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Anodal transcranial direct current 
stimulation prevents methyl-4-
phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced neurotoxicity by 
modulating autophagy in an in vivo 
mouse model of Parkinson’s disease
Sang-Bin Lee1,2, Hee-Tae Kim   3, Hyun Ok Yang1,4 & Wooyoung Jang   5

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the accumulation of protein 
inclusions and the loss of dopaminergic neurons. Transcranial direct current stimulation (tDCS) is a 
non-invasive brain-stimulating technique that has demonstrated promising results in clinical studies 
of PD. Despite accumulating evidence indicating that tDCS exerts a protective effect, the mechanism 
underlying its activity remains unknown. In the present study, we first investigated the neuroprotective 
effect of tDCS in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model 
and then evaluated the effect of tDCS on the autophagy pathway. tDCS improved behavioral 
alterations, increased tyrosine hydroxylase protein levels and suppressed α-synuclein protein levels 
in MPTP-treated mice. MPTP-treated mice subjected to tDCS also had lower levels of autophagy-
related proteins, such as microtubule-associated protein 1 light chain 3 and AMP-activated protein 
kinase, and higher levels of mechanistic target of rapamycin and p62. In addition, the protein levels of 
phosphoinositide 3-kinase and brain-derived neurotrophic factor were higher, and the levels of unc-
51-like kinase 1 were lower in MPTP-treated mice subjected to tDCS. Our findings suggest that tDCS 
protected against MPTP-induced PD in a mouse model by modulating autophagy.

Parkinson’s disease (PD) is currently defined as a neurodegenerative disorder characterized by the progressive 
loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Its pathologic hallmark is 
Lewy bodies. Currently, the management of PD is mainly focused on pharmacologic treatments, such as 
L-3,4-dihydroxyphenylalanine (L-DOPA) or dopamine agonists, which improve the clinical symptoms of PD1. 
Although symptomatic treatment has been shown to increase quality of life in PD patients, no disease-modifying 
treatment that eventually reverses or stops the disease’s progression is currently available, and the development of 
a neuroprotective therapy is one of the greatest unmet goals in PD. Furthermore, longstanding pharmacological 
treatments can result in undesirable adverse effects, such as motor fluctuations and L-DOPA-induced dyskinesia, 
as the disease progresses2. Therefore, it is essential that an alternative treatment modality that is safe and effective 
is developed to manage PD patients.

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique that acts by 
stimulating cortical and subcortical structures in the brain and modulating cortical excitability by inducing a 
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constant but weak current between two electrodes3. While many recent studies have shown that tDCS potentially 
improves and enhances cognitive and behavioral functions in addition to motor functions in PD patients, the 
results of tDCS, when applied in PD, have varied4–7. Furthermore, Lu et al. recently reported that tDCS exerted a 
neuroprotective effect in a 1-Methyl-4-Phenyl-1,2,3,4, Tetrahydropyridine (MPTP)-induced parkinsonian mouse 
model by reducing oxidative stress markers8. Although the specific mechanism underlying this process remains 
unclear, the cellular and molecular effects of tDCS also include anti-apoptotic and anti-inflammatory effects and 
the capacity to alter neurotransmitters9,10.

Autophagy is a lysosome-mediated catabolic pathway that is responsible for the bulk and non-specific degra-
dation of cytosolic proteins and organelles, which contributes to the maintenance of cellular homeostasis11. Many 
lines of evidence have indicated that autophagy plays an important role in the pathogenesis of PD. Furthermore, 
the pathogenesis of PD encompasses a combination of several biochemical factors, including oxidative stress, 
mitochondrial dysfunction, excitotoxicity, and inflammatory oxidative stress, all of which are tightly linked to 
autophagy pathways and several studies showed that tDCS could affect reactive oxygen species, apoptic pathway 
and neuroinflamation8,9,12. Therefore, if tDCS exhibits a neuroprotective ability against neurodegenerative pro-
cesses in a PD model, the mechanism responsible for its activity may involve the modulation of autophagy, which 
could be potential target for disease modifying treatment in PD. In addition, it suggests it is reasonable to inves-
tigate whether tDCS could affect the autophagy-lysosomal pathway. However, no previous study has investigated 
the effect of tDCS on autophagy pathways.

MPTP enters astrocytes and is converted into the active metabolite MPP+ by monoamine oxidase (MAO-B). 
M MPP+ subsequently accumulates in dopaminergic neurons, in which it has been shown to inhibit complex I 
of the respiratory chain of the inner mitochondrial membrane, resulting in the degeneration of dopaminergic 
neurons and the production of parkinsonian syndromes that are very similar to those observed in PD patients13. 
In a previous study, we demonstrated that MPTP increased LC3-II and decreased SQSTM1/p62 expression, indi-
cating that MPTP activates the autophagy-lysosomal pathway14. Su et al. also reported that MPTP enhanced 
aberrant autophagy and that treatment with melatonin restored the excessive activation of autophagy and attenu-
ated MPTP-induced neurotoxicity15. Therefore, we hypothesized that anodal tDCS may decrease MPTP-induced 
neurotoxicity in dopaminergic neurons in an in vivo model of PD and that the mechanism underlying its activity 
may involve the modulation of activated autophagy signaling pathways. We hypothesized that it might thereby 
improve the behavioral dysfunctions observed in an MPTP-induced mouse model of PD.

In the current study, as the intervention technique, we applied anodal tDCS to the M1 area at an intensity of 
0.1 mA. We evaluated molecular markers of neurodegeneration, such as tyrosine hydroxylase and α-synuclein, in 
addition to behavioral outcomes after we applied anodal tDCS to untreated and MPTP-induced mouse models. 
Furthermore, we also evaluated the levels of the autophagy-related protein to determine the effect of anodal tDCS 
on autophagy.

Results
tDCS ameliorates motor dysfunction in a mouse model of MPTP-induced toxicity.  To inves-
tigate the effect of tDCS on MPTP-induced motor dysfunction, we used the rotarod test. The retention time 
was 95.73 ± 5.73 seconds in the sham group. After treatment with MPTP, retention times were significantly 
shorter (approximately 49% of the level observed in the sham group). However, retention times were longer in 
the MPTP + tDCS group (1.7-fold the times observed in the MPTP-only group, 2-way ANOVA, tDCS: F = 9.531, 
P = 0.0031; MPTP: F = 25.05, P < 0.001; interaction: F = 8.641, P = 0.0048) (Fig. 1).

tDCS improves neuroprotection in a mouse model of MPTP-induced toxicity.  Consistent with 
the results of the motor function tests, tDCS protected dopaminergic neurons against MPTP-induced toxicity. As 
shown in Fig. 2A,B, there were significantly fewer TH-positive cells (dopaminergic neurons) in the MPTP group 

Figure 1.  Effect of tDCS on motor dysfunction in MPTP-treated mice. The length of time on the rotarod was 
recorded (n = 15). All values are shown as the mean ± S.E.M. **p < 0.01 compared to the sham group, ##p < 0.01 
compared to the MPTP group.
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(68%) those in the sham group (considered 100%, 2-way ANOVA, tDCS: F = 16.52, P < 0.001; MPTP: F = 31.46, 
P < 0.001; interaction: F = 14.47, P = 0.0011). Furthermore, the expression of the TH protein was significantly 
lower in the MPTP group (approximately 63%) than in the sham group (considered 100%). These decreases 
were attenuated by tDCS (2-way ANOVA, tDCS: F = 3.041, P = 0.0911; MPTP: F = 36.82, P < 0.001; interac-
tion: F = 13.04, P = 0.0011) (Fig. 2C). The expression of α-synuclein protein was higher in the MPTP group, and 
tDCS attenuated the expression of the α-synuclein protein (2-way ANOVA, tDCS: F = 9.001, P = 0.0052; MPTP: 
F = 23.55, P = 0.0052; interaction: F = 12.91, P = 0.0011) (Fig. 2D). Treatment with tDCS alone did not affect the 
loss of dopaminergic neuron cells.

tDCS inhibits autophagy in a mouse model of MPTP-induced toxicity.  To determine the effects 
of tDCS on MPTP-induced autophagy, we measured the ratio of LC3-II/LC3-I and the protein expression level 
of p62 in the mouse SNpc. The ratio of LC3-II/LC3-I was significantly higher in the MPTP group, in which it 
was 1.2-fold higher than was observed in the sham group (2-way ANOVA, tDCS: F = 10.13, P = 0.0032; MPTP: 
F = 7.068, P = 0.0122; interaction: F = 8.978, P = 0.0052). In addition, after treatment with MPTP, the expression 
level of the p62 protein was markedly decreased to approximately 28% of the level observed in the sham group 
(2-way ANOVA, tDCS: F = 3.225, P = 0.082; MPTP: F = 6.507, P = 0.0157; interaction: F = 12.10, P = 0.0015). 
TDCS attenuated these changes (Fig. 3C,D). To confirm the results of western blot analysis, we performed LC3-IF 
in the SNpc. After tDCS, the number of LC3-positive cells was lower than was observed in the MPTP group 
(2-way ANOVA, tDCS: F = 34.15, P < 0.001; MPTP: F = 31.85, P < 0.001; interaction: F = 34.93, P < 0.001) 
(Fig. 3A,B).

tDCS inhibits markers upstream of autophagy in a mouse model of MPTP-induced toxicity.  To 
examine the pathways upstream of autophagy, we measured the protein expression levels of PI3K, mTOR, AMPK 
and ULK. After treatment with MPTP, the levels of phosphorylated mTOR (2-way ANOVA, tDCS: F = 5.045, 
P = 0.0317; MPTP: F = 10.53, P = 0.0027; interaction: F = 9.146, P = 0.0049) and phosphorylated PI3K (2-way 
ANOVA, tDCS: F = 4.536, P = 0.0410; MPTP: F = 20.60, P < 0.001; interaction: F = 7.384, P = 0.0105) were mark-
edly decreased to 41% and 30%, respectively, of the levels observed in the sham group, and tDCS attenuated 
both of these decreases (Fig. 4A,B). The protein expression level of phosphorylated AMPK (2-way ANOVA, 
tDCS: F = 10.01, P = 0.0034; MPTP: F = 17.80, P < 0.001; interaction: F = 12.68, P = 0.0012) and ULK (2-way 
ANOVA, tDCS: F = 11.25, P = 0.0021; MPTP: F = 15.04, P < 0.001; interaction: F = 3.9717, P = 0.0549) signifi-
cantly increased to 1.3-fold and 1.4–fold, respectively, of the levels observed in the sham group. These increases 
were also attenuated by tDCS (Fig. 4C,D).

Figure 2.  Effect of tDCS on dopaminergic neuronal loss in MPTP-treated mice. After behavioral impairment, 
dopaminergic neurons were identified using TH-immunocytochemistry. Representative images show the 
SNc in each group (A). TH-positive cells were counted (B) in the SNc (n = 6). The protein level of TH in the 
SNpc was detected using western blotting (C) (n = 8 to 9). The level of the α-synuclein protein in the SNpc was 
determined using western blotting (D) (n = 8 to 9). All values are shown as the mean ± S.E.M. *p < 0.05 and 
**p < 0.01 compared to the sham group, #p < 0.05 and ##p < 0.01 compared to the MPTP group.
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Figure 3.  Effect of tDCS on autophagy in MPTP-treated mice. LC3-positive cells were identified using LC3-
immunocytochemistry. Representative images show the SNc in each group (A) LC3-positive cells were counted 
(B) in the SNc (n = 6). Western blotting was performed to measure the ratio of LC3-II/LC3-I (C) and the 
level of p62 (D). The ratio of the LC3-II and LC3-I bands was evaluated by densitometric analysis (n = 9). The 
expression of p62 protein was adjusted to the level of GAPDH, which was used as the loading control (n = 8 to 
9). All values are shown as the mean ± S.E.M. *p < 0.05 and **p < 0.01 compared to the sham group, #p < 0.05 
and ##p < 0.01 compared to the MPTP group.

Figure 4.  Effect of tDCS on markers upstream of autophagy in MPTP-treated mice. Western blotting was 
performed to measure the levels of upstream markers of autophagy, including mTOR (A) PI3K (B) AMPK 
(C) and ULK1 (D). The expression of each protein was adjusted to the level of GAPDH, which was used as the 
loading control (n = 9). All values are shown as the mean ± S.E.M. *p < 0.05 and **p < 0.01 compared to the 
sham group, #p < 0.05 and ##p < 0.01 compared to the MPTP group.
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tDCS increases the protein level of BDNF in a mouse model of MPTP-induced toxicity.  To 
investigate the molecular mechanism by which MPTP and tDCS affect autophagy, we measured BDNF protein 
expression. We found that the protein expression level of BDNF was decreased to 25% of the level observed in the 
sham group, and tDCS attenuated this decrease (2-way ANOVA, tDCS: F = 6.059, P = 0.0194; MPTP: F = 6.677, 
P = 0.0145; interaction: F = 9.909, P = 0.0035) (Fig. 5).

Discussion
In this study, we demonstrate that anodal tDCS exerts a neuroprotective effect on MPTP-induced dopamin-
ergic neurotoxicity. While applying anodal tDCS in the control group did not significantly change the expres-
sion of autophagy-related markers, tDCS downregulated autophagy markers in the MPTP-treated group. 
Therefore, anodal tDCS might ameliorate the degeneration of dopaminergic neurons in MPTP-induced mice 
by modulating autophagy. To the best of our knowledge, this is the first study to investigate the effect of tDCS on 
autophagy-related markers. In our study, LC3II and AMPK were upregulated, while mTOR and p62 were down-
regulated in MPTP-treated mice, indicating the activation of autophagy-related processes. Anodal tDCS seemed 
to stabilize the autophagy processes that were activated by MPTP-induced toxicity.

tDCS acts by modifying neuronal excitability. Generally, according to polarity, anodal stimulation 
enhances cortical excitability, while cathodal stimulation exerts the opposite effect16. Fregni et al. reported that 
motor-evoked potentials (MEPs) significantly increased after anodal tDCS was applied in PD patients and that 
the changes observed in MEPs were correlated with improvements in motor symptoms17. However, the cellular 
and molecular mechanisms by which tDCS exerts its effects in PD patients remain unclear, and few studies have 
explored its mechanism in animal models of PD. tDCS is known to affect cell migration, orientation, differen-
tiation, and metabolism by shifting intracellular calcium flux, interacting with membrane receptors, including 
acetylcholine receptors and members of tropomyosin receptor kinase families. N-methyl-D-aspartate receptors 
(NMDARs) and neurotransmitters, such as gamma-aminobutyric acid (GABA), serotonin, and glutamate, have 
also been reported to be associated with tDCS-induced long-term potentiation and long-term depression18. In 
particular, BDNF expression was enhanced by anodal tDCS, and this boosted BDNF-dependent synaptic plas-
ticity, which could potentially influence learning and memory19. Furthermore, BDNF triggered the expression of 
PI3K, an enzyme upstream of mTOR that might be responsible for modulating autophagy. Chen et al. suggested 
that BDNF exerted a neuroprotective effect by enhancing autophagy20. However, Smith et al. suggested that the 
neuroprotective and autophagy-modulating roles of BDNF could be influenced by mTOR expression21. Therefore, 
the effect of tDCS on autophagy pathways could be dependent on environmental stimulation. In human PD, the 
efficacy of anodal tDCS has differed between dopaminergic ‘on’ state and ‘off ’ state studies. These findings indi-
cate that dopaminergic medications could interact with the mechanism induced by tDCS22. In our study, in the 
group that was not treated with MPTP, the application of tDCS appeared to enhance autophagy but induced no 
significant changes in autophagy markers. Therefore, tDCS may modulate autophagy in different ways based on 
the stimulatory environment. Peruzzotti-Jametti et al. reported that anodal tDCS enhanced while cathodal stim-
ulation suppressed the expression of the pro-apoptotic marker caspase-3 in a stroke model23. The findings that 
there is a great deal of cross-communication between autophagy and apoptosis pathways and that apoptosis can 
inhibit autophagy may explain why anodal tDCS modulated autophagy only in the MPTP-treated mice.

In a previous study, Lu et al. have reported that anodal tDCS attenuated MPTP-induced toxicity in dopa-
minergic neurons by reducing oxidative stress, thereby improving behavioral outcomes8. Therefore, the 
anti-inflammatory effect of anodal tDCS could also contribute to the neuroprotective effect observed in our study. 

Figure 5.  Effect of tDCS on BDNF protein expression in MPTP-treated mice. Western blotting was performed 
to measure BDNF protein expression levels. The expression of each protein was adjusted to the level of GAPDH, 
which was used as the loading control (n = 9). All values are shown as the mean ± S.E.M. *p < 0.05 compared to 
the sham group, #p < 0.05 compared to the MPTP group.
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Furthermore, autophagy could be initiated by hypoxia or starvation, both of which can affect the expression of 
autophagy markers24. Consequently, the results of our study show that the net effect of anodal tDCS might be to 
suppress autophagy pathways under oxidative stress conditions, and this effect could ameliorate dopaminergic 
neurotoxicity. Therefore, the specific mechanism by which tDCS affects autophagy pathways in humang PD sub-
jects remains to be clarified in future studies using sophisticated PD model such as transgenic mouse. Considering 
that many studies reported autophagy lysosomal pathway was impaired in human PD brains, autophagy pathway 
modulation could be strong potential mechanism for tDCS efficacy as well as stabilizing oxidative stress8,12,25.

MPTP has been shown to upregulate α-synuclein in dopaminergic neurons15. In our study, anodal tDCS 
as also shown to be capable of modulating α-synuclein levels, which are upregulated by MPTP. The protein 
α-synuclein is a major component of Lewy bodies, which have been identified as a distinctive pathological hall-
mark of PD. Although the specific functions of α-synuclein remain uncertain, it may be strongly associated 
with familial and sporadic forms of PD26,27. Point mutations in the SNCA gene are responsible for some familial 
inheritance forms of PD, and polymorphisms in the SNCA gene have also been shown to influence the risk of 
developing PD. It is possible that genetic and environmental factors induce misfolding in natural α-synuclein 
and convert it to the toxic oligomeric form that is deposited in Lewy bodies28. Therefore, reducing α-synuclein 
synthesis or increasing its clearance might exert a neuroprotective effect against PD.

In PD, misfolded proteins are degraded via the ubiquitin-proteasome and autophagy-lysosome systems. Many 
lines of evidence indicate that the autophagy pathway is involved in the pathogenesis of PD and that α-synuclein 
can be degraded via the macroautophagy pathway12. However, in this study, anodal tDCS restored the expres-
sion of overactive autophagy-related markers in a PD-like mouse model. Thus, the specific mechanism by which 
α-synuclein levels are modulated by tDCS remains unclear but might be associated with an alternative pathway. 
Nonetheless, considering that α-synuclein plays a pivotal role in the pathogenesis of PD, our finding that anodal 
tDCS can stabilize the MPTP-induced upregulation of α-synuclein in the SNpc indicates that tDCS is a poten-
tially disease-modifying strategy for treating PD.

Several previous studies have shown that tDCS exerts positive effects on behavioral outcomes in animals and 
humans3,8,29. Our result also show that anodal tDCS restores the behavioral deficits induced by MPTP injec-
tion. Fregni et al. and Coesntino et al. showed that treatment with tDCS produced significant improvements in 
UPDRS-III scores in humans17,30. Furthermore, tDCS also had beneficial effects on cognitive function and freez-
ing of gait31. Thus, the possibility that tDCS could be used to treat symptomatic patients as well as to provide neu-
roprotection is very promising. However, till now, there was few clinical trials for proving neuroprotective efficacy 
of tDCS in human subjects compared to application for candidate of symptomatic treatment and the implementa-
tion of this technique awaits further evidence and the development of an ideal protocol to achieve the best results.

There are several limitations to our study. First, we used subacute MPTP model to induce neurotoxicity in our 
in vivo mouse model in mouse of parkinsonism as following previous studies8,32. Although this subacute MPTP 
model is widely recognized and extensively used as an animal model of PD, it does not completely reproduce clin-
ical PD and its progressive nature. Chronic MPTP model which is required repeated MPTP injection over 2 weeks 
has been introduced and showed more sustained alteration of nigrostriatal cell loss and resemblance of cardinal 
PD features33. Furthermore, various studies have suggested that impaired autophagy pathways, rather than over-
active autophagy processes, contribute to the pathogenesis of human PD12,25. Therefore, considering that PD is a 
progressive, chronic degenerative disease, to clarify the role that the modulation of autophagy plays in the neuro-
protective effects of tDCS in PD, tDCS should be applied in more elegant PD models, such as chronic MPTP model 
or transgenic mouse models of PD. Second, the protocol used to perform tDCS is arbitrary. Its polarity, the site of 
stimulation, and the intensity at which tDCS is applied can greatly affect its effects. For example, in a stroke model, 
the polarity that was shown to exert a neuroprotective effect as cathodal stimulation34. Therefore, cathodal tDCS 
could be tentative option for neuroprotection in PD model and further investigation using cathodal stimulation is 
necessary. However, in PD. anodal tDCS seems to be more favorable than cathodal stimulation based on the neu-
rophysiological measurements obtained here and in several previous studies in which tDCS was applied in a PD 
model or PD patients8,22. Furthermore, we initially tested cathodal tDCS stimulation in 3 mice in each group, but 
found no efficacy on modulating autophagy markers and excluded cathodal tDCS in main experimental process 
(Supplementary material). With regard for the site of stimulation, application of tDCS at the dorsolateral prefrontal 
cortex (DLPFC) was also reported to enhance cognitive function and motor performance. Reports have also shown 
that applying anodal tDCS on M1 may enhance cortical activity via NMDA receptors and prolong the cortical silent 
period, which reflects dopaminergic function35. Furthermore, the M1 area is both directly and indirectly connected 
with the striatum, and Li et al. suggested that the anodal stimulation of M1 also activated the SN32. Therefore, there 
is evidence indicating that M1 is a suitable site for stimulation in PD. However, there are also reports that multitar-
get tDCS reveal effectively reducing freezing of gait, improving executive function and balance function in PD36. 
Therefore, bi-hemisphetic and multitarget tDCS montage (dorsolateral prefrontal and M1) should be considered for 
clinical trial in human PD patients andfuture studies will need to develop a protocol that maximizes the neuropro-
tective efficacy of tDCS. Third, we evaluated only right side of substantia nigra based on previous study. Therefore, 
effect of anodal tDCS on ipsilateral side remained unclear. Lastly, limited types of autophagy markers were used 
to evaluate the ability of tDCS to modulate autophagy. We measured the autophagy initiation protein, mTOR, and 
autophagy-specific cargo, such as LC3II and p62. However, these markers do not precisely reflect autophagy flux. 
Both enhanced LC3II conversion and reduced autophagosome degradation can cause an increase in LC3II protein 
levels. Therefore, the precise net effect of anodal tDCS on autophagy flux should be further investigated.

Despite these limitations, our data demonstrate that tDCS exerts a neuroprotective effect against the dopamin-
ergic neurotoxicity observed in an MPTP-induced parkinsonian mouse model and that it modulates α-synuclein 
expression. The mechanism by which it exerts this neuroprotective effect is likely to involve the modulation of 
autophagy. These results suggest a theoretical basis for the use of anodal tDCS as a candidate neuroprotective 
therapy or a therapy to improve symptomatic PD, both of which are of great interest.
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Methods
Animals.  All animal procedures were approved by the Korea Institute of Science and Technology Animal Care 
and Use Committee (AP-2017009).

Experiments using mice were conducted in accordance with the Korea Institute of Science and Technology 
Animal Care Committee guidelines and other approved guidelines37. Male C57BL/6 mice (7 weeks old) were 
obtained from Orient Bio Inc. (Seongnam, Korea) and maintained in a temperature- and humidity-controlled 
room (22 ± 3 °C and 50%, respectively) under a 12-h light/dark cycle. Water and food were provided ad libitum.

Surgery and transcranial brain stimulation.  To induce anodal tDCS, we chosen an electrode montage 
based on earlier studies8,19,32,38. Mice were anesthetized with ketamine (55 mg/kg) and xylazine (7 mg/kg), and 
a small incision was made in the skin of the head. After the skull was dried with cotton swabs, a custom-made 
plastic tube (American Plastics, CA, USA) was placed on the skull overlying the M1 area of the cortex. The tube 
was subsequently attached to the skull overlying the frontal cortex by nontoxic dental cement. To avoid debris 
accumulating in the plastic tube, a custom-made screw cap was placed to seal the tube when not in use. The mice 
were allowed to recover for five days. The animals (n = 60) were randomly divided into the following four groups: 
(1) vehicle-treated sham (Sham; n = 15), (2) vehicle-treated anodal tDCS group (tDCS; n = 15), (3) MPTP-treated 
sham (MPTP; n = 15) and (4) MPTP-treated anodal tDCS group (MPTP + tDCS; n = 15). Mice in the MPTP 
groups received an intraperitoneal injection of MPTP (30 mg/kg) dissolved in phosphate-buffered saline (PBS) 
on five consecutive days with or without tDCS. tDCS was daily applied daily for 30 min continuously, using a 
constant current stimulator (Caputron, NYC, USA) at 0.1 mA by an anodal electrode, 30 min after treatment with 
MPTP (current density of stimulus electrode: 3.2 mA/cm2). The anodal electrode [3.1 mm2] was inserted into the 
tube placed on the left M1 area of the cortex, which was filled with saline, and the cathode [11 cm2] was placed 
between the shoulders. After the last tDCS was applied, all of the mice were submitted to a motor coordination 
test and then sacrificed. The brain of each mouse was quickly taken and than was fixed in 4% paraformaldehyde 
for immunocytochemistry or stored at −80 °C for western blotting.

Motor Coordination Measurements.  The rotarod test was performed to assess fine motor coordination 
and balance after treatment with MPTP in a manner similar to that described in previously published studies39. 
On the three consecutive days before testing, the mice were pre-trained to stay on a rotarod that accelerated to 
increasing speeds (2–16 rpm) for 3 min 3 times per day. On the test day, we performed three trial with the same 
procedure. The latency times until the mice fell were automatically recorded, and the resulting data were used to 
calculate the mean time over the three trials.

Immunocytochemistry.  Midbrain tissues (6 mice per group) were fixed in 0.1 M sodium phosphate buffer 
containing 2.5% glutaraldehyde and 4% paraformaldehyde (pH 7.2). Serial coronal sections (30 μm thick) were 
cut through the SNpc on a freezing cryostat (Thermo Fisher, MA, USA). The sections were washed with PBS and 
placed in 0.5% Triton X-100 in PBS for 30 min to permeabilize the tissues. After the sections were washed with 
PBS, they were blocked with protein block serum-free buffer for 30 min and then incubated in blocking buffer 
containing primary antibodies for 2 h at room temperature. After they were washed, the sections were reacted with 
Alexa Fluor 488-labeled secondary goat anti-rabbit IgG antibodies. To stain cell nuclei, the sections were incu-
bated with 25 ug/mL of 4′-6-diamidino-2-phenylindole (DAPI) in PBST for 30 min. Fluorescence images were 
captured of the right area of substantia nigra and analyzed using a confocal microscope (Leica, Solms, Germany).

Western blot immunoassay.  Substantia nigra was dissected from isolated brain tissue (9 mice per group) 
and then homogenized in PRO-PREP (iNtRON Biotechnology Inc., Seongnam, Korea) containing protease 
inhibitor. The tissue lysates were loaded on 6–15% polyacrylamide gels and separated by SDS-PAGE. After 
transfer, the membranes were blocked in 3% BSA or 5% skim milk dissolved in TBST for 1 h and then incu-
bated overnight at 4 °C with primary antibodies. The membranes were washed in TBST and incubated with the 
appropriate secondary antibodies for 1 h at room temperature. The proteins on the membranes were detected 
using a SuperSignal West Femto Maximum Sensitivity Substrate kit (Thermo Scientific, Pierce Biotechnology, 
Rockford, Illinois, USA) and an LAS-4000 mini system (Fujifilm, Tokyo, Japan). The following primary anti-
bodies were used: tyrosine hydroxylase (TH), α-synuclein, microtubule-associated protein 1 light chain 3 (LC3), 
sequestosome1/p62 (p62), mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), 
phosphoinositide 3-kinase (PI3K), unc-51-like kinase 1 (ULK) (all Cell Signaling Technology, MA, USA), 
and brain-derived neurotrophic factor (BDNF) (Sigma-Aldrich). The data were normalized to the intensity of 
GAPDH using Multi Gauge software (Fujifilm).

Statistical analysis.  All data were analyzed by one-way and two-way ANOVA. Differences between groups 
were considered significant at the p < 0.05 level after appropriate Bonferroni correction for multiple comparisons. 
The results are presented as the mean ± S.E.M.

References
	 1.	 Servello, D. et al. Deep brain stimulation for Parkinson’s disease prior to L-dopa treatment: A case report. Surgical neurology 

international 7, S827–s829, https://doi.org/10.4103/2152-7806.194064 (2016).
	 2.	 Huot, P., Johnston, T. H., Koprich, J. B., Fox, S. H. & Brotchie, J. M. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s 

disease. Pharmacological reviews 65, 171–222, https://doi.org/10.1124/pr.111.005678 (2013).
	 3.	 Kuo, M. F., Paulus, W. & Nitsche, M. A. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in 

neuropsychiatric diseases. NeuroImage 85(Pt 3), 948–960, https://doi.org/10.1016/j.neuroimage.2013.05.117 (2014).
	 4.	 Biundo, R., Weis, L. & Antonini, A. tDCS effect on cognitive performance in Parkinson’s disease. Movement disorders: official journal 

of the Movement Disorder Society 31, 1253–1254, https://doi.org/10.1002/mds.26685 (2016).

http://dx.doi.org/10.4103/2152-7806.194064
http://dx.doi.org/10.1124/pr.111.005678
http://dx.doi.org/10.1016/j.neuroimage.2013.05.117
http://dx.doi.org/10.1002/mds.26685


www.nature.com/scientificreports/

8ScIenTIfIc RePorTS |  (2018) 8:15165  | DOI:10.1038/s41598-018-33515-7

	 5.	 Ferrucci, R. et al. Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson’s 
Disease. Cerebellum (London, England) 15, 43–47, https://doi.org/10.1007/s12311-015-0737-x (2016).

	 6.	 Forogh, B. et al. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in 
Parkinson’s disease. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical 
Neurophysiology 38, 249–254, https://doi.org/10.1007/s10072-016-2748-x (2017).

	 7.	 Schabrun, S. M., Lamont, R. M. & Brauer, S. G. Transcranial Direct Current Stimulation to Enhance Dual-Task Gait Training in 
Parkinson’s Disease: A Pilot RCT. PloS one 11, e0158497, https://doi.org/10.1371/journal.pone.0158497 (2016).

	 8.	 Lu, C. et al. Transcranial Direct Current Stimulation Ameliorates Behavioral Deficits and Reduces Oxidative Stress in 1-Methyl-4-
Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson’s Disease. Neuromodulation: journal of the International 
Neuromodulation Society 18 442–446 discussion 447 https://doi.org/10.1111/ner.12302 (2015).

	 9.	 Laste, G. et al. After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic 
inflammation. Experimental brain research 221, 75–83, https://doi.org/10.1007/s00221-012-3149-x (2012).

	10.	 Spezia Adachi, L. N. et al. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal 
model. Brain research 1489, 17–26, https://doi.org/10.1016/j.brainres.2012.10.009 (2012).

	11.	 Majeski, A. E. & Dice, J. F. Mechanisms of chaperone-mediated autophagy. The international journal of biochemistry & cell biology 
36, 2435–2444, https://doi.org/10.1016/j.biocel.2004.02.013 (2004).

	12.	 Lynch-Day, M. A., Mao, K., Wang, K., Zhao, M. & Klionsky, D. J. The role of autophagy in Parkinson’s disease. Cold Spring Harbor 
perspectives in medicine 2, a009357, https://doi.org/10.1101/cshperspect.a009357 (2012).

	13.	 Meredith, G. E. & Rademacher, D. J. MPTP mouse models of Parkinson’s disease: an update. Journal of Parkinson’s disease 1, 19–33, 
https://doi.org/10.3233/jpd-2011-11023 (2011).

	14.	 Li, H. et al. Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of 
Parkinson’s disease. Neuroreport 26, 669–674, https://doi.org/10.1097/wnr.0000000000000401 (2015).

	15.	 Su, L. Y. et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/alpha-
synuclein aggregation. Autophagy 11, 1745–1759, https://doi.org/10.1080/15548627.2015.1082020 (2015).

	16.	 Nitsche, M. A. & Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. 
The Journal of physiology 527(Pt 3), 633–639 (2000).

	17.	 Fregni, F. et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement 
disorders: official journal of the Movement Disorder Society 21, 1693–1702, https://doi.org/10.1002/mds.21012 (2006).

	18.	 Pelletier, S. J. & Cicchetti, F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from 
in vitro and in vivo models. The international journal of neuropsychopharmacology 18, https://doi.org/10.1093/ijnp/pyu047 (2014).

	19.	 Podda, M. V. et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic 
regulation of Bdnf expression. Scientific reports 6, 22180, https://doi.org/10.1038/srep22180 (2016).

	20.	 Chen, A., Xiong, L. J., Tong, Y. & Mao, M. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy 
through the PI3K/Akt/mTOR pathway. Molecular medicine reports 8, 1011–1016, https://doi.org/10.3892/mmr.2013.1628 (2013).

	21.	 Smith, E. D. et al. Rapamycin and interleukin-1beta impair brain-derived neurotrophic factor-dependent neuron survival by 
modulating autophagy. The Journal of biological chemistry 289, 20615–20629, https://doi.org/10.1074/jbc.M114.568659 (2014).

	22.	 Benninger, D. H. et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. Journal of neurology, 
neurosurgery, and psychiatry 81, 1105–1111, https://doi.org/10.1136/jnnp.2009.202556 (2010).

	23.	 Peruzzotti-Jametti, L. et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. 
Stroke 44, 3166–3174, https://doi.org/10.1161/strokeaha.113.001687 (2013).

	24.	 Ferreira, J. V. et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 9, 1349–1366, 
https://doi.org/10.4161/auto.25190 (2013).

	25.	 Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42, https://doi.org/10.1016/j.cell.2007.12.018 (2008).
	26.	 Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging 24, 197–211 (2003).
	27.	 Xu, L., Ma, B., Nussinov, R. & Thompson, D. Familial Mutations May Switch Conformational Preferences in alpha-Synuclein Fibrils. 

ACS chemical neuroscience 8, 837–849, https://doi.org/10.1021/acschemneuro.6b00406 (2017).
	28.	 Vekrellis, K. & Stefanis, L. Targeting intracellular and extracellular alpha-synuclein as a therapeutic strategy in Parkinson’s disease and 

other synucleinopathies. Expert opinion on therapeutic targets 16, 421–432, https://doi.org/10.1517/14728222.2012.674111 (2012).
	29.	 Benussi, A. et al. Modulating risky decision-making in Parkinson’s disease by transcranial direct current stimulation. European 

journal of neurology 24, 751–754, https://doi.org/10.1111/ene.13286 (2017).
	30.	 Cosentino, G. et al. Effects of More-Affected vs. Less-Affected Motor Cortex tDCS in Parkinson’s Disease. Frontiers in human 

neuroscience 11, 309, https://doi.org/10.3389/fnhum.2017.00309 (2017).
	31.	 Chang, W. H. et al. Effect of Dual-Mode and Dual-Site Noninvasive Brain Stimulation on Freezing of Gait in Patients With Parkinson 

Disease. Archives of physical medicine and rehabilitation 98, 1283–1290, https://doi.org/10.1016/j.apmr.2017.01.011 (2017).
	32.	 Li, H. et al. The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced 

Parkinson’s disease monkeys. Scientific reports 5, 12178, https://doi.org/10.1038/srep12178 (2015).
	33.	 Petroske, E., Meredith, G. E., Callen, S., Totterdell, S. & Lau, Y. S. Mouse model of Parkinsonism: a comparison between subacute 

MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589–601 (2001).
	34.	 Notturno, F. et al. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model. Journal of the 

neurological sciences 342, 146–151, https://doi.org/10.1016/j.jns.2014.05.017 (2014).
	35.	 Roche, N., Geiger, M. & Bussel, B. Mechanisms underlying transcranial direct current stimulation in rehabilitation. Annals of 

physical and rehabilitation medicine 58, 214–219, https://doi.org/10.1016/j.rehab.2015.04.009 (2015).
	36.	 Dagan, M. et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Movement disorders: 

official journal of the Movement Disorder Society 33, 642–646, https://doi.org/10.1002/mds.27300 (2018).
	37.	 Tieu, K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harbor perspectives in medicine 1, a009316, https://

doi.org/10.1101/cshperspect.a009316 (2011).
	38.	 Kamida, T. et al. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-

induced status epilepticus in immature rats. Behavioural brain research 217, 99–103, https://doi.org/10.1016/j.bbr.2010.08.050 (2011).
	39.	 Li, H. et al. Anti-apoptotic effect of modified Chunsimyeolda-tang, a traditional Korean herbal formula, on MPTP-induced neuronal 

cell death in a Parkinson’s disease mouse model. Journal of ethnopharmacology 176, 336–344, https://doi.org/10.1016/j.
jep.2015.11.013 (2015).

Acknowledgements
This work was funded and supported by the Bio-Synergy Research Project (NRF-2012M3A9C4048793) of the 
Ministry of Science, ICT, and Future Planning through the National Research Foundation, Republic of Korea to 
H.O.Y. Also, this work was supported by the Gangneung Asan Hospital Biomedical Research Center Promotion 
Fund to W.Y.J. and the Korea Institute of Science and Technology institutional program (2Z05330).

http://dx.doi.org/10.1007/s12311-015-0737-x
http://dx.doi.org/10.1007/s10072-016-2748-x
http://dx.doi.org/10.1371/journal.pone.0158497
http://dx.doi.org/10.1111/ner.12302
http://dx.doi.org/10.1007/s00221-012-3149-x
http://dx.doi.org/10.1016/j.brainres.2012.10.009
http://dx.doi.org/10.1016/j.biocel.2004.02.013
http://dx.doi.org/10.1101/cshperspect.a009357
http://dx.doi.org/10.3233/jpd-2011-11023
http://dx.doi.org/10.1097/wnr.0000000000000401
http://dx.doi.org/10.1080/15548627.2015.1082020
http://dx.doi.org/10.1002/mds.21012
http://dx.doi.org/10.1093/ijnp/pyu047
http://dx.doi.org/10.1038/srep22180
http://dx.doi.org/10.3892/mmr.2013.1628
http://dx.doi.org/10.1074/jbc.M114.568659
http://dx.doi.org/10.1136/jnnp.2009.202556
http://dx.doi.org/10.1161/strokeaha.113.001687
http://dx.doi.org/10.4161/auto.25190
http://dx.doi.org/10.1016/j.cell.2007.12.018
http://dx.doi.org/10.1021/acschemneuro.6b00406
http://dx.doi.org/10.1517/14728222.2012.674111
http://dx.doi.org/10.1111/ene.13286
http://dx.doi.org/10.3389/fnhum.2017.00309
http://dx.doi.org/10.1016/j.apmr.2017.01.011
http://dx.doi.org/10.1038/srep12178
http://dx.doi.org/10.1016/j.jns.2014.05.017
http://dx.doi.org/10.1016/j.rehab.2015.04.009
http://dx.doi.org/10.1002/mds.27300
http://dx.doi.org/10.1101/cshperspect.a009316
http://dx.doi.org/10.1101/cshperspect.a009316
http://dx.doi.org/10.1016/j.bbr.2010.08.050
http://dx.doi.org/10.1016/j.jep.2015.11.013
http://dx.doi.org/10.1016/j.jep.2015.11.013


www.nature.com/scientificreports/

9ScIenTIfIc RePorTS |  (2018) 8:15165  | DOI:10.1038/s41598-018-33515-7

Author Contributions
(1) conception and design of the study (2) acquisition and analysis of data (3) drafting a significant portion of the 
manuscript or figures Sang-Bin Lee: 2 and 3 Hee-Tae Kim: 3 Hyun Ok Yang: 1, 2 and 3 Wooyoung Jang: 1, 2 and 3.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-33515-7.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-33515-7
http://creativecommons.org/licenses/by/4.0/

	Anodal transcranial direct current stimulation prevents methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxi ...
	Results

	tDCS ameliorates motor dysfunction in a mouse model of MPTP-induced toxicity. 
	tDCS improves neuroprotection in a mouse model of MPTP-induced toxicity. 
	tDCS inhibits autophagy in a mouse model of MPTP-induced toxicity. 
	tDCS inhibits markers upstream of autophagy in a mouse model of MPTP-induced toxicity. 
	tDCS increases the protein level of BDNF in a mouse model of MPTP-induced toxicity. 

	Discussion

	Methods

	Animals. 
	Surgery and transcranial brain stimulation. 
	Motor Coordination Measurements. 
	Immunocytochemistry. 
	Western blot immunoassay. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Effect of tDCS on motor dysfunction in MPTP-treated mice.
	Figure 2 Effect of tDCS on dopaminergic neuronal loss in MPTP-treated mice.
	Figure 3 Effect of tDCS on autophagy in MPTP-treated mice.
	Figure 4 Effect of tDCS on markers upstream of autophagy in MPTP-treated mice.
	Figure 5 Effect of tDCS on BDNF protein expression in MPTP-treated mice.




