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ABSTRACT A technology evaluation system is mandatory to successfully implement a technology-based
financial support system. Technology evaluation has generally been relied on the experts’ manual work.
Various quantitative indicators have been presented to improve the efficiency of this manual work. Among
these indicators, the spillover effect is perceived as useful for the disposal of patents of a firm, which received
credit guarantee but lost its ability to service its debt. A model for measuring the spillover effects has already
been proposed, but it has low reliability. Therefore, this paper presents a systematic approach for measuring
technological spillover effects between technology classes. The approach mainly relies on patent data due
to its features of the latest reliable sources of technological intelligence. We first extract co-classification
information from patent data and generate association rules between technology classes. The relationships
represented by the rules, however, can only depict the direct effects. Therefore, we first derive the indirect
effects from the direct ones and then integrate both the effects to measure the technological spillover effects.
We conduct an empirical study to show the applicability of the presented approach using patents granted in
the Korean Intellectual Property Office. We expect that this paper can contribute to establish a quantitative
evaluation model to help assess technologies for successful technology-based credit guarantee system. It will
improve the reliability of the technology assessment by reducing the variance of the qualitative evaluation
results due to the individual differences of the evaluator. Furthermore, it will also enhance the efficiency of
evaluation work.

INDEX TERMS Association rule mining, DEMATEL, technological spillover effect, technology evaluation,
technology financing.

I. INTRODUCTION

Technology financing as a technology-based financial sup-
port system for high-tech firms has been crucial to secure
a sustainable growth power since it can help overcome the
problem of lack of financial resources arose by the conven-
tional collateral-based lending practice of banks [1], [2]. One
possible solution for the realization of technology financ-
ing might be to provide credit guarantees to firms with
technology [3]. It regards the technology as collateral and
provides financial support that corresponds to the value
of the collateral. Therefore, to successfully implement the
technology-based credit guarantees, a system that can clearly

assess the value of technology is required. Korea Technology
Finance Corporation (KOTEC) is the most representative
non-profit credit guarantee institution [4]. KOTEC has devel-
oped a Kibo Technology Rating System (KTRS) that includes
33 detailed indicators to assess the potential future value
of technology. The KTRS conducts an assessment of the
technology in both quantitative and qualitative aspects. The
quantitative evaluation is performed mainly in technology
classes and the qualitative evaluation is done in individual
technology.

Among the detailed indicators in the KTRS, the technol-
ogy spillover effect determines how much the knowledge
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implied by the technology affects the entire industry, and
ultimately represents the ability to derive new inventions [5].
The spillover effect is naturally recognized as an impor-
tant criterion because it is useful for the disposal of patents
(or strictly speaking patented technologies) of a firm with a
credit guarantee. When the firm loses its ability to service its
debt, KOTEC will dispose of its technologies through tech-
nology transfer or sale. In this case, technologies with high
spillover effects are generally considered to be easy to dispose
of. The current evaluation model for the spillover effects in
the KTRS uses patent citation information and odds ratio
on a contingency table, but it has low reliability. Therefore,
this study presents a systematic approach for measuring tech-
nological spillover effects between technology classes. The
approach mainly relies on patent data due to its features of the
latest reliable sources of technological intelligence [6], [7].
Patent data are widely incorporated into an analysis of tech-
nological trends including examining important factors for
the invention of biology-related technologies [8], identify-
ing potential opportunities for new products or technology
development [7], [9], analyzing technology trends [10], and
investigating knowledge spillovers [11].

The presented approach first extracts co-classification
information from patent data. A patent is naturally classi-
fied into multiple International Patent Classification (IPC)
codes. The co-classification information can be generated
by extracting IPCs assigned together in each patent. And
then, association rule mining is applied to obtain connection
relationships between IPCs using the extracted information.
Association rule mining discloses interesting relationships
among various items examining their co-occurrences in
a dataset [12], [13]. The relationships, however, only
depict direct connections between technology classes so
our approach also utilizes a Decision Making Trial and
Evaluation Laboratory (DEMATEL) method to generate
comprehensive spillover effects including direct and indi-
rect influential relationships. DEMATEL as one of network
analysis-based decision making techniques aims to exam-
ine elements in complicated systems and create meaning-
ful relationships between elements by exploring the extent
that each element exerts on others [14]-[16]. To show the
applicability of the presented approach, we carry out a case
study using patents granted in the Korean Intellectual Prop-
erty Office (KIPO). Moreover, to examine the feasibility of
the approach, we investigate how the evaluation results of
the approach explain the probability of default of the firms
who have been guaranteed by the KOTEC. The biggest risk
factor for the KOTEC is that the guaranteed firm is in default
because the KOTEC has the obligation to pay off its debt.
This is why we use the probability of default in the feasibil-
ity verification process. To do that, we build a logit model
between the extent of the spillover effects and the default
probability of each technology class. And then, we conduct
a Receiver Operating Characteristic (ROC) curve analysis
to determine the extent to which the approach explains the
default probability by calculating the Area Under the ROC
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curve (AUC) which indicates a measure of the detection
capability [17]. We expect that this study can contribute
to establish a quantitative evaluation model to help assess
technologies for successful technology-based credit guaran-
tee system. It will improve the reliability of the technology
assessment by reducing the variance of the qualitative evalu-
ation results due to the individual differences of the evaluator.
Furthermore, it will also contribute to enhance the efficiency
of evaluation work.

Il. GROUNDWORK

A. TECHNOLOGICAL SPILLOVER EFFECT ANALYSIS

Patents represent the trends of technological innovation and
development as a result of inventions with high technological
reliability [18], [19]. The patent analysis enables us to illus-
trate the technological knowledge flow that occurs between
various technological classes, and furthermore, to quantify
the extent of the technological spillover effects based on the
construction of knowledge flow network. Among the patent-
related data, citation information is known to be useful in
depicting how knowledge flows across diverse technology
classes [20]-[23] because it has the ability to capture the
complex relationships between technology classes by clari-
fying technological antecedents and descendants [24]. In this
regard, the patent citation information has been used in a
variety of studies for the analysis of technological spillover
effects including measuring the extent of the spillover effects
according to four knowledge flow patterns [5], identify-
ing opportunities for new technology development [25],
investigating technological innovation capabilities in Africa
by manifesting various types of knowledge spillovers [26],
and examining the influence of patent citations on firms
growth forecasts [27]. However, the latest patents do not
have enough time to be cited, so the citation-based anal-
ysis has a limitation in that it does not reflect recent
technological trends properly [6]. To address this limitation,
patent co-classification analysis has been widely adopted
for the identification of knowledge flows among technol-
ogy areas since it can display direct knowledge flows
by extracting the IPCs assigned to each patent [28], [29].
Several studies have combined network analysis meth-
ods with the co-classification analysis to explore the
technological spillover effects from these direct influence
relationships [12], [29], [30]. Park and Yoon [29] apply the
Social Network Analysis (SNA) to the directed knowl-
edge flow network constructed through the co-classification
analysis. They evaluate the intermediarity of technology
classes by calculating betweenness centrality and try to
explain the technological spillover effects based on the mea-
sured intermediarity. However, the intermediarity does not
adequately explain the spillover effects since the centrality
shows only the degree to which a class is directly or indi-
rectly close to other classes. Similarly, Lim and Park [30]
investigate which roles of intermediaries the technology
classes perform in the relative industry in the knowledge
flow network generated by the co-classification analysis
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TABLE 1. Three measures to determine the interestingness of association rule A — B.

measure Formula | Description
It examines the rule’s usefulness. A rule with a high support value implies that the co-occurrence of the
Support P(ANB) - . . :
antecedent and consequent items in the rule is relatively frequent.
Confidence P(BIA) ItA examines _the mlt?’s certainty. A rul_e with a high confidence value implies that the antecedent item is
highly associated with the consequent item.
" It examines the correlation between the antecedent and consequent items. A lift greater than 1 means a
Lift Plﬁﬁ‘;)) positive correlation and a rule with a high lift value implies that the co-existence of the items is more likely
not just a random occurrence, but rather due to the implication relationships.

including intra-industry mediator, inter-industry mediator,
outward diffuser, and inward absorber. However, they only
identify the roles of technology classes and do not quantify
the extent of the spillover effects that each class has on other
classes. Kim et al. [12] evaluate technological cross-impacts
and identify core technologies using Analytic Network Pro-
cess (ANP). However, ANP only considers the extent to
which a class affects others. To measure the comprehensive
spillover effects, the extent to which a class is affected by
others should also be considered.

There have been, of course, lots of studies related to the
technological spillover effect analysis that are not based on
the patent data such as analyzing innovation intermediaries
within industrial clusters’ knowledge systems [31], investi-
gating factors that negatively affect the spillover effect in
reaction to foreign direct investment [32], and analyzing
the impact of international channels on spillover for techno-
logical advance [33]. These studies, however, have mainly
focused on the identification of influential factors and the
extent to which they affect the knowledge spillovers from a
particular industry perspective. However, for the applicabil-
ity in the KOTEC, the extent of the technological spillover
effects on all the technology classes should be quantifiable
and measurable. The patent analysis can be an excellent tool
to make this possible, so this study is based on it. Most patent
analysis-based studies generally utilize bibliometric data of
patent documents including patent classification codes and
citation information [24], [34]. Using only bibliometric data
naturally tends to exclude the technological implications
described in patent documents [5], [35]. To remedy this
problem, lots of studies have tried to encompass the tech-
nological descriptions into the patent analysis processes by
using text mining techniques [36]. However, this study aims
to measure the technological spillover effects in the perspec-
tive of technology classes (not individual technology), so this
study uses only the bibliometric data of patents.

B. ASSOCIATION RULE MINING

Association rule mining is an unsupervised learning tech-
nique for discovering significant relationships between items
in a given database [37]-[40] under an assumption that if
people frequently purchase two items together in a single
transaction, there must be a hidden relation between the
co-purchased items [41]-[43]. The relationship is formulated
as a form of a rule like A — B where A is the antecedent
and B is the consequent which means that who purchases the
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item A will also generally tend to buy the item B [44], [45].
A number of studies have applied the association rule mining
technique to identify core technology classes analyzing tech-
nological cross-impact [12], present an approach to design
convergent product concepts [37], handle textual data for
industrial knowledge management [46], propose a proba-
bilistic model that can improve the efficiency of detecting
medication errors [47], and present a stock market portfolio
recommender system [48].

Three measures, support, confidence, and lift, are exam-
ined to determine the interestingness of generated association
rules as shown in Table 1 [17], [38], [49], [50]. The support
measure formulated as P(A N B) indicates the probability that
items A and B occur simultaneously in all transactions. The
confidence measure formulated as P(B|A) denotes the condi-
tional probability that the consequent item B of the associa-
tion rule occur in transactions given that the antecedent item A
has already occurred in the same transaction. The lift measure
formulated by dividing the confidence value by the probabil-
ity of the consequent item B shows the statistical correlation
between items A and B. The Apriori algorithm [51] is the
most representative technique to generate association rules
that make uses of pre-defined minimum threshold values of
support, confidence, and lift [52]. It first collects frequent
itemsets that have higher support values than the minimum
threshold value, and then generate rules using the collected
itemsets that have confidence and lift values exceeding the
corresponding threshold values.

C. DECISION MAKING TRIAL AND

EVALUATION LABORATORY

DEMATEL investigates the interrelationship structure among
the relative factors to make decisions in complex prob-
lems [53], [54]. It measures the extent of direct and indirect
effects of the factors by capturing their directed and weighted
relationships and then makes the priorities by quantifying
the impact and causality [55]. The procedure for applying
DEMATEL is as follows [56] : 1) constructing a direct rela-
tion matrix which shows the direct effects between factors,
2) normalizing the direct relation matrix by dividing all
elements by the maximum value of the sum of rows and
columns so that the value of each element falls into between
0 and 1, and 3) computing a total relation matrix using
convergent solutions to present comprehensive causal rela-
tionships by integrating the direct and indirect effects. In this
study, DEMATEL is used to assess the extent of technological
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FIGURE 1. Procedural framework for technological spillover effect analysis approach.

spillover effects that represents the net effects that each
technology class contributes to others. Various studies have
used DEMATEL to examine the influential effects of factors
such as generating technology impact networks [57], explor-
ing the effects of technological knowledge spillovers [14],
identifying a set of criteria for evaluating a green project
management combining DEMATEL and analytical network
process [58], and investigating firms innovation capability
evaluation factors [59].

Ill. TECHNOLOGICAL SPILLOVER EFFECT

ANALYSIS APPROACH

To explore how to analyze technological spillover effects,
we present a procedural framework which consists of 3 steps
as shown in Fig. 1: 1) extracting co-classification informa-
tion from patent data, 2) generating association rules that
represent the direct effects between technology classes, and
3) measuring technological spillover effects by deriving the
indirect effects from the direct ones and then integrating the
both effects.

A. EXTRACTING CO-CLASSIFICATION INFORMATION

A patent may generally be classified into multiple IPCs to
indicate that the inventive solution implied in the patent has
applicability in diverse technology domains. The fact that
technological knowledge has been claimed in various tech-
nology fields means that this knowledge can be utilize in
these fields, so capturing this point enables us to derive the
aspect of knowledge sharing and transfer between technology
areas [29]. In this regard, the patent co-classification analy-
sis depicts the extent of technological knowledge exchange
among technology classes by extracting co-classified infor-
mation from patents. The IPC is represented as a set of
alphanumeric codes and consists of hierarchical sets of
sections, classes, subclasses and groups. In general, most
studies related to the technology trend analysis based on the
patent data have used the IPC subclasses that allows for the
creation of an appropriate number of technology classes with
clear technological boundaries [13], [15], [29], [60], so this
study also utilizes the IPC subclasses.
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B. GENERATING ASSOCIATION RULES

The association rule mining generates meaningful relation-
ships between items or itemsets using the information about
the co-purchased items in the same transaction. This study
attempts to identify connection rules using the information
about the co-occurred IPCs in the same patent. Therefore,
to apply the association rule mining approach to our study,
we consider a patent document and co-occurred technology
classes in the patent as a transaction and co-purchased items
in the transaction, respectively. Based on this assumption,
we can generate association rules by investigating how
many times the technology classes appear simultaneously
in the same patents. We examine three measures, support,
confidence, and lift, to determine the interestingness of the
generated association rules. The support measure means how
often the technology classes in the rules occur in all the
patents. If the support value is low, the usefulness of the rules
is lowered. Therefore, we pre-define the minimum threshold
value and select only rules that have a support value above this
one to ensure that only useful rules are applied in subsequent
analysis. The lift measure examines the correlation between
the antecedent and the consequent technology classes. If this
value is less than 1, the negative correlation exists. Therefore,
only rules with a lift value of 1 or more are selected to
ensure that only rules with positive correlation can be used
in subsequent analysis. The confidence measure means how
closely the technology classes in the rules are associated.
In this study, we use this confidence value as the extent of
direct influence of the antecedent class on the consequent
class because it shows how strong the association between
the two classes is.

C. MEASURING TECHNOLOGICAL SPILLOVER EFFECTS

The DEMATEL comprehensively assesses the degree to
which each relative factor affects and is affected in a complex
network. To apply the DEMATEL, it is necessary to measure
the direct influence relationships between relative factors and
construct a direct relation matrix based on the measurement
result. In this study, we establish a direct relation matrix using
the association rules generated in the previous step since
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TABLE 2. Summary of descriptive statistics and correlation coefficients.
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2. Refined patents 20,664 | 10,338 | 0.889¢ | 1 269 561 0.832¢ | 1

these rules show direct influential relationships between tech-
nology classes. After normalizing the direct relation matrix
by dividing all elements by the maximum value of the sum
of rows and columns, we create a total relation matrix that
represents the overall comprehensive spillover effects includ-
ing direct and indirect influence relationships. In the total
relation matrix, each cell value indicates the degree to which
antecedent class directly or indirectly affects the consequent
class, so the sum of the rows represents the degree to which
each class affects all other classes and the sum of the columns
means the degree of influence that each class receives from all
others (Fig. 2). We name the sum of the rows as cause and the
sum of the columns as effect. The sum of the cause and the
effect indicates the impact of how much influence the class
has on the technological spillover network and the difference
of the two implies the causality that shows whether the class
mainly influences or is affected.

IV. ILLUSTRATION
A. CO-CLASSIFICATION INFORMATION EXTRACTION

To extract the patent co-classification information, we collect
patents granted in the KIPO. The total number of the collected
patents is 427,250. Among them, we only use the patents
that classified into two or more IPC subclasses since it is
unnecessary to have patents classified into a single IPC in
the analysis of technological spillover effects between tech-
nology classes. Form this constraint, 165,311 patents remain
and these refined patents will be only considered for the
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technological spillover effect analysis. In this sense, we use
only about 39% of all available patent data. It indicates
that we should check whether this study lose the general-
ity or not due to the use of only a few data sets. To do this,
we compare the distribution of all available patents and that
of the refined patents by IPC by measuring the Pearsons
correlation coefficients. As shown in Table 2, the correlation
coefficients are statistically significant at the 0.01 level. Note
that, the number of the refined patents is always smaller than
the number of all available patents in all the IPC sections
and subclasses. Thus, the correlation coefficients naturally
show high positive values. Nevertheless, the fact that the
coefficients are greater than 0.8 indicates that there are very
strong positive linear relationships between them. Therefore,
although a few patent data sets are used, this study can be
thought of as not losing the generality because the refined
patents can adequately represent all available patents. Using
the refined patent data, we calculate the co-occurrence fre-
quency of pairs of technology classes as shown in Table 3.
This co-occurrence information will be used in the next step
as input data to generate association rules between technol-
ogy classes.

B. ASSOCIATION RULE GENERATION

To generate association rules using the Apriori algorithm, it is
required to define threshold values for the three measures,
support, confidence, and lift. First, we specify a minimum
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TABLE 3. Co-occurrence frequency of pairs of technology classes (top 20).

Pair of technology classes | Co-occurrence frequency | Pair of technology classes | Co-occurrence frequency
A61K A61P 5,222 C08J CO8L 1,373
HO04B HO4W 4,231 GO6F HO4L 1,255
HO04B HO4L 3,183 GOIR HOIL 1,185
HO4L HO4W 2,713 CI2N C12Q 1,165
CO8K CO8L 2,251 GO6F G06Q 1,116
A61K A61Q 2,228 GO2F G09G 1,015
BO1D CO2F 1,668 C21D C22C 1,002
F21S F21V 1,511 GO2F HO1L 1,002
GO02B GO2F 1,437 A61P C07D 981
A61K C07D 1,430 HO1L HO5B 961
TABLE 4. Generated association rules (top 20).
Antecedent class | Frequency (support) | Consequent class | Frequency (support) | Confidence
A61Q 2,589 (1.57%) A61K 12,534 (7.58%) 86.06%
AO1P 520 (0.31%) AOIN 1,135 (0.69%) 80.00%
GO6N 111 (0.07%) GO6F 9,156 (5.54%) 69.37%
AOIH 457 (0.28%) CI2N 5,825 (3.52%) 67.83%
CION 96 (0.06%) C10M 249 (0.15%) 67.71%
A23P 433 (0.26%) A23L 3,379 (2.04%) 67.44%
A61P 7,964 (4.82%) A61K 12,534 (7.58%) 65.57%
F25C 193 (0.12%) F25D 843 (0.51%) 63.21%
F21Y 1,548 (0.94%) F21V 4,380 (2.65%) 60.72%
A4TH 83 (0.05%) E06B 1,367 (0.83%) 60.24%
A43C 83 (0.05%) A43B 316 (0.19%) 60.24%
A23F 214 (0.13%) A23L 3,379 (2.04%) 58.41%
B22C 156 (0.09%) B22D 1,051 (0.64%) 57.69%
F21W 671 (0.41%) F21V 4,380 (2.65%) 56.33%
A45F 175 (0.11%) A45C 532 (0.32%) 56.00%
CI12H 193 (0.12%) CI12G 514 (0.31%) 54.92%
HO4H 401 (0.24%) HO4N 5961 (3.60%) 54.11%
B29L 93 (0.06%) B29C 3,415 (2.07%) 53.76%
A23G 302 (0.18%) A23L 3,379 (2.04%) 53.64%
C12G 514 (0.31%) CI2R 1,597 (0.97%) 53.31%

threshold value for the support measure that examines the
usefulness of the generated rules. If the threshold value is
low, a large number of rules will be generated including
technology classes having very low appearance frequencies.
To set the minimum threshold value for the support measure,
we extract the co-occurrence frequencies of the technology
classes from the collected patent data and derive the asso-
ciation rules directly from them. And then, we calculate
the average support value of all derived rules to determine
the minimum threshold value based on the average value.
The average support value is 0.36% so we set the minimum
threshold value to 0.05% which is lower than the average
value to ensure that the technology classes with extremely
low frequencies of occurrence are not included in the final
association rule set, but a sufficient number of rules can be
obtained for subsequent analysis. Second, we determine a
minimum threshold value for the confidence measure that
examines the certainty of the rules. If the threshold value is
low, rules with very low certainties will also be generated.
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The minimum threshold value determines whether a slight
influence relationship between technology classes is taken
into account or not. The confidence values of the association
rules generated in this step are judged as the quantitative level
of the direct influence relationships and the comprehensive
spillover effects will be calculated based on these direct
relationships at the subsequent step. It implies that the rules
having slight direct relationships will not be reflected much in
the spillover effects. Therefore, we set the minimum thresh-
old value for the confidence measure to 0.05% just as the
minimum support threshold value. Finally, we set a thresh-
old value for the lift measure that examines the correlation
between the antecedent and consequent technology classes.
If this value is less than 1, it means that there is a negative
correlation between them. Therefore, we set a constraint that
the lift value must be greater than 1 to ensure that only rules
with positive correlation can be used in subsequent analysis.
Applying the Apriori algorithm based on these constraints
leads to generate 33,638 association rules (Table 4).
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TABLE 5. Total relation matrix of technology classes.

AO01B A01C A01D AOIF AO0IG | AOIH AOIK | AOIM | AOIN AO1P
AO01B | 0.1455 | 0.2578 | 0.2818 | 0.0540 | 0.4537 | 0.0457 | 0.1193 | 0.0739 | 0.1277 | 0.0649
AO01C | 0.2278 | 0.1059 | 0.0776 | 0.0204 | 0.5316 | 0.0561 | 0.1332 | 0.0985 | 0.1801 | 0.0923
AO01D | 0.3405 | 0.1062 | 0.1139 | 0.1102 | 0.4055 | 0.0445 | 0.1338 | 0.0540 | 0.1190 | 0.0602
AOIF | 0.1279 | 0.0544 | 0.2163 | 0.0431 | 0.2866 | 0.0512 | 0.1199 | 0.0442 | 0.1248 | 0.0578
A01G | 0.0524 | 0.0698 | 0.0385 | 0.0137 | 0.3084 | 0.0538 | 0.1321 | 0.0807 | 0.1338 | 0.0614
AO1H | 0.0251 | 0.0350 | 0.0201 | 0.0120 | 0.2653 | 0.1442 | 0.1201 | 0.0406 | 0.2379 | 0.1061
AO1K | 0.0305 | 0.0385 | 0.0284 | 0.0130 | 0.2992 | 0.0551 | 0.1086 | 0.0606 | 0.1310 | 0.0614
AOIM | 0.0466 | 0.0704 | 0.0280 | 0.0118 | 0.4415 | 0.0466 | 0.1482 | 0.0658 | 0.1698 | 0.0844
AOIN | 0.0288 | 0.0466 | 0.0220 | 0.0119 | 0.2683 | 0.0959 | 0.1159 | 0.0617 | 0.5946 | 0.5994
AOIP | 0.0325 | 0.0528 | 0.0247 | 0.0122 | 0.2715 | 0.0940 | 0.1199 | 0.0676 | 1.3097 | 0.4951

C. TECHNOLOGICAL SPILLOVER EFFECT MEASUREMENT
We first construct an initial direct relation matrix using the
relationships and the confidence values represented by the
association rules generated in the previous step. With this as
a starting point, this step applies the DEMATEL method to
finally produce technological spillover effects. The normal-
ized direct relation matrix can be obtained by dividing all the
cell values of the direct relation matrix by the maximum value
between the sum of the rows and the sum of the columns.
In this case study, the maximum value is 9.4206. And then,
the total relation matrix is computed by using convergent
solutions to present comprehensive causal relationships by
integrating the direct and indirect effects (Table 5). In the
total relation matrix, the sum of the rows expresses the
cause, the sum of the columns represents the effect, and
the sum of the cause and the effect indicates the impact.
We regard this impact value as a technological spillover effect
of each technology class. However, as can be seen in Table 6
the effect value has a relatively larger variance than the
cause value so summing them up simply makes the impact
value largely biased towards the effect value. To remedy this
problem, we normalize each of these and add them together.
Table 7 shows the technological spillover effects for each
technology class calculated using this approach.

TABLE 6. Summary of descriptive statistics of cause and effect.

Category | Min. Max.
Cause(r) 16.14 52.58 48.45 3.46
Effect(c) 1.36 | 656.35 48.45 77.30

Average | Stdev.

HO1L (semiconductor devices) appears to have the largest
spillover effect value. It is believed that this is due to the
special situation of Korea which has achieved rapid economic
growth based on the electronics industry including the semi-
conductor business. From a global viewpoint, semiconductor-
related technologies have had a significant impact on the
development of advanced capabilities in a variety of indus-
try fields including telecommunications, automobiles, and
consumer electronics [61]. These technological trends seem
to be reflected in the results of the technological spillover
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effect analysis. A61K (preparations for medical, dental,
or toilet purposes) is mainly about the prevention or allevi-
ation of abnormal conditions of the living body so it can be
a main technological application domain where technology
development occurs by absorbing the technological knowl-
edge from the external areas including organic chemistry.
This class has innovative impact on various medical-related
fields such as nanobiochips and nanomedicine through the
convergence with the diagnostic and therapeutic classes [15].
HO4B (transmission) is largely related to the transmission
systems of measured values, control signals, and digital
information. It has provided technological advances on the
data-driven business analytics-related fields through the tech-
nological convergence with the information technology and
data science. It has played a pivotal role in technological
convergence with multiplex communication, electric digi-
tal data processing, wireless communication networks, and
broadcast and pictorial communication in information and
communication technology standards [62].

V. DISCUSSION

A. SPILLOVER EFFECTS BY FINANCIAL FACTORS

This study focuses on the spillover effects from a technical
point of view so we use only the patent data to measure the
effects. However, in the spillover effects from an industrial
point of view, besides technical aspects, financial factors can
also have a significant impact. Therefore, it is also mean-
ingful to understand whether the results of this study reflect
the effects of financial factors. This study used patent data
granted in the KIPO during 2010 and 2013. Just before this
time, there was a financial crisis triggered by the Lehman
Brothers collapse and Korea was also directly affected by the
crisis. The analysis period of this study corresponds to the
period of recovery from this crisis. To determine whether the
spillover effects obtained from this study are consistent with
this economic recovery trend, we calculate annual spillover
effects (Table 8). Both the total amount and the average value
of the spillover effects appear to largely reflect the recovery
trend. It is, therefore, reasonable to assume that external
factors such as financial crises have some influence on the
spillover effects. It is obvious that quantitative assessment of
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TABLE 7. Technological spillover effects between technology classes (top 20).

Technology class | Cause(r) | Effect(c) | Impact (r+c) | Normalized cause(n_r) | Normalized effect(n_c) | Spillover effect (n_r+n_c)

HO1L 48.25 656.35 704.60 0.8811 1.0000 1.8811
A61K 51.94 556.86 608.80 0.9826 0.8481 1.8307
H04B 49.53 586.24 635.77 0.9164 0.8930 1.8094
HO4W 49.94 438.13 488.07 0.9276 0.6668 1.5944
HO4L 49.68 422.69 472.37 0.9203 0.6433 1.5636
A61P 52.24 354.33 406.57 0.9906 0.5389 1.5295
GO6F 48.39 401.66 450.05 0.8850 0.6112 1.4962
COSL 47.41 357.49 404.90 0.8582 0.5437 1.4019
GO2F 48.81 306.18 354.99 0.8967 0.4654 1.3621
CI2N 51.15 258.97 310.12 0.9608 0.3933 1.3541
GOIN 48.33 302.03 350.36 0.8835 0.4590 1.3425
BO1D 48.01 296.47 344.48 0.8747 0.4506 1.3253
HO4N 49.18 261.93 311.11 0.9067 0.3978 1.3045
G02B 48.68 258.20 306.88 0.8931 0.3921 1.2852
C08J 47.87 242.59 290.46 0.8708 0.3683 1.2391
CO2F 48.35 227.44 275.79 0.8839 0.3452 1.2291
C07D 51.72 163.51 215.23 0.9766 0.2476 1.2242
CO8K 47.68 218.31 265.99 0.8656 0.3312 1.1968
F21v 49.05 192.41 241.46 0.9032 0.2917 1.1949
A23L 50.69 151.64 202.33 0.9481 0.2294 1.1775

TABLE 8. Technological spillover effects by year. Therefore, this study attempts to explore the feasibility of the

proposed approach by examining how the spillover effects

Year 2010 | 2011 | 2012 | 2013 explain the probability of default. To do that, we assign a

Spinglvlg ggects 394.25 | 431.82 | 450.78 | 442.90 rating for each technology class according to the correspond-

Average of ing spillover effects and collect the results of technology

spillover effects 0.9042 1 09596 | 0.9907 | 0.9670 evaluation of several firms performed by the KOTEC. Some

the degree of influence by financial factors is very important
to precisely measure the comprehensive spillover effects of a
combination of technical and financial aspects. To do this, itis
necessary to utilize a wide range of financial data including
R&D investment, sales, operating profits, and the number of
employees in each industry. Although investigating financial
spillover effects caused by some external factors is crucial,
it is beyond the scope of this study focusing on the techno-
logical spillover effects, so we will leave it as a future study.

B. COMPARISON BETWEEN PROPOSED

APPROACH AND CURRENT APPROACH

This study proposed a systematic approach to measure the
technological spillover effects between technology classes.
To examine the feasibility of the proposed approach,
we investigate how the measurement results of the approach
explain the default probability of the obligors who have been
guaranteed by the KOTEC. It is important to show that the
beneficiaries of the technology finance system achieve great
economic growth for the system utilizing the technology-
based credit guarantees to be successful. The KOTECs
greatest risk in continuing with the technology-based credit
guarantee system is that the beneficiaries are in default.
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of those firms are now in default. And then, we construct a
logit model which is formulated as:

=a— fx (1)

logit(p) = log - P

where p denotes the probability of default and x means the
score in accordance with the spillover effect rating. We con-
duct a ROC curve analysis to determine the extent to which
the spillover effects explain the probability of default. The
total number of technology evaluation cases used in the fea-
sibility verification process is 7,862. Table 9 summarizes the
constructed logit models based on the proposed approach
and the KTRSs current evaluation approach for the spillover
effects. First, the proposed approach shows an increase in
default rates as spillover effect ratings are lowers whereas
the current approach has little or no correlation between
the default rates and the ratings. It implies that the pro-
posed approach better explains the relationship between the
spillover effects and the probability of default than the current
approach. Second, the logit model generated through the
proposed approach is statistically significant at the 0.01 level,
but no significant model is created through the current
approach. A positive 8 means that the higher the spillover
effect rating, the lower the logit for the default probability.
Finally, the proposed approach offers an improvement over
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TABLE 9. Comparison of logit models of proposed approach and current approach.

Approach Default rates per spillover effect rating B p-value AUC
A B C D
Current approach 6.74% | 6.34% | 7.32% 4.02% -0.042 0.614 0.500 (default)
Proposed approach | 5.72% | 7.12% | 8.75% 9.68% 0.207 0.010 0.551
TABLE 10. Comparison of logit models of proposed approach and current approach.
Recall Precsion
Approach
DT RF MLP Average DT RF MLP Average
Proposed approach 0.8336 | 0.8277 | 0.6709 | 0.7774 | 0.9129 | 0.9097 | 0.5283 0.7836

SNA-based approach [29] | 0.8365 | 0.8412 | 0.4520

0.7099 | 0.8742 | 0.8716 | 0.5264 | 0.7574

ANP-based approach [12] | 0.7611 | 0.8180 | 0.6491

0.7427 0.9109 | 0.8843 | 0.5471 0.7808

the current approach with an AUC value of 0.551. Of course,
the AUC value is not absolutely high. Our approach is based
solely on the patent data, but the default probability is basi-
cally related to financial performance. It indicates that it is
impossible for our approach to accurately predict whether a
firm will be in default or not. Moreover, the purpose of our
study is not to present a classification model, but to suggest
an approach to measure the technological spillover effects
in the perspective of technology classes. We only want to
compare our approach with the current approach using the
AUC values. In this sense, we can conclude that the approach
proposed in this study has better performance in several
aspects than the spillover effect evaluation model currently
used in the KOTEC.

C. COMPARISON BETWEEN PROPOSED APPROACH
AND OTHER RELEVANT APPROACHES
To determine the performance of our approach, we have
created additional models for predicting the probability of
default using other relevant approaches, the SNA-based
approach [29] and the ANP-based approach [12]. Recall and
precision metrics are used to measure the predictive perfor-
mance of these models. If we set true when default occurs
and false when default does not occur, then the recall and
precision metrics can be formulated as:
TP TP
RECALL = ——, PRECISION = —— (2)
TP + FN TP + FP

where TP (True Positive) denotes the number of instances
which are labeled as positive and are also detected as positive,
FN (False Negative) denotes the number of instances which
are labeled as positive but are wrongly detected as negative,
and FP (False Positive) denotes the number of instances
which are labeled ad negative but are wrongly detected
as positive [63]. Recall and precision metrics have been
widely used to measure the performance of classification
models when sample data is imbalanced [64]. The dataset
used in this comparison is so imbalanced that the ratio
of the default cases is only 2.8%. Therefore, we use the
Synthetic Minority Over-sampling Technique (SMOTE) to
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improve the classification performance for the imbalanced
dataset. The SMOTE is a technique for generating a balanced
dataset by oversampling the data samples using statistical
distributions [65].

This analysis used Python and the machine learning
library scikit-learn to create the classification models, and
imbalanced-learn for applying the SMOTE. The total number
of dataset has been increased to 13,162 by oversampling so
that the number of default cases was equal to the number
of normal cases. To generate classification models, we used
Decision Tree (DT), Random Forest (RF), and Multi-Layer
Perceptron (MLP), which are widely used in the relevant
problems. Hyperparameter tuning was not employed in this
analysis for general performance comparison. In the case of
MLP, we create 3 hidden layers and 1,024, 512, and 8 hid-
den nodes in each layer. Table 10 shows the performance
comparison results of the classification models generated by
the approach proposed in this study and the relevant previous
approaches. On the whole, the proposed approach appears to
have a slightly better recall and precision performance than
previous approaches. In this sense, we can also conclude that
the proposed approach is relatively meaningful in that it can
reasonably predict the probability of default.

VI. CONCLUSION

For a successful implementation of the technology financ-
ing system, it is required to establish a clear technology
evaluation system. Technology evaluation institutes including
KOTEC have generally relied on the manual work by relevant
experts for the technology evaluation. In order to improve the
efficiency of this manual work, various quantitative indicators
for the assessment of the potential future value of technology
have been used together. These indicators are primarily aimed
at evaluating technology classes, not individual technology.
Among these indicators, the spillover effect is generally per-
ceived as useful for the disposal of patents of a firm which
received credit guarantee but is in default. A model for mea-
suring the spillover effects of technology classes is currently
presented in the KTRS, but it has low reliability. Therefore,
this study proposed a systematic approach to measuring
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technological spillover effects between technology classes.
To measure the extent to which technology classes affect and
are affected by other classes on the technological knowledge
flow network, we first extracted co-classification informa-
tion from patent data, and then generated association rules
between technology classes employing the association rule
mining. The relationships represented by the rules, however,
can only depict the direct connections between technology
classes, so we finally utilized the DEMATEL method to
obtain comprehensive spillover effects including direct and
indirect influential relationships. We expect that this study
can contribute to establish a quantitative evaluation model
to help assess technologies for successful technology-based
credit guarantee system. It will improve the reliability of the
technology assessment by reducing the variance of the qual-
itative evaluation results due to the individual differences of
the evaluator. Furthermore, it will also contribute to enhance
the efficiency of evaluation work. Despite the contribution,
further research problems still remain to be investigated.
First, the AUC value of the proposed approach is superior to
the current approach, but not absolutely high. The approach
needs to be improved in a way that utilizes the patent data to
reflect technological viewpoints as well as the financial data
to reflect economic viewpoints. Second, the motivation of this
study is to measure the spillover effects on the technology
classes to help the relevant experts in evaluating technologies
manually. It leads to the identical spillover effects of all
individual technologies belonging to the same technology
class. Therefore, to advance to a sophisticated model, how
to measure the spillover effects on the individual technol-
ogy should be discussed. Third, this study utilized only the
bibliometric information of the patent data. We also need
to utilize the invention descriptions in the patent documents
to enhance the results of our analysis. Using text mining
techniques can be a good way to do this. Fourth, the feasibility
verification of the approach was made only to the proba-
bility of default. The verification needs to be conducted in
terms of financial performance including sales and operating
profits, which will make the proposed approach more robust.
Finally, this study focused only on the technological spillover
effects. However, to precisely measure the comprehensive
spillover effects, it is necessary to investigate the influence by
financial factors. We must exploit a wide variety of financial
data to explore financial effects that reflect the financial
factors.
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