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Abstract
Let Y be a uniformly convex multi-Banach space which has not a Frechet
differentiable norm. We use the technique of product net to obtain the nonlinear
ergodic theorems in Y . Finally, let the dual of uniformly convex multi-Banach space
have the Kadec–Klee property, we instate the weak convergence theorem in the case
of reversible semi-group.
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1 Preliminaries
Dales and Polyakov in [1] introduced a multi–normed space by using the concept of opera-
tor sequence space, operator spaces, and Banach lattices; for more details and application,
we refer to [1–3].

In this paper assume that (Y ,‖ · ‖) is a complex normed space, and let � ∈N. We denote
by Y � the vector space Y ⊕ · · · ⊕ Y consisting of �-tuples (y1, . . . , y�), where y1, . . . , y� ∈ Y .
The linear operations on Y � are defined coordinate-wise. The zero element of either Y or
Y � is denoted by 0. We denote by N� the set {1, 2, . . . ,�} and by Σ� the group of permuta-
tions on � symbols.

Definition 1.1 Suppose that Y is a vector space, and take � ∈N. For σ ∈ Σ�, define

Bσ (y) = (yσ (1), . . . , yσ (�)), y = (y1, . . . , y�) ∈ Y �.

For β = (βj) ∈C
�, define

Kβ (y) = (βjyj), y = (y1, . . . , y�) ∈ Y �.
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Definition 1.2 Assume that (Y ,‖ · ‖) is a complex (respectively, real) normed space, and
take m ∈ N. A multi-norm of level m on {Y � : � ∈ Nm} is a sequence (‖ · ‖� : � ∈ Nm) such
that ‖ · ‖ is a norm on Y � for each � ∈ Nm, such that ‖y‖1 = ‖y‖ for each y ∈ Y (so that
‖ · ‖1 is the initial norm), and such that the following Axioms (a1)–(a4) are satisfied for
each � ∈Nm with k ≥ 2:

(a1) for each σ ∈ Σ� and y ∈ Y �, we have

∥
∥Bσ (y)

∥
∥

�
= ‖y‖�;

(a2) for each β1, . . . ,β� ∈C (respectively, each β1, . . . ,β� ∈R) and y ∈ Y �, we have

∥
∥Kβ (y)

∥
∥

�
≤

(

max
j∈N�

|βj|
)

‖y‖�;

(a3) for each y1, . . . , y�–1, we have

∥
∥(y1, . . . , y�–1, 0)

∥
∥

�
=

∥
∥(y1, . . . , y�–1)

∥
∥

�–1;

(a4) for each y1, . . . , y�–1 ∈ Y ,

∥
∥(y1, . . . , y�–2, y�–1, y�–1)

∥
∥

�
=

∥
∥(y1, . . . , y�–1)

∥
∥

�–1.

In this case, ((Y �,‖ · ‖�) : � ∈Nm) is a multi-normed space of level m.
A multi-norm on {Y � : � ∈N} is a sequence

(‖ · ‖�

)

=
(‖ · ‖� : � ∈ N

)

such that (‖ · ‖� : � ∈ Nm) is a multi-norm of level m for each m ∈ N. In this case,
((Y m,‖ · ‖m) : m ∈N) is a multi-normed space.

Lemma 1.3 ([3]) Let ((Y �,‖ · ‖�) : � ∈ N) be a multi-normed space, and take � ∈Nm. Then
(a) ‖(y, . . . , y)‖� = ‖y‖ (y ∈ Y );
(b) maxj∈N�

‖yj‖ ≤ ‖(y1, . . . , y�)‖� ≤ ∑�
j=1 ‖yj‖ ≤ �maxj∈N�

‖yj‖ (y1, . . . , y� ∈ Y ).

It follows from (b) that if (Y ,‖ · ‖) is a Banach space, then (Y �,‖ · ‖�) is a Banach space
for each � ∈N; in this case ((Y �,‖ · ‖�) : � ∈ N) is a multi-Banach space.

Example 1.4 ([1]) The sequence (‖ · ‖� : � ∈ N) on {Y � : � ∈N} defined by

∥
∥(y1, . . . , y�)

∥
∥

�
:= max

j∈N�

‖yj‖ (y1, . . . , y� ∈ Y )

is a multi-norm called the minimum multi-norm.

Example 1.5 ([1]) Assume that {(‖ · ‖β

� : � ∈ N) : β ∈ B} is the (non-empty) family of all
multi-norms on {Y � : � ∈N}. For � ∈N, set

∥
∥(y1, . . . , y�)

∥
∥

k := sup
β∈B

∥
∥(y1, . . . y�)

∥
∥

β

�
(y1, . . . , y� ∈ Y ).

Then (‖ · ‖� : � ∈N) is a multi-norm on {Y � : � ∈N}, called the maximum multi-norm.
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By the property (b) of multi-norms and the triangle inequality for the norm ‖ ·‖k , we can
get the following properties. Suppose that ((Y �,‖ · ‖�) : � ∈ N) is a multi-normed space. Let
� ∈ N and (y1, . . . , y�) ∈ Y k . For every i ∈ {1, . . . ,�}, let (yi

m)m=1,2,... be a sequence in Y such
that limm→∞ yi

m = yi. Then for each (z1, . . . , z�) ∈ Y � we have

lim
m→∞

(

y1
m – z1, . . . , y�

m – z�

)

= (y1 – z1, . . . , y� – z�).

A sequence (ym) in Y is a multi-null sequence if, for every ε > 0, there exists m0 ∈N such
that

sup
�∈N

∥
∥(yn, . . . , ym+�–1)

∥
∥

�
< ε (m ≥ m0).

Let y ∈ Y . We say that the sequence (ym) is multi-convergent to y ∈ Y and write

lim
m→∞ ym = y

when (ym – y) is a multi-null sequence.
Assume that G is a semi-topological semi-group. In this article, C is a nonempty

bounded closed convex subset of a uniformly convex Banach space X. Let X∗ be the dual
of X, then the value of u∗ ∈ X∗ at u ∈ X will be denoted by 〈u, u∗〉, and we associate the set

J(u) =
{

u∗ ∈ X :
〈

u, u∗〉 = ‖u‖2 =
∥
∥u∗∥∥2}.

It is clear from the Hahn–Banach theorem that J(u) is not empty for all u ∈ X. Then the
multi-valued operator J : X → X∗ is called the normalized duality mapping of X, also �k =
{Jk(t) : t ∈ G} is a reversible semigroup of asymptotically nonexpansive functions acting
on C. Let F(�k) denote the set of all fixed points of �k , i.e., F(�k) = {u ∈ C : Jk(t)u = u,∀t ∈
G}. For each ε > 0 and p ∈ G, we put

Fε

(

Jk(p)
)

=
{

u ∈ C :
∥
∥
(

J1(p)u – u, . . . , Jk(p)u – u
)∥
∥

k ≤ ε
}

.

Note that if, for any ε > 0, there exists pε ∈ G such that for all p > pε , u ∈ Fε(Jk(p)), then
limp∈G Jk(p)u = u; moreover, u ∈ F(�k) by the continuity of elements {Jk(p), p ∈ G} (for
more details, we refer to [4–9]).

We denote the set of all almost orbits of �k and the set {Jk(p)uk(·) : p ∈ G, uk ∈ AO(�k)}
by AO(�k) and LAO(�k), respectively. Denote by ωω(uk) the set of all weak limit points of
subnets of net {uk(t)}t∈G.

Lemma 1.6 ([10]) Assume that X is a Banach space and J is the normalized duality func-
tion. Therefore

‖u + v‖2 ≤ ‖u‖2 + 2
〈

v, j(u + v)
〉

for all j(u + v) ∈ J(u + v) and u, v ∈ X.
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Lemma 1.7 ([11]) Assume that {(Xk ,‖ · ‖k)}k∈N is a uniformly convex multi-Banach space
and ∅ �= C ⊂ Xk is a bounded closed convex set. Then there exists a strictly increasing con-
tinuous convex function ξ : [0, +∞) → [0, +∞) with ξ (0) = 0 such that

ξ

(∥
∥
∥
∥
∥

(

J1

( n
∑

i=1

aiui

)

–
n

∑

i=1

aiJ1ui, . . . , Jk

( n
∑

i=1

aiui

)

–
n

∑

i=1

aiJkui

)∥
∥
∥
∥
∥

k

)

≤ max
1≤i,j≤n

{‖ui – uj‖ –
∥
∥(J1ui – J1uj, . . . , Jkui – Jkuj)

∥
∥

k

}

for all integers a1, . . . , an ≥ 0, n ≥ 1 with
∑n

i=1 ai = 1, u1, . . . , un ∈ C, and every nonexpansive
function Jk of C to C.

Lemma 1.7 implies that, for all a1, . . . , an ≥ 0 with
∑n

i=1 ai = 1, u1, . . . , un ∈ C,

∥
∥
∥
∥
∥

(

J1(p)

( n
∑

i=1

aiui

)

–
n

∑

i=1

aiJ1(p)ui, . . . , Jk(p)

( n
∑

i=1

aiui

)

–
n

∑

i=1

aiJk(p)ui

)∥
∥
∥
∥
∥

k

≤ (

1 + α(p)
)

ξ–1
(

max
1≤i,j≤n

{

‖ui – uj‖

–
1

1 + α(p)
∥
∥
(

J1(p)ui – J1(p)uj, . . . , Jk(p)ui – Jk(p)uj
)∥
∥

k

})

≤ (

1 + α(p)
)

ξ–1
(

max
1≤i,j≤n

{‖ui – uj‖

–
∥
∥
(

J1(p)ui – J1(p)uj, . . . , Jk(p)ui – Jk(p)uj
)∥
∥

k

}

+ d · α(p)
)

in which d = 4 sup{‖u‖ : u ∈ C} + 1.
For every ε ∈ (0, 1], define

a(ε) = min

{
ε2

(d + 2)2 ,
ε3

(3d + 2)2 ξ

(
ε

4

)}

and

Gε =
{

h ∈ G : α(p) ≤ ε
}

,

in which ξ (·) is as Lemma 1.7. Then Gε �= ∅ for ε > 0, and if p ∈ Gε , then for all t ≥ p, t ∈ Gε .
Note that Ga(ε) ⊂ Gε for all ε ∈ (0, 1].

2 Main result
For studies on ergodic theory and its history, we refer to [4–30]. The results of this paper
are an extension and generalization of [31].

Lemma 2.1 For all p ∈ Ga(ε),

co Fa(ε)
(

Jk(p)
) ⊂ Fε

(

JK (p)
)

.
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Proof Since Fε(JK (p)) is closed, we only need to prove that, for all p ∈ Ga(ε),

co Fa(ε)
(

Jk(p)
) ⊂ Fε

(

JK (p)
)

.

Let v =
∑n

i=1 aivi, vi ∈ Fa(ε)(Jk(p)), ai ≥ 0, i = 1, . . . , n, and
∑n

i=1 ai = 1. Then

∥
∥
(

J1(p)v – v, . . . , Jk(p)v – v
)∥
∥

k

=

∥
∥
∥
∥
∥

(

J1(p)
n

∑

i=1

aivi –
n

∑

i=1

aivi, . . . , Jk(p)
n

∑

i=1

aivi –
n

∑

i=1

aivi

)∥
∥
∥
∥
∥

k

≤
∥
∥
∥
∥
∥

(

J1(p)
n

∑

i=1

aivi –
n

∑

i=1

aiJ1(p)vi, . . . , Jk(p)
n

∑

i=1

aivi –
n

∑

i=1

aiJk(p)vi

)∥
∥
∥
∥
∥

k

≤ 2ξ–1
(

max
1≤i,j≤n

{‖vi – vj‖ –
∥
∥
(

J1(p)vi – J1(p)vi, . . . , Jk(p)vi – Jk(p)vi
)∥
∥

k

}

+ d · α(p)
)

+ a(ε)

≤ 2ξ–1
(

max
1≤i,j≤n

{∥
∥
(

vi – J1(p)vi, . . . , vi – Jk(p)vi
)∥
∥

k +
∥
∥
(

vj – J1(p)vj, . . . , vj – Jk(p)vj
)∥
∥

k

}

+ d · α(p)
)

+ a(ε)

≤ 2ξ–1(2a(ε) + d · a(ε)
)

+ a(ε)

≤ ε

2
+

ε

2
= ε. �

Lemma 2.2 For every p ∈ G ε
4

,

F ε
4

(

Jk(p)
)

+ B
(

0,
ε

4

)

⊂ Fε

(

Jk(p)
)

.

Proof Let p ∈ G ε
4

and u = v + w ∈ F ε
4

(Jk(p)) + B(0, ε
4 ), where v ∈ F ε

4
(Jk(p)) and w ∈ B(0, ε

4 ),
then

∥
∥
(

J1(p)u – u, . . . , Jk(p)u – u
)∥
∥

k

=
∥
∥
(

J1(p)(v + w) – (v + w), . . . , Jk(p)(v + w) – (v + w)
)∥
∥

k

≤ ∥
∥
(

J1(p)(v + w) – J1(p)v, . . . , Jk(p)(v + w) – Jk(p)v
)∥
∥

k

+
∥
∥
(

J1(p)v – v, . . . , Jk(p)v – v
)∥
∥

k + ‖w‖
≤ 2‖w‖ +

∥
∥
(

J1(p)v – v, . . . , Jk(p)v – v
)∥
∥

k + ‖w‖
≤ 3

ε

4
+

ε

4
= ε. �

Lemma 2.3 Assume that ε ∈ (0, 1] and p ∈ Ga(a( ε
4 )), so we can find n0 ∈ N such that, for

each n ≥ n0 and u ∈ C,

1
n

n
∑

i=1

Jk
(

pi)u ∈ Fε

(

Jk(p)
)

.
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Proof Let ε ∈ (0, 1] and m = 2d+1
a( ε

4 ) . There is n0 ∈ N satisfying

n0 ≥ max

{
12md

ε
, 32m2d(d + 1)

(

ξ

(a( ε
4 )

2

)

ε

)–1}

.

For any n ≥ n0 and p ∈ Ga(a( ε
4 )), we can take a number

K = m2d
(

1 + 2nα(p)
)
(

ξ

(a( ε
4 )

2

))–1 (

k <
n
2

)

.

For every i ∈ N and u ∈ C, we put

ai(u) = ξ

(

8
9

∥
∥
∥
∥
∥

(

1
m

m
∑

j=1

J1
(

pi+j+1)u – J1(p)
1
m

m
∑

j=1

J1
(

pi+j)u, . . . ,

1
m

m
∑

j=1

Jk
(

pi+j+1)u – Jk(p)
1
m

m
∑

j=1

Jk
(

pi+j)u

)∥
∥
∥
∥
∥

k

)

.

By α(p) ≤ 1
8 and

ai(u) ≤ max
1≤j,t≤m

{∥
∥J1

(

pi+j)u – Jk
(

pi+t)u, . . . , Jk
(

pi+j)u – Jk
(

pi+t)u
∥
∥

k

–
∥
∥J1

(

pi+j+1)u – Jk
(

pi+t+1)u, . . . , Jk
(

pi+j+1)u – Jk
(

pi+t+1)u
∥
∥

k + d · α(p)
}

≤
∑

1≤j<t≤m

(∥
∥
(

J1
(

pi+j)u – J1
(

pi+t)u, . . . Jk
(

pi+j)u – Jk
(

pi+t)u
)∥
∥

k

–
∥
∥
(

J1
(

pi+j+1)u – J1
(

pi+t+1)u, . . . Jk
(

pi+j+1)u – Jk
(

pi+t+1)u
)∥
∥

k + dα(p)
)

,

we get

n
∑

i=1

ai(u)

≤
n

∑

i=1

∑

1≤j<t≤m

(∥
∥J1

(

pi+j)u – Jk
(

pi+t)u, . . . , Jk
(

pi+j)u – Jk
(

pi+t)u
∥
∥

k

–
∥
∥J1

(

pi+j+1)u – Jk
(

pi+t+1)u, . . . , Jk
(

pi+j+1)u – Jk
(

pi+t+1)u
∥
∥

k + d · α(p)
)

=
∑

1≤j<t≤m

n
∑

i=1

(∥
∥J1

(

pi+j)u – Jk
(

pi+t)u, . . . , Jk
(

pi+j)u – Jk
(

pi+t)u
∥
∥

k

–
∥
∥J1

(

pi+j+1)u – Jk
(

pi+t+1)u, . . . , Jk
(

pi+j+1)u – Jk
(

pi+t+1)u
∥
∥

k + d · α(p)
)

≤
∑

1≤j<t≤m

(

d + nd · α(p)
) ≤ m2d

(

1 + nα(p)
)

.

Suppose that there is an element say t in {ai(u) : i = 1, 2, . . . , 2n} such that if ai(u) ≥ ξ ( a( ε
4 )

2 ),
then

tξ
(a( ε

4 )
2

)

≤ m2d
(

1 + 2nα(p)
)

.
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Hence

t ≤ m2d
(

1 + 2nα(p)
)
(

ξ

(a( ε
4 )

2

))–1

= K .

So, there are at most N = [K] terms in {ai(u) : i = 1, 2, . . . , 2n} with ai(u) ≥ ξ ( a( ε
4 )

2 ). Then,
for every i in {1, 2, . . . , n}, there exists at least one term ai+j0 (u) (0 ≤ j0 ≤ N ) in {ai+j(u) : j =
0, 1, . . . , N} hold ai+j0 < ξ ( a( ε

4 )
2 ).

Put

�i = min

{

j : ai+j(u) < ξ

(a( ε
4 )

2

)

, 0 ≤ j ≤ N
}

,

i = 1, 2, . . . , n. Now, there are at most N elements in {i = 1, 2, . . . , n} such that �i �= 0. Since

∥
∥
∥
∥
∥

(

J1(p)
1
m

m
∑

j=1

J1
(

pi+�i+j)u –
1
m

m
∑

j=1

J1
(

pi+�i+j)u, . . . ,

Jk(p)
1
m

m
∑

j=1

Jk
(

pi+�i+j)u –
1
m

m
∑

j=1

Jk
(

pi+�i+j)u

)∥
∥
∥
∥
∥

k

≤
∥
∥
∥
∥
∥

(

J1(p)
1
m

m
∑

j=1

J1
(

pi+�i+j)u –
1
m

m
∑

j=1

J1
(

pi+�i+j+1)u, . . . ,

Jk(p)
1
m

m
∑

j=1

Jk
(

pi+�i+j)u –
1
m

m
∑

j=1

Jk
(

hi+�i+j+1)u

)∥
∥
∥
∥
∥

k

+

∥
∥
∥
∥
∥

(

1
m

m
∑

j=1

J1
(

pi+�i+j)u –
1
m

m
∑

j=1

J1
(

pi+�i+j+1)u, . . . ,

1
m

m
∑

j=1

Jk
(

pi+�i+j)u –
1
m

m
∑

j=1

Jk
(

pi+�i+j+1)u

)∥
∥
∥
∥
∥

k

≤ 9
8
ξ–1(ai+�i (u)

)

+
d

2m

≤ 9
16

a
(

ε

4

)

+
1
4

a
(

ε

4

)

< a
(

ε

4

)

,

we can conclude that, for all p ∈ Ga(a( ε
4 )),

1
m

m
∑

j=1

Jk
(

pi+�i+j)u ∈ Fa( ε
4 )

(

Jk(p)
)

.

By Lemma 2.1, we get, for all p ∈ Ga(a( ε
4 )) ⊂ Ga( ε

4 ),

1
n

n
∑

i=1

1
m

m
∑

j=1

Jk
(

pi+�i+j)u ∈ co Fa( ε
4 )

(

Jk(p)
) ⊂ F ε

4

(

Jk(p)
)

.
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Using Lemma 2.2 and

∥
∥
∥
∥
∥

(

1
n

n
∑

i=1

J1
(

pi)u –
1
n

n
∑

i=1

1
m

m
∑

j=1

J1
(

pi+�i+j)u, . . . ,

1
n

n
∑

i=1

Jk
(

pi)u –
1
n

n
∑

i=1

1
m

m
∑

j=1

Jk
(

pi+�i+j)u

)∥
∥
∥
∥
∥

k

≤ 1
mn

m
∑

j=1

∥
∥
∥
∥
∥

( n
∑

i=1

J1
(

pi)u –
n

∑

i=1

J1
(

pi+�i+j)u, . . . ,
n

∑

i=1

Jk
(

pi)u – sumn
i=1Jk

(

pi+�i+j)u

)∥
∥
∥
∥
∥

k

≤ 1
mn

m
∑

j=1

∥
∥
∥
∥
∥

( n
∑

i=1

J1
(

pi)u –
n

∑

i=1

J1
(

pi+j)u, . . . ,
n

∑

i=1

Jk
(

pi)u –
n

∑

i=1

Jk
(

pi+j)u

)∥
∥
∥
∥
∥

k

+
1

mn

m
∑

j=1

∥
∥
∥
∥
∥

( n
∑

i=1

L1
(

pi+j)u –
n

∑

i=1

J1
(

pi+�i+j)u, . . . ,

n
∑

i=1

Jk
(

pi+j)u –
n

∑

i=1

Jk
(

pi+�i+j)u

)∥
∥
∥
∥
∥

k

≤ md
n

+
Nd
n

≤ ε

12
+

m2d2(ξ ( a( ε
4 )

2 ))–1

n
+ 2m2d2α(p)

(

ξ

(a( ε
4 )

2

))–1

<
ε

12
+

ε

32
+

ε

8
<

ε

4
,

we obtain

1
n

n
∑

i=1

Jk
(

pi)u ∈ F ε
4

(

Jk(p)
)

+ B
(

0,
ε

4

)

⊂ Fε

(

Jk(p)
)

. �

Lemma 2.4 Suppose that uk(·) is an almost orbit of �k . So

lim
t∈G

∥
∥
(

γ u1(t) + (1 – γ )ϕ – g, . . . ,γ uk(t) + (1 – γ )ϕ – g
)∥
∥

k

exist for every γ ∈ (0, 1) and ϕ, g ∈ F(�k).

Proof To complete the proof, it is enough to prove that

inf
s∈G

sup
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k

≤ sup
s∈G

inf
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k .

We know, for every ε > 0, there are t0 and s0 ∈ G such that, for any t ∈ G, α(tt0) < ε
1+d and

ϕ(ts0) < ε, where ϕ(t) = supp∈G ‖(u1(pt) – J1(p)u1(t), . . . , uk(pt) – Jk(p)uk(t))‖k . So, for every
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a ∈ G,

inf
s∈G

sup
t∈G

∥
∥
(

u1(tss0) – ϕ, . . . , uk(tss0) – ϕ
)∥
∥

k

≤ sup
t∈G

∥
∥
(

u1(tt0as0) – ϕ, . . . , uk(tt0as0) – ϕ
)∥
∥

k

≤ sup
t∈G

∥
∥
(

u1(tt0as0) – J1(tt0)u1(as0), . . . , uk(tt0as0) – Jk(tt0)uk(as0)
)∥
∥

k

+ sup
t∈G

∥
∥J1(tt0)u1(as0) – ϕ, . . . , Jk(tt0)uk(as0) – ϕ

∥
∥

k

≤ ϕ(as0) + sup
t∈G

(

1 + α(tt0)
) · ∥∥(

u1(as0) – ϕ, . . . , uk(as0) – ϕ
)∥
∥

k

≤ ∥
∥
(

u1(as0) – ϕ, . . . , uk(as0) – ϕ
)∥
∥

k + 2ε.

Hence

inf
s∈G

sup
t∈G

∥
∥
(

u1(tss0) – ϕ, . . . , uk(tss0) – ϕ
)∥
∥

k ≤ inf
a∈G

∥
∥
(

u1(as0) – ϕ, . . . , uk(as0) – ϕ
)∥
∥

k + 2ε.

Thus, there exists s1 ∈ G such that

sup
t∈G

∥
∥
(

u1(ts1s0) – ϕ, . . . , uk(ts1s0) – ϕ
)∥
∥

k < inf
a∈G

∥
∥
(

u1(as0) – ϕ, . . . , uk(as0) – ϕ
)∥
∥

k + 3ε.

Then, for every a ∈ G, we get

inf
s∈G

sup
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k

≤ sup
t∈G

∥
∥
(

γ u1(tt0as1s0) + (1 – γ )ϕ – g, . . . ,γ uk(tt0as1s0) + (1 – γ )ϕ – g
)∥
∥

k

≤ γ sup
t∈G

∥
∥
(

u1(tt0as1s0) – J1(tt0)u1(as1s0), . . . , uk(tt0as1s0) – Jk(tt0)uk(as1s0)
)∥
∥

k

+ sup
t∈G

∥
∥
(

γ J1(tt0)u1(as1s0) + (1 – γ )ϕ – g, . . . ,γ Jk(tt0)uk(as1s0) + (1 – γ )ϕ – g
)∥
∥

k

≤ ϕ(as1s0) + sup
t∈G

∥
∥
(

γ J1(tt0)u1(as1s0) + (1 – γ )ϕ – J1(tt0)
(

γ u1(as1s0) + (1 – γ )ϕ
)

, . . . ,

γ Jk(tt0)uk(as1s0) + (1 – γ )ϕ – Jk(tt0)
(

γ uk(as1s0) + (1 – γ )ϕ
))∥

∥
k

+ sup
t∈G

∥
∥
(

J1(tt0)
(

γ u1(as1s0) + (1 – γ )ϕ
)

– g, . . . ,

Jk(tt0)
(

γ uk(as1s0) + (1 – γ )ϕ
)

– g
)∥
∥

k

+ ε sup
t∈G

(

1 + α(tt0)
)

ξ–1(∥∥
(

u1(as1s0) – ϕ, . . . , uk(as1s0) – ϕ
)∥
∥

k

–
∥
∥
(

J1(tt0)u1(as1s0) – ϕ, . . . , Jk(tt0)uk(as1s0) – ϕ
)∥
∥

k + d · α(tt0)
)

+ sup
t∈G

(

1 + α(tt0)
)∥
∥
(

γ u1(as1s0) + (1 – γ )ϕ – g, . . . ,γ uk(as1s0) + (1 – γ )ϕ – g
)∥
∥

k

≤ ε + (1 – ε) sup
t∈G

ξ–1(∥∥
(

u1(as1s0) – ϕ, . . . , uk(as1s0) – ϕ
)∥
∥

k

–
∥
∥
(

u1(tt0as1s0) – ϕ, . . . , uk(tt0as1s0) – ϕ
)∥
∥

k + ϕ(as1s0) + ε
)
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+ (1 + ε)
∥
∥
(

γ u1(as1s0) + (1 – γ )ϕ – g, . . . ,γ uk(as1s0) + (1 – γ )ϕ – g
)∥
∥

k

≤ ε + (1 + ε)ξ–1(5ε)

+ (1 + ε)
∥
∥
(

γ u1(as1s0) + (1 – γ )ϕ – g, . . . ,γ uk(as1s0) + (1 – γ )ϕ – g
)∥
∥

k .

Then

inf
s∈G

sup
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k

≤ ε(1 + ε)ξ–1(5ε)

+ (1 + ε) inf
a∈G

∥
∥
(

γ u1(as1s0) + (1 – γ )ϕ – g, . . . ,γ uk(as1s0) + (1 – γ )ϕ – g
)∥
∥

k

≤ ε(1 + ε)ξ–1(5ε)

+ (1 + ε) sup
b∈G

inf
a∈G

∥
∥
(

γ u1(ab) + (1 – γ )ϕ – g, . . . ,γ uk(ab) + (1 – γ )ϕ – g
)∥
∥

k .

Hence,

inf
s∈G

sup
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k

≤ sup
s∈G

inf
t∈G

∥
∥
(

γ u1(ts) + (1 – γ )ϕ – g, . . . ,γ uk(ts) + (1 – γ )ϕ – g
)∥
∥

k

because ε > 0 is arbitrary. �

Theorem 2.5 Assume that {(Xk ,‖ ·‖k)}k∈N is a uniformly convex multi-Banach space, and
suppose that ∅ �= C ⊂ X is bounded and closed. Assume that �k = {Jk(t) : t ∈ G} for each
k ≥ 1 is a reversible semigroup of asymptotically nonexpansive functions on C. If D has a
left invariant mean, then there exists a retraction Pk from LAO(�k) onto F(�k) in which:

(1) Pk is nonexpansive in the sense

∥
∥(P1u1 – P1v1, . . . , Pkuk – Pkvk)

∥
∥

k

≤ inf
s∈G

sup
t∈G

∥
∥
(

u1(st) – v1(st), . . . , uk(st) – vk(st)
)∥
∥

k , ∀uk , vk ∈ LAO(�k);

(2) PkJk(p)uk = Jk(p)Pkuk = Pkuk for all uk ∈ AO(�k) and p ∈ G;
(3) Pkuk ∈ ⋂

s∈G conv{uk(t) : t ≥ s} for all uk ∈ LAO(�k).

Proof We know D has a left invariant mean, so there is a net {γk,α : α ∈ A} of finite means
on G in which limα∈A ‖(γ1,α – �∗

s γ1,α , . . . ,γk,α – �∗
s γk,α)‖k = 0 for every s ∈ G, in which A is a

directed system. Putting I = A × G = {β = (α, t) : α ∈ A, t ∈ G}. For βi = (αi, ti) ∈ I , i = 1, 2,
define β1 ≤ β2 iff α1 ≤ α2, t1 ≤ t2. Then, I is also a directed system. For each β = (α, t) ∈ I ,
define Pk,1β = α, Pk,2β = t, and γβ = γα . So, for every s ∈ G,

lim
β∈I

∥
∥
(

γ1,β – �∗γ1,β , . . . ,γk,β – �∗γk,β
)∥
∥

k = 0. (2.1)

Assume that γ = {{tβ}β∈I , tβ ≥ Pk,2β ,∀β ∈ I}. Taking any {tβ ,β ∈ I} ∈ γ , since r∗
tβγk,β is

bounded, without loss of generality, let r∗
tβγk,β be weak∗ convergent. Then, for all uk ∈
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LAO(�k), ω- limβ∈I γk,β (t)〈uk(ttβ )〉 exist. We define

Pkuk = ω- lim
β∈I

γk,β (t)
〈

uk(ttβ )
〉

.

On the other hand, for every uk ∈ LAO(�k), Pkuk ∈ ⋂

s∈G conv{u(t) : t ≥ s}. Next, we shall
show that Pkuk ∈ F(�k). Then, for every ε ∈ (0, 1], there is t0 ∈ G such that, for each t ≥ t0,
ϕ(t) < a(ε)

4 . Also, we can suppose that Pk2β ≥ t0 for every β ∈ I , so tβ ≥ t0, {tβ} ∈ γ . From
Lemma 2.3, for every p ∈ Ga(a( a(ε)

16 )), there is n ∈ N such that, for each t ∈ G and β ∈ I ,

1
n

n
∑

i=1

Jk
(

pi)uk(ttβ ) ∈ F a(ε)
4

(

Jk(p)
)

.

Since for every t ∈ G

∥
∥
∥
∥
∥

(

1
n

n
∑

i=1

J1
(

pi)u1(ttβ) –
1
n

n
∑

i=1

u1
(

pittβ
)

, . . . ,
1
n

n
∑

i=1

Jk
(

pi)uk(ttβ ) –
1
n

n
∑

i=1

uk
(

pittβ
)

)∥
∥
∥
∥
∥

k

≤ ϕ(ttβ ) <
a(ε)

4
,

we have, for every p ∈ Ga(a( a(ε)
16 )),

1
n

n
∑

i=1

uk
(

pittβ
) ∈ F a(ε)

4

(

Jk(p)
)

+ B
(

0,
a(ε)

4

)

⊂ Fa(ε)
(

Jk(p)
)

.

Equation (2.1) implies that

lim
β∈I

∥
∥
∥
∥
∥

(

γ1,β(t)

〈

1
n

n
∑

i=1

u1
(

pittβ
)

〉

– γ1,β
〈

u1(ttβ )
〉

, . . . ,

γk,β (t)

〈

1
n

n
∑

i=1

uk
(

pittβ
)

〉

– γk,β
〈

uk(ttβ )
〉

)∥
∥
∥
∥
∥

k

= 0.

Combining it with the definition of Pkuk , we get, for all p ∈ Ga(a( a(ε)
16 )),

Pkuk = ω- lim
β∈I

γk,β (t)

〈

1
n

n
∑

i=1

uk
(

pittβ
)

〉

∈ co Fa(ε)
(

Jk(p)
)

.

Lemma 2.1 also implies that for every p ∈ Ga(a( a(ε)
16 )), Pkuk ∈ Fε(Jk(p)). Now, the continuity

of Jk(p) implies that Pkuk ∈ F(�k). Obviously, for any p ∈ G,

PkJk(p)uk = ω- lim
β∈I

γk,β (t)
〈

Jk(p)uk(ttβ )
〉

= ω- lim
β∈I

γk,β (t)
〈

uk(httβ )
〉

= ω- lim
β∈I

γk,β (t)
〈

uk(ttβ )
〉

(using (2.1))

= Pkuk
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and for every vk ∈ LAO(�k) and s ∈ G, we have

∥
∥(P1u1 – P1v1, . . . , P1u1 – P1v1)

∥
∥

k

≤ lim inf
β∈I

∥
∥
(

γ1,β(t)
〈

u1(ttβ )
〉

– γ1,β(t)
〈

v1(ttβ )
〉

, . . . ,γk,β(t)
〈

uk(ttβ )
〉

– γk,β (t)
〈

vk(ttβ )
〉)∥
∥

k

= lim inf
β∈I

∥
∥
(

γ1,β (t)
〈

u1(sttβ)
〉

– γ1,β (t)
〈

v1(sttβ)
〉

, . . . ,

γk,β(t)
〈

uk(sttβ)
〉

– γk,β (t)
〈

vk(sttβ)
〉)∥
∥

k (by (2.1))

≤ lim inf
β∈I

∥
∥
(

γ1,β(t), . . . ,γ1,β (t)
)∥
∥

k · sup
t∈G

∥
∥
(

u1(sttβ) – v1(sttβ), . . . , uk(sttβ) – vk(sttβ)
)∥
∥

k

≤ sup
t∈G

∥
∥
(

u1(st) – v1(st), . . . , uk(st) – vk(st)
)∥
∥

k .

Thus,

∥
∥(P1u1 – P1v1, . . . , Pkuk – Pkvk)

∥
∥

k ≤ inf
s∈G

sup
t∈G

∥
∥
(

u1(st) – v1(st), . . . , uk(st) – vk(st)
)∥
∥

k . �

Theorem 2.6 (Ergodic theorem [17]) Assume that {(Xk ,‖ · ‖k)}k∈N is a uniformly convex
multi-Banach space, and suppose that ∅ �= C ⊂ X is bounded and closed. Assume that �k =
{Jk(t) : t ∈ G} is a reversible semigroup of asymptotically nonexpansive functions on C. If D
has a left invariant mean and there is a unique retraction Pk from LAO(�K ) onto F(�k),
which satisfies properties (1)–(3) in Theorem 2.5, then for every strongly net {νk,α : α ∈ A}
on D and uk ∈ AO(�k),

ω- lim
α∈A

∫

uk(tp) dνk,α(t) = Pk ∈ F(�k) uniformly in p ∈ γ (G),

in which γ (G) = {s ∈ G : st = ts for all t ∈ G}.

Theorem 2.7 Assume that {(Xk ,‖ · ‖k)}k∈N is a uniformly convex multi-Banach space,
and suppose that ∅ �= C ⊂ X is bounded and closed. Assume that �k = {Jk(t) : t ∈ G} of
a reversible semigroup of asymptotically nonexpansive mappings on C, and let uk(·) be an
almost orbit of �k . If

ω- lim
t∈G

uk(pt) – uk(t) = 0

for every p ∈ G, then

ωω(uk) ⊂ F(�k).

Proof Let ε ∈ (0, 1], then there is t0 ∈ G such that, for t ≥ t0, ϕ(t) < a(ε)
4 . Suppose that

pk ∈ ωω(uk), so we can find a subnet {uk(tα)}α∈A of {uk(t)}t∈G with ω- limα∈A uk(tα) = pk

in which, for every α ∈ A, tα ≥ t0, in which A is a directed system. Using Lemma 2.3, for
every p ∈ Ga(a( a(ε)

16 )), we can find n ∈N such that, for every α ∈ A,

1
n

n
∑

i=1

Jk
(

pi)uk(tα) ∈ F a(ε)
4

(

Jk(p)
)

.
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Since for each α ∈ A
∥
∥
∥
∥
∥

(

1
n

n
∑

i=1

J1
(

pi)u1(tα) –
1
n

n
∑

i=1

u1
(

pitα
)

, . . . ,
1
n

n
∑

i=1

Jk
(

pi)uk(tα) –
1
n

n
∑

i=1

uk
(

pitα
)

)∥
∥
∥
∥
∥

k

≤ ϕ(tα) <
a(ε)

4
,

we get

1
n

n
∑

i=1

uk
(

pitα
) ∈ 1

n

n
∑

i=1

uk
(

pitα
)

+ B
(

0,
a(ε)

4

)

⊂ Fa(ε)
(

Jk(p)
)

.

Since uk(pt) – uk(t) → 0 for every p ∈ G, we have uk(pitα) → pk , i = 1, 2, . . . , n. Then, for
all p ∈ Ga(a( a(ε)

16 )),

pk = ω- lim
α∈A

1
n

n
∑

i=1

uk
(

pitα
) ∈ co Fa(ε)

(

Jk(p)
)

.

So, Lemma 2.1, implies that for every p ∈ Ga(a( a(ε)
16 )), p ∈ Fε(J(p)), hence pk ∈ F(�k). �

In three last theorems X has not a Frechet differentiable norm.

Theorem 2.8 Assume that {(Xk ,‖ ·‖k)}k∈N is a uniformly convex multi-Banach space with
the Kadec–Klee property for its dual, and ∅ �= C ⊂ X is bounded and closed. Suppose that
�k = {Jk(t) : t ∈ G} of a reversible semigroup of asymptotically nonexpansive function on C
and uk(·) is an almost orbit of �k . Then the following statements are equivalent:

(1) ωω(uk) ⊂ F(�k);
(2) ω- limt∈G uk(t) = pk ∈ F(�k);
(3) ω- limt∈G uk(pt) – uk(t) = 0 for every p ∈ G.

Proof (1) ⇒ (2). It is enough to prove that ωω(uk) is a singleton. The reflexivity of X im-
plies that X �= ∅. Suppose that ϕk and gk are two elements in ωω(uk), then by (1) we get
ϕ, g ∈ F(�k). For every γ ∈ (0, 1), using Lemma 2.4, we have limt∈G ‖(γ u1(t) + (1 – γ )ϕ –
g, . . . ,γ uk(t) + (1 – γ )ϕ – g)‖k exists. Put

h(γ ) = lim
t∈G

∥
∥
(

γ u1(t) + (1 – γ )ϕ – g, . . . ,γ uk(t) + (1 – γ )ϕ – g
)∥
∥

k ,

then for given ε > 0, there is t1 ∈ G such that, for every t > t1,

∥
∥
(

γ u1(t) + (1 – γ )ϕ – g, . . . ,γ uk(t) + (1 – γ )ϕ – g
)∥
∥

k ≤ h(γ ) + ε.

So, for every t ≥ t1,

〈

γ uk(t) + (1 – γ )ϕ – g, j(ϕ – g)
〉 ≤ ‖ϕ – g‖(h(γ ) + ε

)

,

in which j(ϕ – g) ∈ J(ϕ – g). Let us note ϕ ∈ co{uk(t) : t ≥ t1}, so

〈

γ ϕ + (1 – γ )ϕ – g, j(ϕ – g)
〉 ≤ ‖ϕ – g‖(h(γ ) + ε

)

,
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which means ‖ϕ – g‖ ≤ h(γ ) + ε. We know ε is arbitrary, then

‖ϕ – g‖ ≤ h(γ ).

g ∈ ωω(uk) implies that there is a subnet {uk(t – α)}α∈A in {uk(t)}t∈G such that
ω- limα∈A uk(tα) = g , in which A is a directed system. Setting

I = A ×N =
{

β = (α, n) : α ∈ A, n ∈N
}

,

then for βi = (αi, ni), i ∈ I , i = 1, 2, define β1 ≤ β2 iff α1 ≤ α2, n1 ≤ n2. For arbitrary
β = (α, n) ∈ I , define Pk,1β = α, Pk,2β = n, tβ = tα , εβ = 1

Pk,2β
. Then ω- limβ∈I uk(tβ ) = g and

limβ∈I εβ = 0. Using Lemma 1.6 implies that

∥
∥
(

γ u1(tβ ) + (1 – γ )ϕ – g, . . . ,γ uk(tβ ) + (1 – γ )ϕ – g
)∥
∥

k

≤ ‖ϕ – g‖2 + 2γ
〈

uk(tβ ) – ϕ, j
(

γ uk(tβ ) + (1 – γ )ϕ – g
)〉

.

Using Lemma 2.4 and the inequality ‖ϕ – g‖ ≤ h(γ ) implies that

lim inf
β∈I

〈

uk(tβ – ϕ, j
(

γ uk(tβ ) + (1 – γ )ϕ – g
)〉 ≥ 0.

So, for each ξ ∈ I , there is βξ ∈ I such that βξ ≥ γ and

〈

uk(tβξ
) – ϕ, j

(

εξ uk(tβξ
) + (1 – εξϕ – g)

)〉 ≥ –εξ . (2.2)

It is well known that {βξ } is also a subnet of I , then ω- limξ∈I uk(tβξ
) = g . Set

jξ = j
(

εξ uk(tβξ
) + (1 – εξϕ – g)

)

.

The reflexivity of X implies that X∗ is also reflexive, and therefore the set of all weak limit
points of {jξ , ξ ∈ I} is nonempty. Then, without loss of generality, let ω- limξ∈I jξ = j ∈ X∗.
Then ‖j‖ ≤ lim infξ∈I ‖jξ‖ = ‖ϕ – g‖. Since

〈ϕ – g, jξ 〉 =
∥
∥εξ uk

(

tβξ
+ (1 – εξ )ϕ – g

)∥
∥

2 – εξ

〈

uk(tβξ
– ϕ, jξ

〉

.

Passing the limit for ξ ∈ I , we get 〈ϕ – g, j〉 = ‖ϕ – g‖2, which implies ‖j‖ ≥ ‖ϕ – g‖. Then

〈ϕ – g, j〉 = ‖ϕ – g‖2 = ‖j‖2,

i.e., j ∈ J(ϕ – g). Hence, ω- limξ∈I jξ = j and limξ∈I ‖jξ‖ = ‖j‖. By the reflexivity of X∗ and the
Kadec–Klee property, we conclude that limξ∈I jξ = j. Take the limit for ξ ∈ I in 2.2, we get
〈g – ϕ, j〉 ≥ 0, i.e., ‖ϕ – g‖2 ≤ 0, which implies ϕ = g .

(2) ⇒ (3). Obviously.
(3) ⇒ (1). See Theorem 2.7. �
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