for every $s\in G$, in which A is a directed system. Putting $I=A\times G=\{\beta=(\alpha,t):\alpha\in A,t\in G\}$. For $\beta_i=(\alpha_i,t_i)\in I,\ i=1,2,$ define $\beta_1\leq\beta_2$ iff $\alpha_1\leq\alpha_2,t_1\leq t_2$. Then, I is also a directed system. For each $\beta=(\alpha,t)\in I$, define $P_{k,1}\beta=\alpha$, $P_{k,2}\beta=t$, and $\gamma_\beta=\gamma_\alpha$. So, for every $s\in G$,

$$\lim_{\beta \in I} \left\| \left(\gamma_{1,\beta} - \ell^* \gamma_{1,\beta}, \dots, \gamma_{k,\beta} - \ell^* \gamma_{k,\beta} \right) \right\|_{k} = 0. \tag{2.1}$$

Assume that $\gamma = \{\{t_{\beta}\}_{\beta \in I}, t_{\beta} \geq P_{k,2}\beta, \forall \beta \in I\}$. Taking any $\{t_{\beta}, \beta \in I\} \in \gamma$, since $r_{t\beta}^* \gamma_{k,\beta}$ is bounded, without loss of generality, let $r_{t\beta}^* \gamma_{k,\beta}$ be $weak^*$ convergent. Then, for all $u_k \in A$

LAO(\Im_k), ω - $\lim_{\beta \in I} \gamma_{k,\beta}(t) \langle u_k(tt_\beta) \rangle$ exist. We define

$$P_k u_k = \omega - \lim_{\beta \in I} \gamma_{k,\beta}(t) \langle u_k(tt_\beta) \rangle.$$

On the other hand, for every $u_k \in \text{LAO}(\Im_k)$, $P_k u_k \in \bigcap_{s \in G} \overline{\text{conv}}\{u(t) : t \ge s\}$. Next, we shall show that $P_k u_k \in F(\Im_k)$. Then, for every $\epsilon \in (0,1]$, there is $t_0 \in G$ such that, for each $t \ge t_0$, $\varphi(t) < \frac{a(\epsilon)}{4}$. Also, we can suppose that $P_{k2}\beta \ge t_0$ for every $\beta \in I$, so $t_\beta \ge t_0$, $\{t_\beta\} \in \gamma$. From Lemma 2.3, for every $p \in G_{a(a(\frac{a(\epsilon)}{kC}))}$, there is $n \in N$ such that, for each $t \in G$ and $\beta \in I$,

$$\frac{1}{n}\sum_{i=1}^n J_k(p^i)u_k(tt_\beta) \in F_{\frac{a(\epsilon)}{4}}(J_k(p)).$$

Since for every $t \in G$

$$\left\| \left(\frac{1}{n} \sum_{i=1}^{n} J_1(p^i) u_1(tt_{\beta}) - \frac{1}{n} \sum_{i=1}^{n} u_1(p^i tt_{\beta}), \dots, \frac{1}{n} \sum_{i=1}^{n} J_k(p^i) u_k(tt_{\beta}) - \frac{1}{n} \sum_{i=1}^{n} u_k(p^i tt_{\beta}) \right) \right\|_{k}$$

$$\leq \varphi(tt_{\beta}) < \frac{a(\epsilon)}{4},$$

we have, for every $p \in G_{a(a(\frac{a(\epsilon)}{2}))}$,

$$\frac{1}{n}\sum_{i=1}^{n}u_{k}(p^{i}tt_{\beta})\in F_{\frac{a(\epsilon)}{4}}(J_{k}(p))+B\left(0,\frac{a(\epsilon)}{4}\right)\subset F_{a(\epsilon)}(J_{k}(p)).$$

Equation (2.1) implies that

$$\lim_{\beta \in I} \left\| \left(\gamma_{1,\beta}(t) \left\langle \frac{1}{n} \sum_{i=1}^{n} u_{1}(p^{i}tt_{\beta}) \right\rangle - \gamma_{1,\beta} \left\langle u_{1}(tt_{\beta}) \right\rangle, \dots, \right.$$

$$\left. \gamma_{k,\beta}(t) \left\langle \frac{1}{n} \sum_{i=1}^{n} u_{k}(p^{i}tt_{\beta}) \right\rangle - \gamma_{k,\beta} \left\langle u_{k}(tt_{\beta}) \right\rangle \right) \right\|_{k} = 0.$$

Combining it with the definition of $P_k u_k$, we get, for all $p \in G_{a(a(\frac{a(\epsilon)}{16}))}$,

$$P_k u_k = \omega - \lim_{\beta \in I} \gamma_{k,\beta}(t) \left\langle \frac{1}{n} \sum_{i=1}^n u_k (p^i t t_\beta) \right\rangle \in \overline{\operatorname{co}} F_{a(\epsilon)} (J_k(p)).$$

Lemma 2.1 also implies that for every $p \in G_{a(a(\frac{a(\epsilon)}{16}))}$, $P_k u_k \in F_{\epsilon}(J_k(p))$. Now, the continuity of $J_k(p)$ implies that $P_k u_k \in F(\mathfrak{I}_k)$. Obviously, for any $p \in G$,

$$P_{k}J_{k}(p)u_{k} = \omega - \lim_{\beta \in I} \gamma_{k,\beta}(t) \langle J_{k}(p)u_{k}(tt_{\beta}) \rangle$$

$$= \omega - \lim_{\beta \in I} \gamma_{k,\beta}(t) \langle u_{k}(htt_{\beta}) \rangle$$

$$= \omega - \lim_{\beta \in I} \gamma_{k,\beta}(t) \langle u_{k}(tt_{\beta}) \rangle \quad \text{(using (2.1))}$$

$$= P_{k}u_{k}$$

and for every $v_k \in LAO(\Im_k)$ and $s \in G$, we have

$$\begin{aligned} & \left\| \left(P_{1}u_{1} - P_{1}v_{1}, \dots, P_{1}u_{1} - P_{1}v_{1} \right) \right\|_{k} \\ & \leq \liminf_{\beta \in I} \left\| \left(\gamma_{1,\beta}(t) \langle u_{1}(tt_{\beta}) \rangle - \gamma_{1,\beta}(t) \langle v_{1}(tt_{\beta}) \rangle, \dots, \gamma_{k,\beta}(t) \langle u_{k}(tt_{\beta}) \rangle - \gamma_{k,\beta}(t) \langle v_{k}(tt_{\beta}) \rangle \right) \right\|_{k} \\ & = \liminf_{\beta \in I} \left\| \left(\gamma_{1,\beta}(t) \langle u_{1}(stt_{\beta}) \rangle - \gamma_{1,\beta}(t) \langle v_{1}(stt_{\beta}) \rangle, \dots, \gamma_{k,\beta}(t) \langle u_{k}(stt_{\beta}) \rangle - \gamma_{k,\beta}(t) \langle v_{k}(stt_{\beta}) \rangle \right) \right\|_{k} \quad \text{(by (2.1))} \\ & \leq \liminf_{\beta \in I} \left\| \left(\gamma_{1,\beta}(t), \dots, \gamma_{1,\beta}(t) \right) \right\|_{k} \cdot \sup_{t \in G} \left\| \left(u_{1}(stt_{\beta}) - v_{1}(stt_{\beta}), \dots, u_{k}(stt_{\beta}) - v_{k}(stt_{\beta}) \right) \right\|_{k} \\ & \leq \sup_{t \in G} \left\| \left(u_{1}(st) - v_{1}(st), \dots, u_{k}(st) - v_{k}(st) \right) \right\|_{k}. \end{aligned}$$

Thus,

$$\|(P_1u_1 - P_1v_1, \dots, P_ku_k - P_kv_k)\|_k \le \inf_{s \in G} \sup_{t \in G} \|(u_1(st) - v_1(st), \dots, u_k(st) - v_k(st))\|_k. \quad \Box$$

Theorem 2.6 (Ergodic theorem [17]) Assume that $\{(X^k, \|\cdot\|_k)\}_{k\in\mathbb{N}}$ is a uniformly convex multi-Banach space, and suppose that $\emptyset \neq C \subset X$ is bounded and closed. Assume that $\Im_k = \{J_k(t): t \in G\}$ is a reversible semigroup of asymptotically nonexpansive functions on C. If D has a left invariant mean and there is a unique retraction P_k from $LAO(\Im_K)$ onto $F(\Im_k)$, which satisfies properties (1)–(3) in Theorem 2.5, then for every strongly net $\{v_{k,\alpha}: \alpha \in A\}$ on D and $u_k \in AO(\Im_k)$,

$$\omega$$
- $\lim_{\alpha \in A} \int u_k(tp) dv_{k,\alpha}(t) = P_k \in F(\mathfrak{I}_k)$ uniformly in $p \in \gamma(G)$,

in which $\gamma(G) = \{s \in G : st = ts \text{ for all } t \in G\}.$

Theorem 2.7 Assume that $\{(X^k, \|\cdot\|_k)\}_{k\in\mathbb{N}}$ is a uniformly convex multi-Banach space, and suppose that $\emptyset \neq C \subset X$ is bounded and closed. Assume that $\Im_k = \{J_k(t) : t \in G\}$ of a reversible semigroup of asymptotically nonexpansive mappings on C, and let $u_k(\cdot)$ be an almost orbit of \Im_k . If

$$\omega - \lim_{t \in G} u_k(pt) - u_k(t) = 0$$

for every $p \in G$, then

$$\omega_{\omega}(u_k) \subset F(\mathfrak{I}_k).$$

Proof Let $\epsilon \in (0,1]$, then there is $t_0 \in G$ such that, for $t \geq t_0$, $\varphi(t) < \frac{a(\epsilon)}{4}$. Suppose that $p_k \in \omega_\omega(u_k)$, so we can find a subnet $\{u_k(t_\alpha)\}_{\alpha \in A}$ of $\{u_k(t)\}_{t \in G}$ with ω - $\lim_{\alpha \in A} u_k(t_\alpha) = p_k$ in which, for every $\alpha \in A$, $t_\alpha \geq t_0$, in which A is a directed system. Using Lemma 2.3, for every $p \in G_{a(a(\frac{a(\epsilon)}{16}))}$, we can find $n \in \mathbb{N}$ such that, for every $\alpha \in A$,

$$\frac{1}{n}\sum_{i=1}^n J_k(p^i)u_k(t_\alpha) \in F_{\frac{a(\epsilon)}{4}}(J_k(p)).$$

Since for each $\alpha \in A$

$$\left\| \left(\frac{1}{n} \sum_{i=1}^{n} J_1(p^i) u_1(t_\alpha) - \frac{1}{n} \sum_{i=1}^{n} u_1(p^i t_\alpha), \dots, \frac{1}{n} \sum_{i=1}^{n} J_k(p^i) u_k(t_\alpha) - \frac{1}{n} \sum_{i=1}^{n} u_k(p^i t_\alpha) \right) \right\|_{k}$$

$$\leq \varphi(t_\alpha) < \frac{a(\epsilon)}{4},$$

we get

$$\frac{1}{n}\sum_{i=1}^n u_k(p^it_\alpha) \in \frac{1}{n}\sum_{i=1}^n u_k(p^it_\alpha) + B\left(0, \frac{a(\epsilon)}{4}\right) \subset F_{a(\epsilon)}(J_k(p)).$$

Since $u_k(pt) - u_k(t) \to 0$ for every $p \in G$, we have $u_k(p^i t_\alpha) \to p_k$, i = 1, 2, ..., n. Then, for all $p \in G_{a(a(\frac{a(\epsilon)}{16}))}$,

$$p_k = \omega - \lim_{\alpha \in A} \frac{1}{n} \sum_{i=1}^n u_k(p^i t_\alpha) \in \overline{\operatorname{co}} F_{a(\epsilon)}(J_k(p)).$$

So, Lemma 2.1, implies that for every $p \in G_{a(a(\frac{a(\epsilon)}{2T}))}, p \in F_{\epsilon}(J(p))$, hence $p_k \in F(\Im_k)$.

In three last theorems *X* has not a Frechet differentiable norm.

Theorem 2.8 Assume that $\{(X^k, \|\cdot\|_k)\}_{k\in\mathbb{N}}$ is a uniformly convex multi-Banach space with the Kadec-Klee property for its dual, and $\emptyset \neq C \subset X$ is bounded and closed. Suppose that $\Im_k = \{J_k(t) : t \in G\}$ of a reversible semigroup of asymptotically nonexpansive function on C and $u_k(\cdot)$ is an almost orbit of \Im_k . Then the following statements are equivalent:

- (1) $\omega_{\omega}(u_k) \subset F(\Im_k)$;
- (2) ω $\lim_{t \in G} u_k(t) = p_k \in F(\mathfrak{I}_k)$;
- (3) ω $\lim_{t \in G} u_k(pt) u_k(t) = 0$ for every $p \in G$.

Proof (1) \Rightarrow (2). It is enough to prove that $\omega_{\omega}(u_k)$ is a singleton. The reflexivity of X implies that $X \neq \emptyset$. Suppose that φ_k and g_k are two elements in $\omega_{\omega}(u_k)$, then by (1) we get $\varphi, g \in F(\Im_k)$. For every $\gamma \in (0,1)$, using Lemma 2.4, we have $\lim_{t \in G} \|(\gamma u_1(t) + (1-\gamma)\varphi - g, ..., \gamma u_k(t) + (1-\gamma)\varphi - g)\|_k$ exists. Put

$$h(\gamma) = \lim_{t \in G} \left\| \left(\gamma u_1(t) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(t) + (1 - \gamma)\varphi - g \right) \right\|_{k^{\gamma}}$$

then for given $\epsilon > 0$, there is $t_1 \in G$ such that, for every $t > t_1$,

$$\| (\gamma u_1(t) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(t) + (1 - \gamma)\varphi - g) \|_k \le h(\gamma) + \epsilon.$$

So, for every $t \ge t_1$,

$$\langle \gamma u_k(t) + (1 - \gamma)\varphi - g, j(\varphi - g) \rangle \leq \|\varphi - g\|(h(\gamma) + \epsilon),$$

in which $j(\varphi - g) \in J(\varphi - g)$. Let us note $\varphi \in \overline{co}\{u_k(t) : t \ge t_1\}$, so

$$\langle \gamma \varphi + (1 - \gamma) \varphi - g, j(\varphi - g) \rangle \leq \|\varphi - g\| (h(\gamma) + \epsilon),$$

which means $\|\varphi - g\| \le h(\gamma) + \epsilon$. We know ϵ is arbitrary, then

$$\|\varphi - g\| \le h(\gamma)$$
.

 $g \in \omega_{\omega}(u_k)$ implies that there is a subnet $\{u_k(t-\alpha)\}_{\alpha\in A}$ in $\{u_k(t)\}_{t\in G}$ such that ω - $\lim_{\alpha\in A} u_k(t_\alpha) = g$, in which A is a directed system. Setting

$$I = A \times \mathbb{N} = \{ \beta = (\alpha, n) : \alpha \in A, n \in \mathbb{N} \},\$$

then for $\beta_i = (\alpha_i, n_i)$, $i \in I$, i = 1, 2, define $\beta_1 \leq \beta_2$ iff $\alpha_1 \leq \alpha_2$, $n_1 \leq n_2$. For arbitrary $\beta = (\alpha, n) \in I$, define $P_{k,1}\beta = \alpha$, $P_{k,2}\beta = n$, $t_\beta = t_\alpha$, $\epsilon_\beta = \frac{1}{P_{k,2}\beta}$. Then ω - $\lim_{\beta \in I} u_k(t_\beta) = g$ and $\lim_{\beta \in I} \epsilon_\beta = 0$. Using Lemma 1.6 implies that

$$\| (\gamma u_1(t_{\beta}) + (1 - \gamma)\varphi - g, \dots, \gamma u_k(t_{\beta}) + (1 - \gamma)\varphi - g) \|_k$$

$$\leq \|\varphi - g\|^2 + 2\gamma \langle u_k(t_{\beta}) - \varphi, j(\gamma u_k(t_{\beta}) + (1 - \gamma)\varphi - g) \rangle.$$

Using Lemma 2.4 and the inequality $\|\varphi - g\| \le h(\gamma)$ implies that

$$\liminf_{\beta \in I} \langle u_k(t_\beta - \varphi, j(\gamma u_k(t_\beta) + (1 - \gamma)\varphi - g)) \rangle \geq 0.$$

So, for each $\xi \in I$, there is $\beta_{\xi} \in I$ such that $\beta_{\xi} \geq \gamma$ and

$$\langle u_k(t_{\beta_{\xi}}) - \varphi, j(\epsilon_{\xi} u_k(t_{\beta_{\xi}}) + (1 - \epsilon_{\xi} \varphi - g)) \rangle \ge -\epsilon_{\xi}. \tag{2.2}$$

It is well known that $\{\beta_{\xi}\}$ is also a subnet of I, then ω - $\lim_{\xi \in I} u_k(t_{\beta_{\xi}}) = g$. Set

$$j_{\varepsilon} = j(\epsilon_{\varepsilon} u_k(t_{\beta_{\varepsilon}}) + (1 - \epsilon_{\varepsilon} \varphi - g)).$$

The reflexivity of X implies that X^* is also reflexive, and therefore the set of all weak limit points of $\{j_{\xi}, \xi \in I\}$ is nonempty. Then, without loss of generality, let ω - $\lim_{\xi \in I} j_{\xi} = j \in X^*$. Then $\|j\| \le \liminf_{\xi \in I} \|j_{\xi}\| = \|\varphi - g\|$. Since

$$\langle \varphi - g, j_{\xi} \rangle = \left\| \epsilon_{\xi} u_{k} (t_{\beta_{\xi}} + (1 - \epsilon_{\xi}) \varphi - g) \right\|^{2} - \epsilon_{\xi} \langle u_{k} (t_{\beta_{\xi}} - \varphi, j_{\xi}) \rangle.$$

Passing the limit for $\xi \in I$, we get $\langle \varphi - g, j \rangle = \|\varphi - g\|^2$, which implies $\|j\| \ge \|\varphi - g\|$. Then

$$\langle \varphi - g, j \rangle = \|\varphi - g\|^2 = \|j\|^2$$

i.e., $j \in J(\varphi - g)$. Hence, ω - $\lim_{\xi \in I} j_{\xi} = j$ and $\lim_{\xi \in I} |j_{\xi}| = |j|$. By the reflexivity of X^* and the Kadec–Klee property, we conclude that $\lim_{\xi \in I} j_{\xi} = j$. Take the limit for $\xi \in I$ in 2.2, we get $\langle g - \varphi, j \rangle \geq 0$, i.e., $\|\varphi - g\|^2 \leq 0$, which implies $\varphi = g$.

 $(2) \Rightarrow (3)$. Obviously.

$$(3) \Rightarrow (1)$$
. See Theorem 2.7.

Acknowledgements

Funding

No funding was received.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author detail

¹ Science and Research Branch, IAU, Tehran, Iran. ²Department of Mathematics, Iran University of Science and Technology, Tehran, Iran. ³Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 November 2018 Accepted: 11 February 2019 Published online: 21 February 2019

References

- 1. Dales, H.G., Polyakov, M.E.: Diss. Math. 488, 165 pp. (2012)
- 2. Dales, H.G., Moslehian, M.S.: Glasg. Math. J. 49, 321-332 (2007)
- 3. Moslehian, M.S., Nikodem, K., Popa, D.: J. Math. Anal. Appl. 355, 717-724 (2009)
- 4. Day, M.M.: Ill. J. Math. 1, 509-544 (1957)
- 5. Holmes, R.D., Narayanaswamy, P.P.: Can. Math. Bull. 13, 209-214 (1970)
- 6. Holmes, R.D., Lau, A.T.: Bull. Lond. Math. Soc. 3, 343–347 (1971)
- 7. Krik, W., Torrejon, R.: Nonlinear Anal. 3, 111-121 (1979)
- 8. Saeidi, S.: J. Fixed Point Theory Appl. 5, 93-103 (2009)
- 9. Saeidi, S.: Fixed Point Theory Appl. 2009, Article ID 363257 (2009)
- 10. Chang, S.S.: Nonlinear Anal. 30, 4197–4208 (1997)
- 11. Bruck, R.E.: Isr. J. Math. 32, 107-116 (1979)
- 12. Baillon, J.B.: C. R. Math. Acad. Sci. Paris 280, A1511–A1514 (1976)
- 13. Takahashi, W.: Proc. Am. Math. Soc. 17, 55-58 (1986)
- 14. Li, G., Kim, J.K.: Nonlinear Anal. 55, 1-14 (2003)
- 15. Li, G., Kim, J.K.: Acta Math. Sci. 18, 25-30 (1998)
- 16. Lau, A.T., Shioji, N., Takahashi, W.: J. Funct. Anal. 161, 62-75 (1999)
- 17. Kim, J.K., Li, G.: Dyn. Syst. Appl. **9**, 255–268 (2000)
- 18. Kaczor, W., Kuczumow, T., Michalska, M.: Nonlinear Anal. 67, 2122–2130 (2007)
- 19. Kim, K.S.: J. Math. Anal. Appl. 358, 261–272 (2009)
- 20. Li, G., Kim, J.K.: Houst. J. Math. 29, 23-36 (2003)
- 21. Li, G.: J. Math. Anal. Appl. **206**, 451–464 (1997)
- 22. Ok, H.: Nonlinear Anal. 7, 619-635 (1992)
- 23. Saeidi, S.: Nonlinear Anal. 71, 2558-2563 (2009)
- 24. Saeidi, S.: Nonlinear Anal. 69, 3417-3422 (2008)
- 25. Falset, J.G., Kaczor, W., Kuczumow, T., et al.: Nonlinear Anal. 43, 377–401 (2001)
- 26. Kaczor, W.: J. Math. Anal. Appl. 272, 565-574 (2002)
- 27. Miyadera, I., Kobayasi, K.: Nonlinear Anal. **6**, 349–356 (1982)
- 28. Aksoy, A.G., Khamsi, M.A.: Springer, New York (1990)
- 29. Kenari, H.M., Saadati, R., Cho, Y.J.: J. Inequal. Appl. **2014**, Article ID 259 (2014)
- 30. Kenari, H.M., Saadati, R., Azhini, M. Cho, Y.J., J. Inequal. Appl. 2014, Article ID 402 (2014)
- 31. Zhu, L., Huang, Q., Li, G.: Fixed Point Theory Appl. 2013, Article ID 231 (2013)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com