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We propose a learning method for estimating unknown pure quantum states. The basic idea of our method is
to learn a unitary operation Û that transforms a given unknown state |ψτ 〉 to a known fiducial state |f 〉. Then,
after completion of the learning process, we can estimate and reproduce |ψτ 〉 based on the learned Û and |f 〉. To
realize this idea, we cast a random-based learning algorithm, called “single-shot measurement learning,” in which
the learning rule is based on an intuitive and reasonable criterion: the greater the number of success (or failure),
the less (or more) changes are imposed. Remarkably, the learning process occurs by means of a single-shot
measurement outcome. We demonstrate that our method works effectively, i.e., the learning is completed with
a finite number, say N , of unknown-state copies. Most surprisingly, our method allows the maximum statistical
accuracy to be achieved for large N , namely �O(N−1) scales of average infidelity. It highlights a nontrivial
message, that is, a random-based strategy can potentially be as accurate as other standard statistical approaches.
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I. INTRODUCTION

The characterization of a quantum state repeatedly gener-
ated from a preparation setup is a key step for many quantum
applications [1,2]. So far, these tasks have been performed
with so-called “quantum state tomography (QST)” [3–5].
The conventional QST, which follows the standard statistical
methodology, allows us to estimate unknown quantum states
over a finite number N of registered data from a set of mea-
surement setups optimally chosen in advance. Such a standard
approach is very appealing and has been the cornerstone of
these practical tasks for decades, since it appears to be likely
beneficial to the extraction of information from optimized
measurements. However, it was proven in Ref. [6] that one
can expect at best O(N−3/4) of infidelity in standard (local)
QST, whereas O(N−1) is the maximum accuracy on statistical
grounds [7], which is imposed by the theory of quantum-
state estimation [8], or equivalently, no cloning [9]. Thus
achieving higher accuracy, e.g., close to O(N−1) infidelity,
is still challenging both theoretically and practically.

Recently, it has been determined that achieving a level of
accuracy at least as high as in the standard QST is possible
using a different strategy, namely that of changing the mea-
surements in an adaptive way. In this case, the measurement
setting is appropriately chosen from trial to trial depending
on the previously obtained measurement outcomes [10–15].
Such adaptive QSTs have a number of practical advantages
which include (i) the statistical errors are not as dominant,
(ii) there is no need to deal with exponentially large data, and
(iii) (post) data analysis is not required, for example,
least-squares inversion [16] or maximum-likelihood correc-
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tion [17]. Usually, the achievement of these advantages is
established by the “optimal instructions” for the adaptive
process. For example, one of the useful ways might be to use
Bayesian estimation to decide the next-stage measurements
[12,18]. Quite recently, a variant of such adaptive strategies,
called self-guided QST, has been proposed with improved
accuracy and efficiency [19,20].

In this paper, we propose a method of machine learning
to estimate unknown pure quantum states. The main idea of
our method is to learn a unitary operation Û that transforms a
given unknown state |ψτ 〉 to a known fiducial state |f 〉. Then,
after the learning is completed, we can infer and reproduce
the unknown state |ψτ 〉 such that |ψτ 〉 � |ψτ,est〉 = Û †|f 〉. To
do this, we employ a learning algorithm, called “single-shot
measurement learning (SSML)” [21,22]. Our SSML method
runs based on the single-shot measurement outcomes (as
casted in its name), which is the most distinctive feature
compared to other adaptive proposals. Owing to this feature,
we additionally expect little requirement of classical com-
putational resources: for example, additional calculations for
assessing the performances are not required at each learning
step. Furthermore, as our method is also akin to an adaptive
approach, the practical advantages (i)–(iii) can be achieved by
invoking the adaptivity. Most importantly, our scheme shows
that the average infidelity ε = 1 − ∫

dψτ |〈ψτ,est|ψτ 〉|2 scales
�O(N−1). This result is comparable to the yields from the
standard QST in the case where our implicit assumption—i.e.,
the unknown state is pure—is brought. This indicates that
our SSML is able to be as efficient as the standard QST for
pure-state estimation.

II. SCHEME AND METHOD

We briefly describe how our method proceeds by specify-
ing the key elements. First, let us consider a preparation device
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(P) which can repeatedly generate unknown pure state |ψτ 〉.
Here, it is assumed that P is initially given and the Hilbert-
space dimension d of |ψτ 〉 is also known. We assume further
that it is impractical to take P to pieces for the purpose of the
state estimation. Excepting some very specific problems, such
assumptions have commonly been made. We also set a part
of operation device (U) for the implementation of an arbitrary
unitary Û (p), where p is the vector whose components are
controllable learning parameters. We then choose a fiducial
state |f 〉 freely, and let the measurement device (M) corre-
spond to a “yes-or-no” question, namely of whether we get
the desired target:

M̂f = |f 〉〈f |, M̂f ⊥ = 1̂ − M̂f . (1)

For convenience, the Hilbert-space dimension of |f 〉 is as-
sumed to be equal to d. Then, by connecting these three
elements, we can define a system of the learning building
block, i.e., P-U-M (the “student,” say), for conventional quan-
tum information processing. In such a setting, we employ
another key element which is the feedback system (F). It
is responsible for the training (the “teacher,” say). F has an
optimal learning algorithm and a relatively small size of the
(classical) memory to record the learning parameters. Then,
the goal of the learning is to find a learning parameter vector
pest close to an optimal one in {popt}, and finally estimate as

|ψτ 〉 = Û (popt)
†|f 〉︸ ︷︷ ︸

actual unknown state

� |ψτ,est〉 = Û (pest )
†|f 〉︸ ︷︷ ︸

estimated state

. (2)

Here, we note that the presented method can be referred to as
a quantum-classical hybrid learning concept; i.e., the student
is quantum and the teacher is classical. Such a hybridization
would be easier and more economical to realize. There is
also the possibility of gaining a quantum advantage from the
quantum student [23,24].

III. SINGLE-SHOT MEASUREMENT LEARNING

The efficiency and accuracy of our method strongly de-
pends on the learning algorithm. Here we employ a learn-
ing algorithm, called “single-shot measurement learning
(SSML)” [25]. The most intriguing feature of the SSML is
that the learner (i.e., Û here) updates its own parameters
by means of the single-shot measurement outcomes [26].
Specifically, the SSML runs as follows: for every learning
step n, P generates |ψτ 〉 and it is transformed to an output
state through U. Then, M performs the projective measure-
ment with {M̂f , M̂f ⊥}, where each outcome is identified as a
“success” or a “failure.” More specifically, if a measurement
result is |f 〉, this is a success and regarded as one successful
trial of the target task. Otherwise, we have a fail outcome.
Thus we can infer that if the learning proceeds as expected,
M will produce the more success outcomes; i.e., the number
of consecutive successes, denoted M

(n)
S , can be regarded as an

index of how close the control parameters in p(n) at the current
n step are to an optimal value ∈ {popt}. As such, the rule for
updating p is made as below.

[R.1] When we get a success outcome, F follows

M
(n)
S ← M

(n−1)
S + 1, p(n+1) ← p(n). (3)

At the first step, i.e., for n = 1, we set p(1) ← r and M
(0)
S ←

0, where r is a random vector whose components consist of
random numbers.

[R.2] Otherwise, if the outcome is fail, F proceeds as

M
(n)
S ← 0, p(n+1) ← p(n) + ωr, (4)

where ω = α(M (n−1)
S + 1)−β is the weight for the random

vector r. Here, α and β are the free parameters related to the
algorithm’s performance.

Note that adopting the random vector r in [R.2], instead of
using a preprogrammed one, is a typical strategy of machine
learning [27], and is of particular importance, since it is
expected to alleviate the local-minimum problem [28]. These
learning rules of the SSML—i.e., the greater the number
of success (fail), the less (more) changes are imposed—
intuitively makes sense.

The learning is not completed until M
(n)
S becomes suf-

ficiently large while producing no fail; more specifically,
the learning is completed when the condition M

(n)
S = MH is

met. We call this the “halting condition.” After the learning
is completed by satisfying this halting condition, we can
obtain Û (pest ) with pest ← p(n). Here, the total iteration n

is the consumption N of state copies for the estimation in
Eq. (2). The learned Û (pest ) is then expected to transform
|ψτ 〉 to |f 〉 faithfully, i.e., satisfying the following condition
(for MH � 1):

ε = 1 − |〈f |Û (pest )|ψτ 〉|2 = 1 − |〈ψτ,est|ψτ 〉|2 	 1. (5)

Note here that there exists a trade-off relation between inac-
curacy and the learning time, depending on the predetermined
number MH ; the larger (smaller) MH , the lower (higher) infi-
delity ε we have and the more (less) iterations or equivalently
unknown-state copies in our case are required to complete
the learning process. Thus it is very important to choose
appropriate MH to account for the desired learning accuracy
and time.

IV. QUBIT-STATE ESTIMATION

To analyze our method, we here consider the estimation
of unknown single-qubit state. Considering the possible real-
ization of our approach, we adopt a general unitary learner,
parametrized as

Û (p) = exp(−ipT G), (6)

where p = (px, py, pz)T is the control parameter vector and
G = (σ̂x, σ̂y, σ̂z)T is an operator vector whose components
are SU(2) generators, i.e., Pauli operators. Note that pj (j =
x, y, z) can be represented by real hands-on control param-
eters, e.g., wave-plate angles for a polarization qubit in a
linear-optical setup (see Appendix A 1).

A. Estimation of pure state

First, we investigate whether our SSML method works
well, i.e., whether the learning is completed in finite learning
steps. To do this, we need to introduce the learning proba-
bilities P (N ) defined as the probability that the learning is
completed before or at a number N of learning iterations [23].
Remarkably, the learning probability P (N ) is here analyzed
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FIG. 1. (a) Learning probabilities P (N ) are drawn for MH =
100, 500, and 1000. For each MH , the data are obtained from 104

trials. In each trial, |ψτ 〉 is made at random. The data are well fitted
to 1 − exp(−N/Nc ) with the factor Nc, which means the required
number of state copies for the completion of the learning. We get
Nc � 3158 for MH = 100, �13037 for MH = 500, and �23377
for MH = 1000. (b) The graph of Nc versus MH is also given on
the log10 - log10 scale. The simulations are performed by increasing
MH from 100 to 1000 at intervals of 100. Each data point of Nc

is obtained from 104 simulations. By fitting the data, we get Nc �
O(M0.869

H ) (the detailed data are listed in Appendix A 4).

as �1 − exp(−N/Nc ) with a finite constant Nc. Note that,
because P (N ) is a cumulative distribution by definition, the
constant Nc denotes the average iterations required to com-
plete the learning (for detailed analysis, see Appendix B).
Thus the result means that, in most cases, learning is expected
to be completed within certain (i.e., Nc) learning steps. To
verify this prediction, we performed numerical simulations:
104 trials for each different halting condition MH . Here, α and
β in Eq. (4) are chosen to maximize the learning efficiency:
α = 0.3 and β = 0.5 (see Appendix A 3). We hereby note that
the simulation is carried out, considering the linear-optical
realization (see Appendixes A 1 and A 2). The unknown states
|ψτ 〉 are also randomly chosen for each trial. We extract
the learning probabilities P (N ) from the obtained data and
show that they are well fitted to the aforementioned function
1 − exp(−N/Nc ). Here, Nc is estimated as �O(M0.869

H ) (see
Fig. 1). The results are in good agreement with our theoretical
predictions.

Secondly, we investigate the accuracy: i.e., the average
infidelity ε = 1 − ∫

dψτ |〈ψτ,est|ψτ 〉|2 for large N . Noting
that the adaptive estimators can be precise in a metrologi-
cal scenario [15,24,29–31], we expect that our SSML can
exhibit similar behavior. To corroborate this, simulations are
performed. The data from the standard QST (SQST) are also
analyzed for comparison, where the observables are chosen
from {σ̂x, σ̂y, σ̂z} on each qubit. Figure 2 represents the results
of our simulation in the form of ε versus N graphs on the
log10 - log10 scale. By fitting the obtained data to ε = C(N +
N0)−γ [32], we evaluate the average infidelity ε with the
main factor γ , such that ε � O(N−γ ). Here, in the SSML,
we can achieve that εSSML � O(N−1). In the case of SQST,
the final results are sorted into the two groups. (i) About
half of the data (denoted by the red pentagon points) are
reconstructed to the mixed states (i.e., inside the Bloch sphere,
geometrically) without the maximum-likelihood correction.
(ii) On the other hand, the other half of the data (denoted

FIG. 2. Infidelities ε are evaluated from (a) SSML and (b) SQST.
We depict the graph of ε versus N as dots and their fitting lines
on a log10 - log10 scale. The SSML result, i.e., εSSML, exhibits the
ultimate statistical accuracy, O(N−γ ) with γ � 1 (solid green line).
In the case of the SQST, the data are sorted into the two groups,
each of which is characterized from those of the mixed and pure
estimating states. The former group exhibits O(N− 1

2 ) (upper red
line) and the latter does O(N−1) (lower purple line) (for detail, see
the main manuscript). We note that we draw the (dashed and same
colored) fitting lines in opponents for clearer comparison.

by the purple square points) are initially not the legitimate
physical states (i.e., outside the Bloch sphere). Therefore,
we need to correct the data using the maximum-likelihood
correction, so that they are transformed to the pure state (i.e.,
on the Bloch sphere). Thus the infidelities evaluated from
(i) are higher than those from (ii) in general. Fitting the
data corresponding to each case (i) and (ii), we can find
that ε � O(N− 1

2 ) (upper red line) and ε � O(N−1) (lower
purple line). However, we cannot sort the data groups in an
actual situation and may observe only ε � O(N− 3

4 ) (middle
blue line) for overall data in a half-half manner. Neverthe-
less, if we use the additional information—i.e., the fact that
the unknown state is pure which is implicitly assumed in
SSML—then, the maximum-likelihood correction moves all
states to the pure state [i.e., the data in (i) are transferred
into (ii)] and the overall data are equal to the case of (ii);
namely, we get ε � O(N−1) (lower purple line). The above
results support the idea that a learning estimation based on a
random strategy is able to be efficient and accurate (see also
Refs. [7,11,19,20]).

B. Estimation of mixed state close to pure

Analyzing further, we consider the learning of mixed
states, even though our method is developed for estimating
pure states. Normally, pure states are of more interest, because
they carry the full quantum information and many practical
results are derived for the pure states. However, as a faulty
apparatus produces the impurity on the states, we need to have
the strategies to learn the mixed state still close to pure [33].
In fact, our original SSML method is optimal for finding the
direction of the Bloch vector of the unknown state rather than
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FIG. 3. Results of the simulations for the unknown mixed state ρ̂

in Eq. (7). We plot graph of ε versus N , by adopting (a) a primitive
strategy, i.e., without any change of the protocol and (b) slightly
developed strategy. The simulations are performed for q = 10−3.
The infidelity ε is shown to be bounded by Eq. (8) in the first
strategy, while it decreases continuously with consuming the state
copies below the bound in our second strategy. In both strategies, the
tendency of ε � O(N−1) can still be exhibited above the bound.

its size, namely, the purity [34]. Nevertheless, our SSML is
applicable to the learning nearly pure states. To show this, we
consider an illustrative example state, assuming the isotropic
noises, as

ρ̂τ = (1 − q )|ψτ 〉〈ψτ | + q 1̂
2 , (7)

where the fraction of the noise q is assumed to be small.
Here, we consider two strategies. The first one is a primi-

tive way, that is to apply the SSML without any change. The
infidelity ε is then predicted to be bounded by

1 − 〈ψτ |ρ̂τ |ψτ 〉 = q

2
. (8)

We perform the simulations for q = 10−3 to corroborate our
prediction. The result is given in Fig. 3(a), where the infidelity
can never be smaller than the bound q

2 (dotted horizontal red
line) as predicted, even though the tendency of ε � O(N−1)
is still exhibited above the bound.

The problem of the infidelity bound can be alleviated by
our second strategy. At first, we note that the hating condition
is not available for the mixed-state learning because MS could
not reach up to MH with the impurity of the unknown state.
Thus we adopt the strategy to memorize the maximum of
success events, say MS,max, and the parameter vector p at the
moment; nevertheless, the learning rules [R.1] and [R.2] are
still applicable. Then, after the completion of the learning,
additional MS,max of measurements are performed on pest. The
final state is estimated as

mf

MS,max
|ψτ,est〉〈ψτ,est| + mf ⊥

MS,max
|ψ⊥

τ,est〉〈ψ⊥
τ,est|, (9)

where mf is the number of counts of the final measurement
M̂f = |f 〉〈f | and mf ⊥ = MS,max − mf . We also perform the
simulations for q = 10−3. In Fig. 3(b), we give the result,
where the tendency ε � O(N−1) is observed until ε reaches to

the bound q

2 ; however, the accuracy is improved continuously
below the bound (for more detailed data, see Appendix A 6).

V. SUMMARY AND REMARKS

We have presented a simple but powerful method to esti-
mate unknown pure quantum states |ψτ 〉. The main idea was
to learn a unitary Û to perform |ψτ 〉 → |f 〉 for a known fidu-
cial state |f 〉. Then we could estimate |ψτ 〉, such that |ψτ 〉 �
|ψτ,est〉 = Û †|f 〉. To realize this idea, we casted a learning
algorithm, called single-shot measurement learning (SSML),
in which the learner (Û here) was renewed according to a
reasonable learning rule, i.e., the greater the number of suc-
cess (fail), the less (more) adjustment is imposed. We noted
that basically our method can be understood as a (weighted)
random learning process with one-by-one measurements. As
our approach is akin to the other adaptive approaches, the ad-
vantageous features from the “adaptivity” can be carried over.
Most importantly, we demonstrated that our method works
well for a finite number of state copies. Most surprisingly, we
obtained nearly O(N−1) level of average infidelity. This result
implies an important and nontrivial scientific message, i.e., a
random estimator can exhibit high accuracy in quantum state
estimation.

Our method is also associated with a particular operational
advantage in that the estimated state |ψτ,est〉 can directly be re-
produced even with no identification of the found parameters
in pest. For example, consider a quantum linear-optical system
(e.g., see Fig. 4 in Appendix A 1), in which some systematic
errors, such as nonideal phase retardation of the wave plates,
are inevitable [35]. Such errors may have an influence on the
final estimation in theory. However, our method is not affected
by such an error; specifically, if we replace the measurement
part (e.g., SPD for “success” side in Fig. 4) to a single-photon
source, it naturally becomes the setting for the preparation of
|ψτ,est〉. Thus we do not need to reconstruct the preparation
setting with the identified (may be “poor”) parameters. Such
an advantage cannot be found in SQST and other existing
AQST schemes, since those methods implicitly assume that
the theoretical description and the implementation of the
experiment are perfectly matched. Actually, this advantage
is of particular significance, e.g., in quantum cryptographic
scenarios (see Refs. [36,37]).

We believe that our SSML method will find immediate
application in quantum information tasks requiring (nearly)
pure-state estimation.
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FIG. 4. Schematic layout for a linear-optical implementation of
our SSML estimation.

APPENDIX A: DETAILS ON THE THEORETICAL AND
NUMERICAL ANALYSIS OF SSML

1. Polarization-based linear-optical experimental setting

To demonstrate that our method works well in a real
experiment and with a high accuracy, we performed numer-
ical simulations, particularly considering a polarization-based
linear-optical realization (see Fig. 4). First, we consider a
single-photon source (SPS) and a combination of a quarter or
half wave plate (QWP or HWP) to construct P, by assuming
that these elements are completely capsulated, e.g., in a black
box. Thus the single-photon state, a|H 〉 + b|V 〉, generated in
P is assumed to be an unknown state |ψτ 〉 (here, |H 〉 and |V 〉
denote state of the horizontally and vertically polarized single
photon, respectively). Then, we employed a finite number of
controllable wave plates to implement U; i.e., the combination
of QWP(ϑ1)-HWP(ϑ2)-QWP(ϑ3), where the rotation angles
ϑi (i = 1, 2, 3) consist of the control parameter vector p =
(ϑ1, ϑ2, ϑ3)T . These parameters ϑi (i = 1, 2, 3) are replaced
by the general parameter vector, defined in Eq. (6) of the
main manuscript. Here we note that, if the fiducial state |f 〉,
or equivalently, the measurement M̂f = |f 〉〈f |, is fixed, Û

can be considered as an internal operation of a projective
measurement Û |f 〉〈f |Û †. Then, our scheme might be able
to be rather simplified reducing the number of control pa-
rameters; for example, SSML works by controlling two wave
plates, i.e., the ideal set of QWP and HWP for |f 〉 = a|H 〉 +
b|V 〉 with real a and b. However, we indicate that |f 〉 can
be chosen favorably, so that methodologically we need to

develop our scheme for an arbitrary measurement M̂f ; thus
the total number of control parameters are to be three, which
is required to characterize a unitary operation for qubit. The
wave-plate combination is the minimal requirement for an ar-
bitrary single-qubit unitary operation [38]. The measurement
M is implemented with the polarization beam splitter (PBS)
and two single-photon detectors (SPDs). Here, for the sake of
simplicity, we set |H 〉 to be the fiducial state.

2. Number of wave plate for U

The implementation of U can be performed by various
combinations of wave plates. Even though the minimum
requirements of the wave plate for an arbitrary unitary op-
eration is QWP-HWP-QWP (QHQ), at least in theory the
combination of QH can convert the fixed fiducial state |H 〉
to an arbitrary state, as described in the previous subsection.
We thus investigate three types of wave-plate combinations:
(a) QH, (b) QHQ, and (c) QHQH. In the investigation, it is
found that, theoretically, we can achieve γ � 1 for all three
cases with α � 0.3 and β � 0.5 (see Fig. 5). Note, however,
that the amount of phase retardation of the wave plate is not
ideal in practice and in this case QH would not allow a general
transform (for details, see Sec. 3.1.2 in Ref. [39]). However,
note further that, as the number of wave plates increases,
such imperfections will accumulate. Thus we utilized a QHQ
setting in this work.

3. Optimization of the SSML parameters α and β

In order to optimize the feedback range ω in Eq. (4) of the
main text, we examine the relationship between ε and MS . To
do this, let us assume that p is near to an optimal popt, but
still not sufficient to complete the algorithm. Noting that F =
|〈f |Û (p)|ψτ 〉|2, the probability that we get the number MS

of successes continuously is given as p(MS ) = FMS (1 − F ).
Thus we have

MS = F

1 − F
� 1

1 − F
= 1

ε
. (A1)

Because F is close to 1 with p � popt, the infidelity ε is
approximated as �A(p − popt)2. Then, the distance between

FIG. 5. Graphs of log10 N versus log10 ε for (a) QH, (b) QHQ, and (c) QHQH wave-plate combinations.
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TABLE I. Detailed values of the fitting parameter Nc are listed
for each MH . The values N data are obtained by averaging over 104

data of simulations.

MH Nc (N data) MH Nc (N data)

100 �3158 (�3354) 600 �15162 (�15240)
200 �5942 (�6096) 700 �17657 (�17777)
300 �8513 (�8780) 800 �19327 (�19464)
400 �10692 (�10951) 900 �21915 (�22112)
500 �13037 (�13255) 1000 �23377 (�23381)

p and popt is represented as

|p − popt| ∝ MS
−1/2

. (A2)

The parameter β is thus approximately 0.5, which is in good
agreement with the simulation results. However, α should be
found in a heuristic manner. In this case, we found that the
optimal setting is α � 0.3.

4. Detailed simulation results of the learning probability

We describe detailed simulation results of the learning
probability in this subsection. In particular, in order to in-
vestigate whether or not the learning is completed in a finite
number of learning steps as predicted in the previous sub-
section, we analyze the learning probability P (N ), which is
defined as the probability that the learning is completed before
or at a number N of learning iterations. Here, let us recall
the fact that because P (N ) is a cumulative distribution, the
constant factor Nc in Eq. (B7) can be interpreted as the aver-
age number of iterations for the completion of the learning.
Having the aforementioned in mind, we perform numerical
simulations for analysis. The simulations are performed for
different halting conditions (from MH = 100 to MH = 1000
at intervals of 100, total 10 cases). For each case of MH , we
perform 104 simulations to construct the learning probability
P (N ). By fitting the obtained data to the function in Eq. (B7),
we identified the characteristic factors Nc (see Table I). The
Nc values are well matched to the average iterations Ndata

evaluated from the actual simulation data. Our analytical
predictions in the previous subsection are thus well borne out.

5. More simulation data in the mixed-state learning

Here we present more detailed results of the simulations
for the unknown mixed state ρ̂τ in Eq. (7),

ρ̂τ = (1 − q )|ψτ 〉〈ψτ | + q 1̂
2 , (A3)

where the fraction of the noise q was assumed to be small.
Based on the two strategies described in our main text, the
simulations were carried out for (a) q = 10−1, (b) q = 10−2,
and (c) q = 10−3. Here, we also consider the case of (d) q = 0
for comparison. The results are given in Fig. 6 and Fig. 7.
Here, it is seen that ε is bounded by Eq. (8) in the former
strategy, while in the later case the accuracy can continuously
be improved even when ε reaches to the bound. The behavior
of ε � O(N−1) is observed above the bound.

APPENDIX B: LEARNING PROBABILITY AND THE
EFFECTIVENESS OF SSML

Here we approximately estimate P (N ) by using the ran-
dom learning strategy, which is often casted for the analy-
sis. To this end, we first consider the probability ps = (1 −
ε)MH that the learning is completed for pest � popt. Here,
1 − ε is the probability of the success event, namely that
of measuring the fiducial state |f 〉. Then, we introduce a
continuous function,

1
2 � �(p) = ξ1(p1)ξ2(p2)ξ2(p3) � 1, (B1)

satisfying �(p �= popt) < �(popt) = 1. We note that this func-
tion �(p) is obtained by minimizing∣∣p1/MH

s − �(popt)
∣∣. (B2)

Thus we can assume that, for very large MH ,

ps = (1 − ε)MH � �(pest )
MH � �(popt)

MH . (B3)

We then adopt an interesting idea, by approximating
ξj (pj,est )MH (j = 1, 2, 3) with a delta function,

ξj (pj,est )
MH ≈ exp

[
− (pj,est − pj,opt)2

σ 2

]
. (B4)

Actually, such an approximation is true when the control
parameter space is homogeneous and isotropic. Thus Eq. (B4)
is valid only for the area very close to the solution. However,

FIG. 6. Result of the simulations for the unknown mixed state ρ̂ in Eq. (7). We plot graph of ε versus N , by adopting a primitive strategy,
i.e., without any change of the protocol. The simulations are performed for (a) q = 10−1, (b) q = 10−2, (c) q = 10−3, and (d) q = 0. The
results show that the tendency of ε � O(N−1) can be exhibited, but bounded by the degree of q as in Eq. (8).
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FIG. 7. Simulation results obtained by our modified strategy are given. Here, we also consider the estimation of ρ̂ in Eq. (7). The graph of
ε versus N is depicted as dots for the cases of (a) q = 10−1, (b) q = 10−2, (c) q = 10−3, and (d) q = 0. The infidelity ε is shown to decrease
with consuming the state copies, even after the bound in Eq. (8).

by observing the learning behavior, we found that the most
resources for learning is used up for finding the best optimized
solution near the solution points, rather than for increasing
the fidelity in the starting stages. Thus our approximated error
model in Eq. (B4) is expected to be reasonable. As such, we
estimate the average probability ps , such that (for σ 	 1)

ps �
∏

j=1,2,3

∫
dp ξj (pj,est )

MH ≈ (
√

πσ )3, (B5)

where σ is the value of the deviation of pj,est about the optimal
pj,opt. Actually, � would be vanishingly small for MH � 1.
The integration limits, from −∞ to ∞, are approximated
by this condition. Here, the approximation of the right part
of Eq (B5) is made with the assumption that the space of
(p1,est, p2,est, p3,est) is isotropic [40]. Then, for any sequence
p(0) → p(1) → p(2) → · · · → p(N ) = pest � popt of updating
the parameter vectors in the learning process, we can approx-
imate the learning probability P (N ) as

P (N ) ≈
N−1∑
k=0

(1 − �(p(k) )MH )k�(p(N ) )MH . (B6)

Here, let us assume that the learning process is started with
a parameter vector p(0) close to popt. This assumption is
reasonable, since almost all iterations would go on finding the
solution near to, rather than far from, popt (as will be seen in
our numerical simulation). Then we have ps � �(p(j ) )MH for
all j = 0, 1, . . . , N , and finally arrive at

P (N ) ≈ 1 − (1 − ps )N = 1 − e− N
Nc , (B7)

for very large N . Here, Nc � ps
−1 � (

√
πσ )−3, which is the

average number of iterations to complete the learning. This
also indicates that we need a large iteration to achieve more
accurate learning.

APPENDIX C: ENSEMBLE-BASED LEARNING

Using Eq. (A1), we can determine the updating range
ω = α(MS + 1)−β . However, since �MS = √

F/(1 − F ) ob-
tained from p(MS ) is very large when F � 1, the determined
value of ω can be considered to be unreliable. Thus one can
consider the learning via an ensemble measurement that deals

with a number ME of samples, instead of a single shot under
the same setup p(n). In particular, such an ensemble-based
learning can be considered to be more accurate and efficient
than the single shot, as the fluctuation �MS is very small
when F � 1. For the ensemble measurements, MS represents
the total number of successes in the single parameter p(n),
rather than consecutive successes. To test the ensemble-based
measurement learning (EML), we perform numerical simula-
tions according to the following rules. First, ME copies are
measured at nth learning step. Then, F updates p(n) by using
the number M

(n)
S of measurement results, such that

p(n+1) ← p(n) + α

(
ME − M

(n)
S

ME

)β

r, (C1)

FIG. 8. Graph of N versus ε on the log10 - log10 scale for EML
results. The data are fitted to ε � O(N−γ ) with γ � 0.70 (gray line).
For comparison, we also draw the line (dashed green) of SSML. It is
directly observed that the SSML is superior to EML.
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until M
(n)
S becomes equal to ME . The EML simulations are

performed by varying the parameters α and β. In Fig. 8, we
present the best results. Here, we get ε � O(N−0.7). Clearly,
the result is inferior to those of the SSML method. The
reason is as follows. Even when F � 1, one can arrive at
the situation M

(n)
S > M

(n+1)
S , because the parameter update,

i.e., learning, is performed by the random vector r. Thus the
resources of the state copy do not need to be wasted when
F is not close to 1. Noting the aforementioned, one can
infer that it is an optimal (i.e., resource efficient) strategy to
perform the single-shot measurements until the failure event
appears.
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