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Abstract: Kubernetes, a container orchestration tool for automatically installing and managing Docker
containers, has recently begun to support a federation function of multiple Docker container clusters.
This technology, called Kubernetes Federation, allows developers to increase the responsiveness
and reliability of their applications by distributing and federating container clusters to multiple
service areas of cloud service providers. However, it is still a daunting task to manually manage
federated container clusters across all the service areas or to maintain the entire topology of
cloud applications at a glance. This research work proposes a method to automatically form
and monitor Kubernetes Federation, given application topology descriptions in TOSCA (Topology
and Orchestration Specification for Cloud Applications), by extending the orchestration tool that
automatizes the modeling and instantiation of cloud applications. It also demonstrates the successful
federation of the clusters according to the TOSCA specifications and verifies the auto-scaling capability
of the configured system through a scenario in which the servers of a sample application are deployed
and federated.

Keywords: auto-scaling; cloud computing; Docker; cloud orchestration; cloud federation; TOSCA
(Topology and Orchestration Specification for Cloud Applications)

1. Introduction

In recent years, organizations that have made the transition from building and managing their
own computing facility to cloud computing have been benefiting from maximized capacity and
cost-efficiency [1]. It is further known that using a “container” approach, which separates component
tasks into small individual processes rather than installing an entire application on each virtual
machine, has various advantages, such as using computational resources efficiently and enabling
finer-grained deployments [2,3]. The cloud computing service providers (hereafter “cloud providers”)
such as Google, Microsoft, and Amazon, support container-based virtualization [4], and container
orchestration tools for automating the distribution and management of containerized applications are
being offered as well. Technologies like containerization and other IT-enabled dynamics capabilities
tend to provision the evolutionary fitness of these organizations through agility boost regarding
market capitalization and operational adjustment, improving competitive performance [5]. The cloud
orchestration market is estimated to be projected to cross US$ 20 billion by 2025 with a sales revenue
expected to register a compound annual growth rate of 14.6% according to online market research [6].

One advantage of using a container orchestration tool to form container clusters is the ability to
resize the cluster system at runtime automatically. This function automatically adjusts the number
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of containers in response to real-time changes in workloads, thereby reducing the incurred cost by
allowing an efficient allocation of computational resources on an on-demand basis [7,8]. Furthermore,
deploying a container cluster federation across multiple service areas allows cloud providers to
improve reliability and responsiveness [9]. However, this is still considered to be a complicated
process; As container clusters are increasingly being deployed and federated over multiple services
from different cloud providers [10], managing and monitoring cloud applications across the entire
service areas of an organization is a big challenge. When it comes to a means of modeling cloud
applications, there exist several prominent alternatives. We have chosen Topology and Orchestration
Specification for Cloud Applications (TOSCA) as our modeling language for cloud applications over
other options which include CAMEL (Cloud Application Modelling and Execution Language), CAML
(Cloud Application Modelling Lanuage), CloudML (Could Modelling Language), and container
platform-native DSLs(Domain-Specific Languages) [11]. The reason for this is that we wanted to
demonstrate a multi-cloud orchestration solution first for mainstream cloud technology and platforms.
Hence, we use the Organization for the Advancement of Structured Information Standards (OASIS)
standard, TOSCA, for specifying cloud application topology in a declarative way [12].

This research work proposes a solution to the orchestration problem by introducing new add-on
features to the tool that automates the modeling and orchestration of the applications to be deployed
on cloud services. Our solution provides the federation and monitoring functions across different
cloud service areas. By demonstrating the feasibility of multi-cloud orchestration of cloud services for
popular cloud platforms, our work is expected to touch off further research developments in the cloud
research community.

The remainder of this paper is organized as follows. Section 2 surveys various technologies and
tools that pertain to application containerization and examines the orchestration automation tool to
be used for cloud computing in this study. Section 3 examines the TOSCA-based cloud orchestration
system for the container cluster federation. Section 4 demonstrates the operation of the proposed
system and verifies its auto-scaling ability through a scenario in which web game servers are federated.
Section 5 discusses prominent studies related to our approach, and Section 6 summarizes the result of
this research work and proposes possible themes for further research.

2. Containerized Service Orchestration Technology

2.1. Docker and Kubernetes

Configuring a cloud service requires the installation of various components and programs.
For instance, configuring a web server requires an operating system, web daemon, and a database
server. The conventional method of installing constituting parts on actual machines limits the
computing resources to a particular service execution and does not allow the resources to be shared by
different services.

Docker [13] containerizes individual processes and allows them to be run within a separated
lightweight execution environment called a container. As the adoption of Docker has increased,
the need to automatize the deployment and management of containerized applications has recently
arisen [14]. Developed in this context, Kubernetes [15] is an open-source container orchestration tool
that automatically installs and manages a cluster of Docker containers. The service developer can
create Docker images containing desired service elements and Kubernetes can deploy and manage the
components and their relationships. Kubernetes includes the following elements:

e  Kubernetes pod: this is an essential building block of Kubernetes, usually containing multiple
Docker containers.

e Kubernetes node: this represents a VM (Virtual Machine) or physical machine where the
Kubernetes pods are run.

o  Kubernetes cluster: this consists of a set of worker nodes that cooperate to run applications as a
single unit. Its master node coordinates all activities within the cluster.
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e Kubernetes Federation: this is a cluster of clusters, i.e., viewed as a backbone cluster that
combines multiple Kubernetes clusters. For example, when one Kubernetes cluster is running on
Google Cloud Platform in Tokyo, Japan, and another is running in Oregon, U.S., one Kubernetes
federation might be configured such that if there is a problem in the Oregon platform, the Tokyo
cluster would be able to take over the share of the faulty platform, thereby increasing the resiliency
of the service. Figure 1 shows an example of the Kubernetes Federation architecture. Kubernetes
provides a flexible, loosely coupled mechanism for service delivery. The federation application
program interface (API) server interacts with the cluster through the federation controller manager.
The master is responsible for exposing the API, scheduling the deployments, and overall cluster
management. The interaction with the Kubernetes cluster is done through the federation controller
manager using the federation API server.

Kubernetes Federation

Federation .
» Federation Controller Manager
AP| Server
\
L 4 v v

Kubernetes Cluster

Kubernetes Cluster

Kubernetes Cluster

| Service || Service |

‘ Service || Service ‘

| Service ” Service |

Web Daemon
Pod

Database
Pod

Web Daemon
Pod

Database
Pod

Web Daemon
Pod

Database
Pod

Figure 1. Example of the Kubernetes federation architecture. The federation application program
interface (API) server automatically manages the subordinate Kubernetes clusters by providing the
API that is equivalent to the Kubernetes API.

2.2. Orchestration Tools Supporting Topology and Orchestration Specification for Cloud Applications (TOSCA)

Organizations seek cloud providers that support the functions required for their services at
a lower price. However, once a service is initiated with a particularcloud provider, it is difficult
for the organization to switch to a different provider [16,17]. As a solution to this problem, the
OASIS, the international nonprofit standard organization, has recently introduced a standard to
enable the portability of cloud-based applications, called TOSCA [12,18]. The TOSCA template
defines the topology of an entire application by formulating a directional graph with the node and
relationship templates.

e  The node template defines the components of the cloud-based applications. The node type is
specified to express the characteristics and the available functions of the service component.

o  The relationship template defines the relations between the components. The relationship type is
specified to express the relationship characteristics between the components.

These TOSCA templates are used to describe the components and inter-component relationships
of cloud applications in a declarative way so that the topology descriptions can be instantiated and
deployed on a particular cloud platform later on. Hence, the application portability.

Several cloud orchestration tools are capable of supporting the TOSCA standard. Brogi et al. [19]
introduced the SeaClouds platform that can manage the service-based applications across different
cloud providers. Alexander et al. [20] proposed TOSCAMP (TOSCA + CAMP (Cloud Application
Management for Platforms)) that supports the entire orchestration process, from modeling a
cloud-based application to its deployment, by an integration of TOSCA that conducts topology
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modeling and CAMP that performs management and deployment of applications. Studies pertaining
to the performance assessment of TOSCA-based cloud applications [21] and the cost-aware deployment
and management of entire cloud services are also being conducted [22].

For the validation of the proposed system, this study uses Cloudify [23], which has a feature
called Cloudify plug-in that is relatively development-friendly for the extension of functions. Also,
Cloudify has recently released Kubernetes plug-in that allows Kubernetes clusters to be included as
cloud service components [24]. It should be noted that even though this research work uses Cloudify
to develop the content further, the system proposed in this research article can use any orchestration
solutions as long as it supports the TOSCA standards.

3. Federation Frameworks of Containerized Services

3.1. Overall Architecture

Figure 2 shows a sample cloud service scenario devised to highlight the problem that our research
work in this article seeks to resolve. First, the cloud service is established using container clusters using
the configuration and system specification provided by the administrator and user. These system
specifications are by standards, default configuration, and user-defined customization. Then, the
clusters are deployed across the cloud provider’s different service areas (such as Northeast Asia,
North America, and West Europe in our use case scenario) and federated to increase the reliability
and responsiveness of the cloud service. The objective of the TOSCA-based cloud orchestration
system proposed in this research article is to automate this entire orchestration process using a cloud
orchestration tool and to support its operation monitoring in the future as well. Therefore, the primary
focus of our system design was to support the following functions:

1.  Automation of the distribution and federation of container clusters by defining the Kubernetes
cluster federation in the TOSCA description of the application, receiving the information of the
Kubernetes clusters, and executing “join Kubernetes federation”.

2. Automation of the service status management by defining Kubernetes horizontal pod auto-scaler
(HPA) information with regard to the TOSCA description of the cloud application and enabling
its operation in the cloud orchestration tool.

3.  Enabling the identification and monitoring of the entire service topology of the application by
allowing the cloud orchestration tool to access the information of the Kubernetes components.

Figure 3 outlines the proposed system architecture that realizes these three functions.
The orchestration system receives relevant component services and pod information through YAML
scripts. The orchestration system is based on TOSCA standard descriptions, which makes it easy to
receive the Kubernetes clusters information, and eventually, join them to the federation. The HPA
(horizontal pod autoscaler) scales up and scales down the number of pods in the entire Kubernetes
federation in an automatic manner. The monitoring agent plug-in allows the orchestration system to
monitor the status of each component at all times.

Key component interactions, especially between the Orchestration System and Kubernetes
Federation, are marked as (i), (ii), and (iii) in the figure. Actions and interactions performed by
each of the interfaces are discussed below.

(i) Defining a Kubernetes federation according to the TOSCA standard makes it easy to communicate
Kubernetes clusters information and join them to the federation. Input TOSCA descriptions
contain new federation and cluster components that are backed up by the corresponding
federation and cluster types we introduced in Kubernetes plugins. For an association between a
cluster and its intended federation, Kubernetes plugin module first makes a connection to the
federation and then executes “kuberfed join” command to make the cluster join the federation.

(i) The system also supports Kubernetes HPA, which auto-scales the number of pods across the
entire Kubernetes federation. The HPA component type is defined to be associated with the



Appl. Sci. 2019, 9, 191 50f13

(iif)

K8s API Mapper so that AutoscalingV1Api requests can be sent to the Kubernetes Federation.
V1HorizontalPod Autoscaler and V1DeleteOptionsinputs payloads are transported for HPA
creation and deletion, respectively.

Furthermore, the monitoring agent allows the system to monitor the status of the Kubernetes
components. A monitoring agent installed on each pod allows direct monitoring access
to individual pods. Shell Runner module is introduced to our system architecture to
support the installation of the Diamond monitoring program on the pod via the kubectl shell
command execution.
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Figure 2. Use of cloud orchestration tool for the federation of container clusters in terms of web
game server configuration. Using the tool increases the resiliency and reliability of the service, and
allows the monitoring of the entire topology. TOSCA: Topology and Orchestration Specification for
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Figure 3. Proposed cloud orchestration system architecture for container cluster federation.
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3.2. Implementation of Kubernetes Federation Cluster Configuration

To express the relationship between individual Kubernetes clusters and Kubernetes Federation
components in the TOSCA topology, the proposed system defined the TOSCA node and relationship
templates as YAML-based Cloudify plug-ins in the following manner (as Cloudify Kubernetes plugin:
plugin.yaml):

e  The Kubernetes cluster template is implemented as a component containing the Kubernetes cluster
information that exists in the cloud provider’s service when creating the topology of applications.

e  The Kubernetes Federation template is implemented as a component using the information of the
Kubernetes cluster with the Kubernetes Federation control plane installed.

e Kubernetes cluster template and Kubernetes Federation template are defined to permit
master/slave configuration (“managed_by_master”).

The Kubernetes cluster components connected to the Kubernetes federation components are
automatically generated and deleted during the orchestration lifecycle. This setup is implemented
automatically by executing a series of commands that enable the Kubernetes cluster template to be
affiliated to the Kubernetes Federation when the template is implemented as a component (as Cloudify
Kubernetes plugin: cluster_create FUNCTION of cloudify_kubernetes/tasks.py). The deletion
of the Kubernetes cluster components is accomplished similarlyy (as the Cloudify Kubernetes
plugin: cluster_delete FUNCTION of cloudify_kubernetes/tasks.py Module). As a result of this
setup, the developer can automate the distribution and federation of the Kubernetes clusters by
defining the clusters and federation in TOSCA. Furthermore, if the topology of the application
written for a single Kubernetes cluster is changed to be deployed over a Kubernetes Federation,
the application components are automatically redistributed and federated to individual Kubernetes
clusters, thereby providing a useful means to increase the reliability and responsiveness of an
organizations’ cloud service.

3.3. Definition of Horizontal Pod Autoscaler (HPA) Components

Using Kubernetes HPA enables an automatic adjustment of the number of pods according to the
workload of the service. Kubernetes administrators can set the minimum and maximum of the number
of pods by providing an HPA option.

HPA can be extended to generate the pods for Kubernetes Federation as well in the same way.
The number of pods to increase or decrease is communicated to each Kubernetes clusters. To use an
HPA, the proposed system used a YAML-based definition for the TOSCA node template and included
it with the Cloudify plug-in (as Cloudify Kubernetes plugin: plugin.yaml).

3.4. Monitoring the Information of Kubernetes Components

Some information of the Kubernetes components cannot be determined when their creation is
requested and can only be obtained after some time has elapsed. For example, a Kubernetes service
component that provides Kubernetes components with an IP address has the IP value of null at the
time of its creation. About 30 seconds to a minute later, they may be given an IP address that can be
read from the service component. A new and efficient method for receiving the information has been
devised for the situations that require an active retrieval of information from Kubernetes components
(as Cloudify Kubernetes plugin: resource_read Function of cloudify_kubernetes/tasks.py Module).

Moreover, Cloudify, the cloud orchestration tool used in this work, continually monitors the
application components by remotely installing Cloudify Agent on the smallest computing unit that
constitutes the application topology. However, Kubernetes does not recommend a SSH connection
to individual pods in virtual computing machines environment [25]. Kubernetes instead allows
connecting to the pods via “kubectl exec” command (direct access to the container) that can send
commands to the individual pods. The system proposed in this study has defined a new method
that automatically completes the kubectl commands using the name of the pod in question and the
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Kubernetes config to install Cloudify Agent (as Cloudify Kubernetes plugin: make_conn_cmd Function
of the directory cloudify_kubernetes/cloudify_agent/installer/operations.py Module).

4. Evaluation

4.1. Environment Setup for Development and Performance Verification

A simple web game server scenario has been devised to prove the operability of the proposed
system and to verify its auto-scaling ability. It is required to develop a game server in this scenario that
offers the game “Pacman” worldwide online. It assumes that the developer has defined a game server
for a single Kubernetes cluster in a TOSCA template.

Figure 4 illustrates such an execution environment setup across multiple clusters. User interactions
with the game are being handled by the load balancer to automatically add or remove web pods
in both the Kubernetes clusters in Tokyo, Japan, and Oregon, US according to the workload and
number of online users in the system. Figure 5 presents the skeleton code of the corresponding
TOSCA descriptions of the game server federation. In the figure, Kubernetes Federation and cluster
components are defined at element 1 through element 3, and HorizontalPod Autoscaler is defined as a
TOSCA Node at element 6.

Cloudify Manager 4.2 (Cloudify, New York, NY, USA, 2017) was used to run in a virtual machine
configured with CentOS 7 x64 as its operating system hosted by VirtualBox in the Ubuntu 16.04 LTS
x64 environment. Kubernetes 1.8 was used run on Google Cloud Platform, and Kubernetes clusters
were built in the Tokyo, Japan and Oregon, US areas. Each cluster contains two nodes; the node type
is nl-standard-2 (vCPU 2, RAM 7.5 GB), and Nginx is used as Web daemon, and MongoDB as the
database server by default. Each node has a web pod, database pod, and a persistent data volume.
Each web pod and DB pod have assigned a unique IP address through which it can be accessed
accordingly. The number of nodes is later scaled up or down according to the incoming traffic.
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Figure 4. Web game server scenario to demonstrate the operation of the proposed system architecture
and verifying its auto-scaling ability. GCP: Google Cloud Platform.
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inputs:
k8s_federation eonf: & (I-z)
- cluster:
server: https://3.3.3.3
name: fellowship
d)
k8s_cluster conf 1: # (2-z)
- cluster:
server: https://1.1.1.1
name: gke cloudify-kubefed asia-northeastl-a_clusterl

£ [z d)

k8s_cluster conf 2: & (3-z)
- cluster:
server: https://2.2.2.2
name: gke cloudify-kubefed us-westl-a_cluster2

ed)

node templates:
mongo_storage_class 1:
mongo_storage_class_2: #
mongo pv claim 1:
mongo_pv_claim :
mongo Svo:
mongo_rs: #

8of 13

k8s_federation: # (I-b
properties:
configuration:
file content: { get_ input:
k8s_cluster 1: # (2-b)
properties:
configuration:
file content: { get_input: k8s_cluster_conf 1 }
k8s_cluster 2: # (3-b)
properties:
configuration:
file content: { get_input: k8s_cluster_conf 2 }
pacman_sve: ¢ (<)

3 4)

k8s_federation conf }

relationships:
- type: cloudify.kubernetes.relationships.managed by master
target: k8s_federation
pacman_rs: & (5)
# (sk d)
relationships:
- type: cloudify.kubernetes.relationships.managed by master
target: k8s_federation
pacman_hpa: # (&)
type: cloudify.kubernetes.resources.HorizontalPodAutoscaler
# (sk d)
relationships:
- type: cloudify.kubernetes.relationships.managed by master
target: k8s_federation

Figure 5. Skeleton code of the Topology and Orchestration Specification for Cloud Applications

(TOSCA) definitions corresponding to the Web game server scenario.

4.2. Kubernetes Federation by TOSCA

Cloudify Manager automatically creates a federation and installs the Pacman server, once the
TOSCA template describing the Kubernetes federation is loaded to distribute. The topology map
of the entire application can be found in the Cloudify Manager’s web UI upon the completion of
the installation. The Cloudify Agent being automatically installed during the distribution process
of each pod periodically reports the status of the pods. This enables real-time monitoring of any
problems of specific components in the topology map as shown in Figure 6. The figure shows the
web Ul of the Cloudify manager after the web game server configuration and cluster federation are
completed. The Kubernetes clusters, Mongo DB, and Pacman modules are all connected to the Mongo

storage accordingly.

topology
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Figure 6. Web UI of the Cloudify Manager after the Web game server configuration and cluster

federation is complete.
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More detailed monitoring of the status of each pod can be displayed by a graph, as shown in
Figure 7. The system information sent from the pods and the transmission cycle can be modified
by defining the settings for Diamond daemon on the TOSCA template. As the workload of the web
daemon pod increases, the load is distributed in the cluster consequently. Figure 7 shows the pod
status change, when input traffic to the Oregon cluster was manually generated by sending 15 requests
10,000 times to the server’s web page using the Apache HTTP server benchmarking tool (using ab —n
10,000 —c 15 <URL> command). The “cpu_total_user” shows the percentage of the processes executed
in user mode over the entire CPU core. The “loadavg_01" and “loadavg_05" show the number of
average processes that are on standby for execution for one and five minutes, respectively. As the pod
has two virtual cores, the values exceeding 2.00 are an indication of the processes in the queue.

Deployment metric graph

800] 2201 /}\’
6001 1651

P
4004 1104 ?,-"
200 5501 /
0.00-

-o- cpu_total_user -o- loadavg_01 loadavg_05

Figure 7. Example of the pod status monitoring using the web UI of Cloudify Manager: diagram shows
the situation in which the workload of a Web daemon pod in a specific area increases dramatically.
“cpu_total_user” shows the percentage of the processes executed in user mode for the entire central
processing unit (CPU) core. As the pod node has two CPU cores, CPU usage can rise to a maximum of
200%. Moreover, “loadavg_01" and “loadavg_05" show the number of average processes that are on
standby for execution for one and five minutes, respectively.

4.3. Federated Auto-Scaling by TOSCA

As the Kubernetes clusters are federated, the game service is automatically provided by a cluster
in the other service area in the event of a sudden spike in the workload. The computing power must
be increased by adding more pods to the available node pool, if necessary. Figure 8 shows the effect of
pod auto-scaling under the forced load increase situation, as described in Section 4.2. Firstly, in the
normal operation status of the application, the number of nodes in the Tokyo cluster is one. There is
also a single pod in the Oregon cluster as shown in the figure. After a sudden increase in incoming
client requests to the cluster, the system automatically adjusts the number of Pacman pods in the
Oregon cluster to handle the workload surge smoothly, while maintaining the system performance.
The graph compares CPU usage in the federated clusters under normal and heavy load cases. As the
input grows beyond the capacity, the federated HPA kicks in to add more pods to the Oregon cluster.
In the experimental run, up to four pods are allocated to distribute the load increase among them,
which is indicated in the case of “Heavy Load with HPA”. The “Heavy Load” case represents a single
pod case for the same load. It is noted that the target CPU usage for HPA is set to 500 millicores in
the experiment.
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Figure 8. Auto-scaling and load balancing among Kubernetes clusters.

5. Related Research

The necessity to federate cloud services has been discussed over the past several years [9,26,27].
However, existing studies are limited to the scope that roughly indicates the direction for future
research. In contrast, this work has explored and demonstrated the feasibility of federated cloud
services by building a working prototype system based on relevant standards and mainstream
technologies; this paper proposes an architectural design of container-based cloud orchestration
system that can scale out to multiple clusters, as the system load increases. It also presents our
validation efforts to conduct a performance verification study by deploying and running a sample
cloud service in an actual cloud environment.

The problem of multi-cloud orchestration support has been investigated for a while [9,20,26-28].
As argued in recent research, there might be a need for a look from a different angle [11,29]; the
problem might be more effectively tackled when considering cloud application portability, multi-cloud
interoperability, and elastic runtime adaptation altogether at the same time. According to the proposed
approach, the multi-cloud problem can be divided into two sub-problems of elastic platform definition
and cloud application definition [11]. Support for infrastructure-awareness of elastic container
platforms provides an execution foundation for cloud-native applications translated from their
universal definition to a particular format targeting a specific container platform. Therefore, the end
result of their research is to enable cloud applications to migrate to a different cloud service provider
at runtime. It is noted that we also aim for a similar research goal, that is, application topology-based
multi-cloud orchestration support on top of container platforms. However, the difference is that our
primary goal is to corroborate the integration of the trio targeting for a specific container platform,
i.e., Kubernetes, whereas their work provides a more generic multi-cloud migration solution that can
accommodate heterogeneous container platforms including Kubernetes, Docker Swarm, and Apache
Mesos. There are a few other differences worth mentioning. First, runtime migration to different
container platforms is not our primary focus. Also, when it comes to the way to define application
blueprints, they rejected TOSCA to define a new, lightweight DSL. It contrasts our design decision
which was made in favor of TOSCA, because the language is considered as a mature standard for
cloud application definitions.

The BEACON framework proposed by Moreno-Vozmediano et al. [30] pertains to a networking
solution for the federation of the cloud network; thus, it is different from this work, because the
emphasis in our case is placed on enabling federation in the service level. The research work of
Tricomi et al. [28] introduced a multi-component application development structure that used TOSCA
expressions to orchestrate the deployment of various cloud applications in OpenStack across multiple
federated cloud providers. This differs from ours in that we present an approach and corresponding
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architectural design that can reap the benefits of application portability from TOSCA-based declarative
topology descriptions and performance gains from container-based fine-grained compositions.
Villegas et al. [27] thought that the problem could be solved by collecting and stacking the cloud service
federation vertically that are classified into the software-as-a-service (SaaS), platform-as-a-service
(PaaS), and infrastructure-as-a-service (laaS) cloud services. Our work proposed a more concrete
solution to the same problem, using a container-based method for federating the clusters, to keep
abreast of recent advances in the relevant technologies.

A model-driven framework can be used to connect a platform-independent cloud model of
services with cloud-specific operations [31]. Cloud management tools were used to deliver auto-scaling
deployment across multiple clouds using automated model-to-configuration transformation. This is
different from our work because we do not use the model transformation approach, with our proposed
orchestration architecture centered on the idea of federating container clusters using a TOSCA-based
cloud orchestration tool. We showed that the container clusters can be automatically distributed and
federated to the service areas of a cloud provider. Our approach enables the federation at the service
level and has the competence to be portable and declarative.

Our evaluation study of the proposed scheme is designed to use a web game server case, which
adequately shows the efficacy of it to deal with varying loads. However, it should also be noted that a
follow-up validation of our orchestration system, which involves some benchmark applications being
widely used within the microservice research community [32], should provide further assessment of
our approach. Such an effort should reveal the strengths and weaknesses of our proposal compared to
other approaches to multi-cloud service orchestration.

6. Conclusions

This paper proposed an architectural design and its prototype implementation that federates
Kubernetes clusters using a TOSCA-based cloud orchestration tool. By using the prototype, it was
verified that container clusters could be automatically distributed and federated to the service areas of
a cloud service provider.

The primary contribution of this work lies in its TOSCA-based orchestration architecture that
allows the federation of the container clusters within the service areas of an individual cloud provider
as well as across that of different cloud providers. It can also achieve efficient utilization of the cluster
computing resources, as the federation of the container-based clusters enables them to be deployed
dynamically at the granularity of micro-services. Our validation efforts considered a single cloud
provider case only for federated cloud services, which is currently the predominant form of container
cluster federation. However, it is noted that our approach does not constrain us to the case of multiple
cloud providers; Deploying and auto-scaling the federation of clusters across different cloud providers,
using the cloud orchestration tool, will realize a federation with better reliability and availability.

This study helps us realize that containers cannot only be seen as an alternative to VMs at the
infrastructure level, but they are also an application packaging mechanism relevant to platform-
and software-as-a-service offerings. Providing cloud application management based on lightweight
virtualization, the container technology positively impacts on both the development and deployment
aspects such as testing and monitoring of industrial containerized applications. The system proposed in
this research article allows active auto-scaling using Kubernetes federation HPA. As a follow-up to this
research in this article, we propose research on a scheme that actively changes the auto-scaling policy
based on the monitoring data of application components obtained from the cloud orchestration system.
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