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Abstract

Background: Recent advances in sequencing technology have allowed us to investigate personal genomes to find
structural variations, which have been studied extensively to identify their association with the physiology of diseases
such as cancer. In particular, mobile genetic elements (MGEs) are one of the major constituents of the human
genomes, and cause genome instability by insertion, mutation, and rearrangement.

Result: We have developed a new program, iMGEins, to identify such novel MGEs by using sequencing reads
of individual genomes, and to explore the breakpoints with the supporting reads and MGEs detected. iMGEins
is the first MGE detection program that integrates three algorithmic components: discordant read-pair mapping, split-
read mapping, and insertion sequence assembly. Our evaluation results showed its outstanding performance in
detecting novel MGEs from simulated genomes, as well as real personal genomes. In detail, the average recall
and precision rates of iMGEins are 96.67 and 100%, respectively, which are the highest among the programs compared. In
the testing with real human genomes of the NA12878 sample, iMGEins shows the highest accuracy in detecting MGEs
within 20 bp proximity of the breakpoints annotated.

Conclusion: In order to study the dynamics of MGEs in individual genomes, iMGEins was developed to accurately detect
breakpoints and report inserted MGEs. Compared with other programs, iMGEins has valuable features of identifying novel
MGEs and assembling the MGEs inserted.

Keywords: Mobile genetic elements, Paired-end sequencing, Long insertions, Structural variations

Background
Mobile genetic elements (MGEs) constitute a significant
portion of the eukaryotic genomes, and play important
roles as a driver of genomic instability and regulatory
elements [1–8]. As such, the identification of novel
MGEs in individual genomes and the analysis of their
dynamics are important for a better understanding of
the genome instability as one of the factors responsible
for diseases. While several programs including Break-
Dancer [9] and Pindel [10] are currently used in order to
call structural variations, such as single nucleotide poly-
morphisms (SNPs), translocations, tandem duplications,
and relatively small indels, they rarely detect large inser-
tions such as MGEs.
Based on the transposition mechanism, MGEs are

classified to two different groups: DNA transposons and

retrotransposons. Retrotransposons are further classified
into LTR retrotransposons and non-LTR retrotranspo-
sons. Detecting all types of MGEs and large novel inser-
tions is still very challenging. As diverse species are
sequenced and comparative genomics are actively
applied, finding novel MGEs is becoming an important
subject in genome studies. A systematic approach is thus
needed to identify novel MGEs in individual genomes by
using high-throughput sequencing reads. Over the past
decade, several programs have become available that can
search MGEs with whole genome sequencing reads [11–
40]. Notable examples include alu-detect [12], RetroSeq
[13], Tangram [14], TraFiC [40], TranspoSeq [29], Tea
[22], TEMP [31], Mobster [24], nsg_te_mapper [37],
PopoolationTE [38], and MELT [39]. In addition, there
is an integrated pipeline, McClintock [41], which runs
multiple MGE detection programs.
Typically, MGE detection with whole genome paired-

end sequencing data is realized by two approaches: dis-
cordant read-pair mapping and split-read mapping. In
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addition, contig assembly also can be used to find the
novel insertion including MGEs. After assembling MGEs
or novel insertions, iMGEins finds a pair of reads in
which one end are aligned on the MGEs and the other
are aligned around the breakpoint to connect them
together. Most of the programs use discordant read-pair
mapping to infer the positions where the fragments are
inserted [13, 14, 20, 24, 31, 39]. Specifically, this
approach utilizes read-pair mapping information, so that
one-end read maps uniquely to reference genome while
the mated read maps to the MGE library. However,
discordant read-pair mapping cannot find the exact
coordinates of breakpoints, since discordant read at one
side implies that it is not aligned on the reference gen-
ome (Additional file 1: Figure S1). Moreover, such
method cannot find novel insertions that are not
included in the library. These shortcomings are over-
come by certain programs. Among the six programs dis-
cussed above [13, 14, 20, 24, 31, 39], Tangram [14], ITIS
[20], Mobster [24], TEMP [31], and MELT [39] employ
split-read mapping for the breakpoints identified by dis-
cordant read-pair mapping information.
In this paper, we report a comprehensive MGE detec-

tion program, iMGEins, which combines two approaches
described above. iMGEins can detect novel MGE inser-
tions by using sequencing reads of individual genomes,
and annotate MGEs based on the sequence homology.
In addition, we provide a de novo assembly mode to
identify novel MGEs inserted differently to the individual
genomes. We have compared iMGEins with RetroSeq
[13], TEMP [31], PopoolationTE [38], and MELT [39] by
using a set of simulated reads from modified human ge-
nomes. Our experiments showed that: (i) the average re-
call rate is 96.67% and precision rate is 100%, which is
the highest among the programs compared. Using the
NA12878 dataset, we have also compared the perform-
ance of iMGEins with five existing programs to find that
iMGEins can detect with highest accuracy the MGEs
within 20 bp proximity of the breakpoints annotated.
Additionally, we demonstrated that iMGEins could lo-
cate the chimeric points in assembled genomes.

Implementation
iMGEins predicts breakpoints where fragments of differ-
ent sizes are inserted, and annotates such inserted frag-
ments to find novel MGEs by using read and contig
information. The program processes the data in four
consecutive steps: 1) classifying reads; 2) predicting
breakpoints; 3) identifying MGEs by using one-end
unmapped reads; 4) assembling MGEs (Fig. 2).

Read classification using mapping information
In the first step, iMGEins uses the sequence alignment
map (SAM) format file to search for soft-clipped (i.e.

partially aligned) or discordant reads around the break-
points (Fig. 2a). The current version of iMGEins has
been tested with alignments from Bowtie2 [42], BWA
[43], and Mosaik [44]. As the default mapping program,
Bowtie2 was used with the ‘--local-sensitive’ option to
allow local alignments for soft-clipped reads.
According to the mapping status, such as bitwise

FLAG and the CIGAR string in the SAM format file, the
reads are grouped into one of the following three types:

– Soft-clipped (S) if the reads are partially mapped
with the sufficient length of clipped sequence.

– Mapped (M) if one-end read is fully mapped.
– Unmapped (U) if one-end reads is not mapped.

By using the reads in these categories, the paired-end
reads are further classified and retrieved (see Fig. 1a and
b): (i) one-end unmapped (i.e. paired-end reads corre-
sponding to M-U or U-M); (ii) soft-clipped with an un-
mapped read at one end (i.e. S-U or U-S); (iii) soft-
clipped with a mapped read at one end (i.e. S-M or
M-S); (iv) both soft-clipped (i.e. S-S); (v) both mapped
(i.e. M-M); (vi) both unmapped (i.e. U-U). If the distance
between the read pairs belonging to the class (iii), (iv) or
(v) is significantly longer than the average insert size (de-
fault > 500 bp), the read that has higher mapping quality
is treated as the anchor so that the mate read is manipu-
lated as unmapped.

Prediction of breakpoints
Candidate breakpoints are predicted by taking five con-
secutive steps shown in Fig. 2b. First, the initial break-
points are estimated by taking into account the three
aspects: (i) the length of unaligned substrings in the soft-
clipped reads (default > 5 bp); (ii) the number of support-
ing reads for breakpoints (default > 10% of the coverage);
(iii) average base quality of clipped bases (default > 59
phred score). The supporting reads for the breakpoints
can be either upstream-support (towards the 5′-end) or
downstream-support (towards the 3′-end). It is desirable
to have both upstream- and downstream-support except a
few cases such as 5′ truncated insertions. When the initial
breakpoints have a sufficient number of upstream- or
downstream-support reads, the breakpoints are retained
as candidate breakpoints.
Second, we adapt profile analysis from multiple se-

quence alignments to filter out false positive mappings
(Fig. 1c). The unaligned sequences of soft-clipped reads
at each breakpoint are aligned, and sufficiently long
regions (default > 10 bp) that are next to the breakpoints
are profiled. If the similarity among sequences is low,
the breakpoints are discarded (default > 95%). In this
step, the number of A or T bases in soft-clipped region
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Fig. 1 Classification of reads to find and annotate MGEs. a When reads are aligned with local alignment, there exist three types of reads: reads are
mapped (M, Reads 1, 2, 6, and 7); reads spanning MGE insertion are soft-clipped (S, Reads 1, 3, 5, and 7); reads from MGE insertions are unmapped (U,
Reads 2, 3, 4, 5, and 6). b All reads are grouped into six classes: class 1 (M-U or U-M), class 2 (S-U or U-S), class 3 (M-S or S-M), class 4 (S-S), class 5 (M-M),
and class 6 (U-U). Soft-clipped reads in classes 2, 3 and 5 are used to find breakpoints. The read pairs in classes 1 and 2 are considered as one-end
unmapped reads, which are anchored at the upstream or downstream of the breakpoints. These one-end unmapped reads are used to annotate MGEs
inserted. c Clipped subsequences (in yellow) at the breakpoints are used to check the integrity of the reads aligned. Breakpoints that are poorly aligned
with clipped subsequences are discarded. d The vicinity of the breakpoint is estimated if a few nucleotides are the same. Such situation could occur
when the inserted fragment has target site duplication. Read 1 at the beginning of MGEs might be the same as those in the downstream of
the breakpoints. Alternatively, read 2 at the end of MGEs might be the same as those in upstream

Fig. 2 Overview of the iMGEins pipeline. iMGEins has four phases: a read classification, b breakpoint prediction, c MGE identification, and
d de novo assembly
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are also considered since PolyA signal is an important
feature of retrotransposition for LINE and Alu [45].
Third, breakpoints that overlap with the sufficient

reads are eliminated from the pool of candidates to dis-
card false positive breakpoints. Some reads could be
soft-clipped by sequencing errors and/or low-quality
bases at the end of the reads. We set 10% for the ratio of
soft-clipped reads at the breakpoints to call haplotype
insertions, and 90% otherwise [46].
Fourth, the vicinity of the breakpoints (i.e. a short

interval between breakpoints that is caused by some
events such as target site duplication) is estimated. A
few nucleotides at the beginning of the inserted frag-
ments could be the same as those in the downstream of
the breakpoints (Fig. 1d). Such results might be ascribed
to a target site duplication (TSD) or a random event. In
order to deal with such situation, iMGEins allows a
short interval for the breakpoints as the vicinity of
breakpoints (default < 25 bp).
Lastly, false breakpoints caused by short indels, long dele-

tions, or tandem repeats are filtered out. If tandem repeats
exist, reads are mapped with soft-clipping that allows
iMGEins to detect as breakpoints of MGE insertion. There-
fore, we eliminate such breakpoints by checking short
indels nearby breakpoints, read depth of both sides of
breakpoints, and whether the soft-clipped sequence is iden-
tical to the reference sequences of breakpoints.

Identification of MGEs using one-end unmapped reads
and soft-clipped reads
The breakpoints that are obtained in the previous step
are further analyzed to annotate MGEs. One-end
unmapped or soft-clipped reads on the upstream or
downstream of the candidate breakpoints are searched
(Fig. 2c). If one end is properly mapped, the other end is
not mapped or discordantly mapped on the reference
genome. The range should be selected by considering
the insert size of the sequencing reads library. From the
candidate discordant read pairs (S-U, U-S, M-U or U-M)
of each breakpoint, the one-end unmapped reads (U)
and soft-clipped reads (S) of each breakpoint are
searched against the MGE sequence library such as
Repbase [47] to find the homology with known MGEs.
The results of BLAST [48] search are filtered by
user-defined thresholds (default setting: similarity > 90%;
hit length > 70% of the average read length). After
performing majority voting, only the most confident
MGE for each breakpoint is reported. The results are
saved in the GFF format, which could be used for
further analysis.

Identification of MGEs using de novo assembly
In the step described above, iMGEins reports the most
similar known MGEs for the inserted sequences at the

breakpoints. However, novel insertions could also be cer-
tain types of variants or novel sequences. Furthermore,
MGEs could not be matched correctly if unmapped
reads nearby the breakpoints are very short or partially
matched to remotely homologous MGEs.
In order to find and annotate novel MGEs at each

breakpoint, we collected and assembled reads that are un-
mapped and one-end mapped (Figs. 2d and 3). First, both
unmapped paired-reads are collected in the read classifica-
tion step. All one-end unmapped reads nearby each break-
point are collected in this step. For a more precise
assembly, we further added soft-clipped reads that support
the breakpoint. These unmapped and soft-clipped reads
are assembled using SOAPdenovo2 [49] with the k-mer
size of 51. Second, contigs shorter than the sufficient
length (default value < 500) are filtered out since our main
purpose is to find long insertions. Third, one-end un-
mapped reads of each breakpoint are aligned to the
assembled contigs using Bowtie2 with a sensitive preset
and at most five distinct alignments for each read (−k = 5).
Fourth, the most probable MGE for each breakpoint is
annotated after performing majority voting. In this step,
contigs with a small number of reads mapped (default < 2)
are filtered out.
Finally, we searched the contigs against the MGE

library to find whether the identified contig is homolo-
gous to the known MGEs (Figs. 2d and 3). We consider
a contig to be novel if it is not identified by BLAST
search with the annotated MGE library. At the same
time, the most proper contig is trimmed out by align-
ing the soft-clipped sequence using dynamic program-
ming (local alignment with gap open = − 5; gap
extension = − 2; substitution = − 3; match = 1). If the
optimal score of dynamic programming is lower than
75% of the length of the longest clipped sequence, we
do not report the sequence to avoid false positives.
This procedure is also performed with reverse-complement
sequence, but reports only one strand result which aligns
more properly. By these procedures, iMGEins is able to find
the inserted sequences successfully and their boundaries
more precisely.

Performance evaluation
In order to evaluate the performance of iMGEins, the
recall and precision rates were measured separately for
the breakpoints and the predicted MGE types. Since
some programs do not predict the MGE types, it would
be fair to compare the accuracy for each category separ-
ately. For the breakpoints, we consider the recall and
precision rates. The recall rate is measured as the ratio
of correctly predicted breakpoints to all inserted MGEs
in each simulated genome. The precision rate is
measured as the ratio of correctly predicted breakpoints
to all breakpoints predicted by each program. The
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breakpoints are considered to be correctly predicted if
they are within the 20 bps upstream or downstream of
the real insertion. Some programs predict breakpoints
based on the discordant reads pair mapping information,
and thus their prediction is not precise. We thus allowed
approximated boundary for the true positive hits. A
detailed comparison is provided in the Results section.
For the accuracy of the MGE prediction, we consider

the recall and precision rates. In the case of iMGEins,
two different MGE predictions are made from one-end
unmapped reads and assembled contigs. We consider
the prediction as false positive if iMGEins finds more
than one MGE type. We applied rather stringent mea-
sures in order to evaluate the performance of iMGEins
more precisely. For the novel MGEs, we consider the
prediction as true positive if iMGEins reports accurate
insertion sequences. Since the information of MGE types
is unavailable, the accuracy is determined by whether
the contigs are assembled correctly or not.

Computational complexity of iMGEins
In processing the data with iMGEins, breakpoints are
predicted based on the soft-clipped reads. The inserted
MGEs are identified by one-end unmapped reads or read
assembly. The computational complexity of read classifi-
cation step is O(n), where n is the total number of
sequencing reads. To obtain putative breakpoints, all
soft-clipped reads should be investigated. Since all soft-
clipped reads are iterated, the amount of time required
is O(s), where s is the number of soft-clipped reads. For
example, NA12878 data contains about 500 million
soft-clipped reads, which correspond to more than 20%
of the entire reads. Subsequently, iMGEins finds accur-
ate breakpoints by filtering putative breakpoints. The

amount of time required for this step is O(p), where p is
the number of putative breakpoints.
Finally, the inserted MGE types are identified by

searching one-end unmapped reads and soft-clipped
reads nearby breakpoints. For long DNA fragment size
and high coverage sequencing data sets, iMGEins shows
the highest memory usage and computational time in all
processes. Therefore, the computational complexity of
this step is O(u*f ), where u is the number of one-end
unmapped reads nearby breakpoints, and f is the frag-
ment size of the data set. A BLAST search is also
performed, but it spends relatively little time, compared
to the entire processing time. Specifically, BLAST search
took 78 mins for NA12878 data, compared to 1606 mins
for the entire processing time.
In the assembly of MGEs, all unmapped reads in each

data set are assembled by SOAPdenovo2, and one-end
unmapped reads are aligned to contigs by bowtie2. After
that, the most relevant contigs of each breakpoint are
searched against the MGE database. For such process,
the computational complexity is dependent on the
coverage of the data set, which is O(m*(C1 +C2)). Here,
m is the length of the most relevant contig; C1 and C2

are the length of the longest soft-clipped sequences of
the 3′-end and 5′-end, respectively.
We measured the running time of iMGEins for the

simulated data sets with different coverage. The number
of breakpoints is almost the same for each simulation
data set. It took about 9 mins and 28 mins for the 30x
and the 90x coverage data, respectively. This result
shows that the running time of iMGEins linearly
increases with respect to the read coverage. We also
measured the running time for each step of iMGEins
using the large-scale data set, NA12878. The size of the

Fig. 3 Assembly of inserted MGEs. Unmapped paired reads and one-end unmapped reads are collected in the read classification step and MGE identification
step. Reads are assembled to contigs, which include the fragments inserted into each breakpoint. One-end unmapped reads are used to
find the corresponding contigs inserted to a specific breakpoint. The contigs are searched against the MGE library for annotation
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data is > 1.6 TB, and it has more than three thousand
breakpoints. The entire process took about a day on
Intel(R) Xeon(R) CPU E5–2699 v4 @ 2.20GHz with 32
cores. Specifically, breakpoint prediction and de novo
assembly took 52% of the processing time. It is apparent
that the time complexity of the two steps is tightly cor-
related with the number of breakpoints and the number
of one-end unmapped reads.

Results
We evaluated iMGEins by generating genomes that con-
tain simulated MGEs and novel insertions. The perform-
ance of iMGEins was compared with current state-of-
the-art programs, RetroSeq [13], TEMP [31], PoPoola-
tionTE [38], and MELT [39]. For each type of MGEs, the
recall and precision rates were compared. In addition,
we tested iMGEins by using real sequencing reads ob-
tained from an individual human genome (NA12878).
The performance was measured in terms of the recall
and precision rates. The overall accuracy was calculated
by averaging the recall and precision rates.

Evaluation of iMGEins on the simulated sequencing data
In order to evaluate the performance of iMGEins, we
first generated sequencing reads from the human
genomes with the simulated MGEs of different types
and the SNV ratio. In particular, the first set of simu-
lated genomes contain 1000 MGE insertions with LINE,
SINE, LTR, and DNA transposon. A total of 500 MGE
sequences were generated with or without SNV. Specif-
ically, 200 MGEs were generated without SNV, while
300 MGEs with 10–50% SNVs. In addition, 500 random
sequences with similar length to the MGEs were gener-
ated as control (Additional file 1: Table S1). The second
set of simulated genomes contain 80 known MGEs of
primate species, 80 known MGEs of human, and 80
novel sequences (Additional file 1: Table S2). It should
be noted that novel insertion sequences were used to
test the ability of detecting novel MGE insertions. In
order to evaluate the performance of different coverage,
high (90x) and low (30x) coverage of sequencing reads
were generated from the second genomes.
The MGE fragments were inserted at random positions,

but avoiding ‘N’ masking regions. All of the inserted frag-
ments are longer than 500 bps. The inserted MGEs con-
tain only A, C, G and T, and do not include any
ambiguous nucleotides. This is because RetroSeq [13] al-
lows only A, C, G, and T. In order to measure the accur-
acy of finding MGEs with target site duplication (TSD),
simulated MGEs in the second simulation data set have
random TSDs of 2–9 bps. From the simulated genomes
described above, paired sequencing reads were obtained
with the following parameters: read length = 100; mean
coverage = 30 and 90; mean insert length = 400; standard

deviation of insert length = 20. The error model was
chosen for the default built-in quality score profile of
HiSeq2000 with an empirical error model (~ 0.8% error
rate). These simulated sequencing reads were aligned
against the human reference genome (hg19) by using the
read mapping program BWA [43], as suggested in each of
the MGE finding programs TEMP [31] and RetroSeq [13].
The read mapping step is required for most of the MGE
finding programs with default options.
As shown in Fig. 1d, iMGEins allows a short interval

(at most 25 bp) for breakpoints to account for TSD or
random events. Other programs also report such inter-
vals. TEMP [31] reports breakpoint intervals at the
longest fragment insert length because it identifies
breakpoints by using discordantly mapped reads first.
RestroSeq [13] reports breakpoints with 1 bp interval
only, PoPoolationTE [38] reports breakpoint intervals
at the longest read length and MELT [39] reports
within 25 bp. Therefore, we considered that the identi-
fied breakpoints are true positives if the predicted pos-
ition is within 20 bps upstream or downstream of the
actual position.
The performance of iMGEins was compared with the

state-of-the-art MGE discovery programs, TEMP [31],
RetroSeq [13], PoPoolationTE [38], and MELT [39]. Not-
ably, iMGEins, TEMP, and MELT found most of the
breakpoints of MGEs without SNVs in the evaluation
with the first simulation data (Table 1). The average re-
call rate of iMGEins was 97%, while TEMP was 96% and
MELT was 98.5%. For the MGEs with 10% of SNVs,
iMGEins outperformed the four other methods in terms
of the recall rate (95% for iMGEins vs. 0% for TEMP,
23% for RetroSeq, 47% for PoPoolationTE, and 35% for
MELT). For the four other programs, the recall rates
drop significantly as the ratio of SNVs increases. The
average precision rate for iMGEins is 97.89%, while
TEMP is 89.72% and MELT is 96.04 (Table 1). In
particular, iMGEins predicts 21 false positives, while
TEMP predicts 22, PoPoolationTE predicts 16,109, Ret-
roSeq predicts 663, and MELT predicts 9.
In the evaluation with the second simulation data, two

sets of different coverage were used to evaluate the five
programs. Overall, iMGEins outperformed other methods
in finding breakpoints (Fig. 4). iMGEins located most of
the breakpoints with few false positives (97.07 and 100%
precision rate) in both low and high coverage. Notably,
iMGEins correctly identified novel insertion sequences
(96.25%). In contrast, other programs showed much lower
recall and precision rates for novel MGEs. TEMP showed
comparable performance in finding known MGEs (on
average, 96.88% recall rate by iMGEs vs 98.75% by TEMP
with 30x coverage; 96.25% recall rate by iMGEs vs 99.38%
by TEMP with 90x coverage), but could not find novel
MGEs (96.25% recall rate by iMGEs vs 0% by TEMP with
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30x coverage; 96.25% recall rate by iMGEs vs 0% by
TEMP with 90x coverage). MELT showed good perform-
ance only for the known MGEs, not for the divergent
MGEs (Fig. 4). In terms of the precision rates, iMGEins
also showed significantly better performance (97.07% by
iMGES, 81.44% by TEMP and 10.99% by RetroSeq with
30x coverage; 100% by iMGES, 64.63% by TEMP and
12.43% by RetroSeq with 90x coverage).
In addition to finding the breakpoints of MGEs, it is also

important to annotate the inserted MGE sequences. For
this, iMGEins assembles the MGE contigs, and predicts
MGE types as well. As of now, a few programs can predict
MGE types by assembling MGEs, but only to a limited de-
gree. We compared the performance of predicting the types
of inserted MGEs in the second simulation data set
(Table 2). iMGEins achieved very high recall rates (96.67
and 95.83% for 30x and 90x, respectively) and the best pre-
cision rate (100% for 30x and 90x) in predicting MGE types.
Since TEMP reports multiple distinct MGEs on the same
breakpoint, there are differences between the number of

breakpoints and the number of identified MGEs. Although
TEMP showed 98.75 and 99.38% recall rate for 30x and
90x, respectively, it only found known MGEs. RetroSeq
reported with 10.99% precision rate, which is the lowest
among the three programs.
Since iMGEins was designed to report MGEs inserted,

we assessed how completely the MGEs are assembled
and annotated. As a stringent measure to decide the
MGEs as true positive, we allowed only two base differ-
ences in both ends of the fragments. iMGEins success-
fully found novel MGEs that are not in the database.
When iMGEins locates the breakpoints, it perfectly
predicts the MGE sequences for the sequences inserted.
Among the programs compared, only RetroSeq algo-
rithm provides a procedure for predicting novel MGEs.

Evaluation on the real human genomes
In order to test the performance of iMGEins on real
sequencing data, we used a well-known high coverage
(> 85x) Illumina HiSeq dataset from the 1000 Genome

Table 1 Recall rates of breakpoint detection of iMGEins and novel insertions, popoolationTE, TEMP, RetroSeq and MELT in the
simulation set 1

Simulation type MGE type Ratio of SNVs iMGEins PoPoolationTE TEMP RetroSeq MELT

Non variant (%) LINE 100.00 22.00 90.00 2.00 98.00

SINE 94.00 84.00 96.00 24.00 98.00

LTR 96.00 86.00 100.00 62.00 100.00

DNA 98.00 86.00 98.00 26.00 98.00

SNV (%) LINE 10% 100.00 10.00 0.00 0.00 40.00

20% 100.00 0.00 0.00 20.00 0.00

30% 100.00 0.00 0.00 0.00 0.00

40% 100.00 0.00 0.00 10.00 0.00

50% 90.00 0.00 0.00 25.00 0.00

SINE 10% 95.00 60.00 0.00 25.00 10.00

20% 100.00 0.00 0.00 40.00 0.00

30% 100.00 0.00 0.00 25.00 0.00

40% 95.00 5.00 0.00 35.00 0.00

50% 100.00 0.00 0.00 50.00 0.00

LTR 10% 90.00 70.00 0.00 45.00 55.00

20% 100.00 0.00 0.00 55.00 0.00

30% 85.00 0.00 0.00 50.00 0.00

40% 95.00 0.00 0.00 40.00 0.00

50% 95.00 0.00 0.00 60.00 0.00

Random (%) LINE 98.00 3.33 0.00 34.67 0.00

SINE 98.67 6.00 0.00 36.00 0.00

LTR 98.00 0.67 0.00 34.00 0.00

DNA 100.00 0.00 0.00 36.00 0.00

True Positives 975 183 192 328 218

False Positives 21 16,109 22 663 9
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Project (NA12878). Since this dataset has PacBio long
reads, it has been effectively used for non-reference TE
detection. A BAM file mapped by BWA [43] was obtained
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/
working/20120117_ceu_trio_b37_decoy/. A validated set
of insertions was obtained for comparison from the 1000
Genome Pilot Project (ftp://ftp.ncbi.nlm.nih.gov/pub/
dbVar/data/Homo_sapiens/by_study/vcf/) [50]. The coor-
dinates of breakpoints were converted from hg18 to hg 19
using liftOver utility. The results of iMGEins was compared
with those of TEMP [31], RetroSeq [13], Tea [22], Tangram
[14] and MELT [39]. The running results of RetroSeq [13],
Tea [22] and Tangram [14] were downloaded from ftp://
ftp-mouse.sanger.ac.uk/other/tk2/RetroSeq/CEU_trio/. Co
nsensus sequences for ALU and L1 elements were obtained
from RetroSeq [13].
In the evaluation, iMGEins reported 3811 breakpoints

that are annotated as ALU or L1 insertions with strin-
gent options (soft-clip maps > 10). For TEMP [31], post-
processing was performed as suggested by the authors
[31]. Insertions were filtered when they are supported by
less than 20 reads and have an allele frequency of less
than 20% for the high coverage data. The numbers of
breakpoints identified by each program are summarized
in Table 3. iMGEins successfully identified the positions
of breakpoints at the base pair resolution. When we
allow 200 bp proximity around the real breakpoint for
correct prediction, the performance of the programs are

comparable. However, as the resolution decreases to 20 bp,
iMGEins shows the highest recall rates. Notably,
iMGEins accurately predicted over 90% of breakpoints
within 20 bp of the annotated breakpoints. Several
breakpoints outside of the 20 bps proximity are due
to TSD. Although TEMP [31] also showed a compar-
able recall rate at 20 bp resolution, the coordinates of
breakpoints reported by TEMP [31] span excessively
large ranges (on average 293.40 bp), compared to
iMGEins that only allows 25 bp intervals (on average 4.52
bp). The fact that the breakpoints are more accurately pre-
dicted is one of the advanced features of iMGEins. Overall,
68.59, 87.65, 42.25, 21.18, and 91.5% of the breakpoints
predicted within 100 bps proximity of the real breakpoints
retained for the threshold of 20 bp proximity by Tangram
[14], Tea [22], RetroSeq [13], MELT [39], and iMGEins,
respectively.
Notably, iMGEins could successfully reports additional

breakpoints that are not included in the experimental
evaluation set that we used in the comparison. After
manual investigation using IGV carefully, we made an
observation that the additional breakpoint might be the
real breakpoints (Additional file 1: Figure S2).

Genome misassembly rectification and PCR validation
In addition to predicting novel MGEs with high preci-
sion rates, iMGEins can also locate the chimeric points
in assembled genomes. In order to evaluate its capability

Fig. 4 Recall and precision rates of breakpoints identified for the second simulated data (Additional file 1: Table S2) by iMGEins, PoPoolationTE,
TEMP, RetroSeq, and MELT
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to correct mis-assembly, we applied iMGEins to the assem-
bly of the minke whale genome [51], and validated the re-
sults by using PCR. By re-aligning the whole genome
sequencing data to the genome sequence and applying
iMGEins, we could identify 765 chimeric points with a sig-
nificant number of supporting reads. Among these,
iMGEins assembled the inserted sequences for 9 break-
points with a sufficient number of aligned reads to long
contig. For PCR validation, we randomly selected three
points that contain the assembly of inserted sequences. Re-
sults from PCR were compared with the inserted sequences
predicted from iMGEins to find that the homology is about
96% (Additional file 1: Figures S3–S4 and Tables S3–S5).

Conclusion
MGEs play important roles as a driver of genomic
instability. Individual human genomes have shown re-
cent insertions of MGEs that are related with pheno-
typic changes such as cancer. In order to study the
dynamics of MGEs in individual genomes, iMGEins
was developed to accurately detect breakpoints and
report inserted MGEs. Compared with other programs,
iMGEins has valuable features of identifying novel
MGEs and assembling the MGEs inserted. In addition,
iMGEins can find genome mis-assembly, which was
validated by experimental studies on the minke whale
genome.

Table 2 Performance of MGE detection in iMGEins, popoolationTE, TEMP, RetroSeq and MELT in simulation set 2

Low coverage (30x) Hogh coverage (90x)

iMGEins PoPoolationTE TEMP RetroSeq MELT iMGEins PoPoolationTE TEMP RetroSeq MELT

True positive

Human MGEs 78 75 80 19 72 75 2 80 27 74

Primate MGEs 77 74 78 20 37 78 10 79 31 39

Novel insertions 77 0 0 1 0 77 0 0 0 0

Total 232 149 158 40 109 231 12 159 58 113

False Positive

Human MGEs 0 0 31 121 6 0 1 56 117 5

Primate MGEs 0 1 10 188 21 0 1 40 289 21

Novel insertions 0 0 0 33 0 0 0 0 43 0

Total 0 1 41 342 27 0 2 96 449 26

Recall (%)

Human MGEs 97.50 93.75 100.00 23.75 90.00 93.75 2.50 100.00 33.75 92.50

Primate MGEs 96.25 92.50 97.50 25.00 46.25 97.50 12.50 98.75 38.75 48.75

Novel insertions 96.25 -a – 1.25 – 96.25 – – 0.00 –

Average

Completeb

MGE onlyc
96.67 62.08

93.13
65.83
98.75

16.67 45.42
68.13

95.83 5.00
7.5

66.25
99.38

24.17 47.08
70.63

Precision (%)

Human MGEs 100.00 100.00 72.07 13.57 92.31 100.00 66.67 58.82 18.75 93.67

Primate MGEs 100.00 98.67 88.64 9.62 63.79 100.00 90.91 66.39 9.69 65.00

Novel insertions 100.00 – – 2.94 – 100.00 – – 0.00 –

Average 100.00 99.333 79.40 10.47 80.15 100.00 85.71 62.35 11.44 81.29
aThese programs cannot find novel insertions
bThe rates for the entire test case
cThe rates without the novel insertion category

Table 3 Comparison of breakpoint prediction for the NA12878 dataset for iMGEins, Tangram, Tea, TEMP, RetroSeq and MELT

Proximity around breakpointsa iMGEins Tangram Tea TEMP RetroSeq MELT

Breakpoints ±100 400 433 397 394 426 439

Breakpoints ±20 397 421 393 394 305 421

Breakpoints ±10 366 297 348 363 180 93
aThe distance around the annotated breakpoints, which is allowed to be consider as true positive
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