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Abstract

We propose a geometric multiparty extension of Clauser—Horne (CH) inequality. The standard CH
inequality can be shown to be an implication of the fact that statistical separation between two events,
Aand B, definedas P(A & B),where A ® B = (A — B) U (B — A), satisfies the axioms of a
distance. Our extension for tripartite case is based on triangle inequalities for the statistical separations
of three probabilistic events P(A & B & C). We show that Mermin inequality can be retrieved from
our extended CH inequality for three subsystems in a particular scenario. With our tripartite CH
inequality, we investigate quantum violations by GHZ-type and W-type states. Our inequalities are
compared to another type, so-called N-site CH inequality. In addition we argue how to generalize our
method for more subsystems and measurement settings. Our method can be used to write down
several Bell-type inequalities in a systematic manner.

1. Introduction

Intrinsic randomness of quantum mechanics has been a topic of a debate for many years. In 1935, Einstein,
Podolsky, and Rosen (EPR) claimed that quantum mechanics is an incomplete theory [ 1], and hidden variables
could be implemented to resolve the issue. In his pioneering work [2] Bell formulated an inequality that is
satisfied by local hidden variable models, but can be violated by quantum mechanics for bipartite and two-level
systems. Bell-theorem significantly improved our understanding of quantum intrinsic randomness with respect
to the assumptions of reality and locality in local hidden variable models. Further studies have been done by
considering more complicated systems. For examples, there have been Bell inequalities proposed for many
qubits with two dichotomic observables per site [3—7] and for more than two alternative observables [8, 9]. For
higher dimensional systems, different forms of Bell inequalities have been introduced [10-21]. Other
derivations of Bell inequalities can be found also in [22].

Experimental tests to invalidate Bell inequalities faced challenges such as detection and locality loopholes
[22]. In particular, the detection loophole had to be dealt with by the use with the additional fair-sampling
assumption, i.e., that the detected events give a fair representation of the entire ensemble [23, 24]. In 1974,
Clauser and Horne proposed another type of Bell inequality [24], which is very handy in dealing with such
problems like detection inefficiency (see the analysis by Eberhard [25, 26]), and can be thought of as the most
elementary Bell inequality. Some attempts to generalize the inequality to multipartite systems can be found in
[27,28]. We shall continue here this effort, however our generalization will be based on different observations
concerning the original Clauser—-Horne (CH) inequality and therefore will take a different form. Our extension
is based on a geometric interpretation of Bell inequalities in Kolmogorov theory of probability as given by [29],
further developed in [30, 31].

Experimental falsification of Bell’s inequality without the fair-sampling assumption was recently presented
in [32, 33]. Recently, loophole free violations of Bell inequality were reported independently by Hensen et al [34],
Giustina et al [35], and Shalm et al [36] even though many attempts were previously made to close the two
loopholes simultaneously (see [37] for important results). The possibility of having loophole free realizations of
Bell experiments, opens the way for constructing device independent quantum information schemes and
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protocols, which would be fully secure. However, thus far we do not have aloophole free Bell experiment for
three or more subsystems, and therefore one must continue research toward finding optimal approaches in this
realm.

The essential traits of our generalization are as follows:

+ We first note that at the times in which CHSH and CH inequalities were first formulated, they looked as
ad hoc ones. Their starting points were certain, indeed ad hoc, algebraic identities. Still as the CHSH-Bell
inequality is implied by the CH one, the latter one seemed from the very beginning to be more fundamental.
Much later it turned out that the CH inequality is derivable using a geometric notion of separation of two
probabilistic event [29]. The separation for two events A and Breads S(A, B) = P(A) + P(B) — 2P (A, B).
It has all properties of a distance, this includes most importantly the triangle inequality. A single triangle
inequality cannot be used to derive Bell inequalities, still suitable chaining of two triangle inequalities leads to
aquadrangle inequality, which after it is rewritten in terms of probabilities is the CH inequality. This
geometric feature, we think, underlines the fundamental nature of the CH inequality, and singles it out.
Therefore we postulate that three (or more) Bell inequalities which are direct generalizations of the CH one
should be derivable also using the geometric properties of separations of three (or more) probabilistic events.

+ The statistical separation between probabilistic events, A and B, can also be put as a probability of
symmetric difference between two events A and B, P(A & B), where the symmetric difference A @ B =
(A — B) U (B — A).We find an extension of CH inequality for a tripartite system, by extending the
separation measureto P(A & B @ C). Mostimportantlywehave A@ (B@& C) =A@ B)d C =
A & (C & B). The symmetry property of the two event separation, P(A & B) = P(B & A) (or S(A, B) =
S(B, A)) has no obvious role in the derivation of the CH inequality. However its extension, shown above in
the three-party scenario, is essential to derive the initial triangle inequalities, with the use of which one can
derive our generalization of the CH inequality for a tripartite system.

+ Theinequality can used to derive the Mermin inequality for three qubits [3], and of course, further on to the
CHSH inequality of two qubits in [24, 38]. So the generalization has an additional trait similar to the CH
inequality. We show also that it can be reduced to a bipartite CH inequality if one party is eliminated.

+ Theinequality is tight, just as the CH one.

+ The method can be further extended to more than three parties, however in this case non-trivial
generalizations (along the lines: a polygon inequality for separations) of the CH inequality, where the parties
play fully symmetric roles, involve more than two settings for each party.

The paper is organized as follows. We derive a geometric extension of CH inequality for three subsystems by
introducing statistical separation of probabilistic events in section 2. There we also discuss the properties of the
inequality such as it being tight, and reducible to a bipartite CH inequality and a tripartite Mermin inequality in a
particular scenario. In section 3, quantum violations of our inequality and comparisons to N-site CH inequality
([27]) are discussed in terms of the degree of noise robustness and critical efficiency of detection. There is region
of parameters in which our approach gives quantum violations which are more resistant to the imperfections.
We also demonstrate the generality of our method by extending the inequality for a three-party system with two
measurement settings per site to a three-party system with three measurement settings per site and a four-party
system with three measurement settings per site (section 4). We summarize our results in section 5.

2. Derivation

2.1. Geometric approach with statistical separations

In our derivation of CH-type Bell inequalities, statistical separation plays a crucial role. It is defined by the
probability of symmetric difference between two events [39]. Let (€2, F, P) be a probability space, where 2isa
sample space, F an event space, and P a probability measure. The symmetric difference of two events X and Yis
defined by

XeY=X-YV U Y-X)=XnY'|J XNY,
where X = Q — X, etc. It satisfies the following properties: (a) X @ X = &,(b) X @ Y = Y @ X, and (¢)itis

associative, X ® Y) & Z = X @& (Y @ Z). For three events we have, most importantly, the permutation
symmetry,thatis X ® (Y@ Z2) =Y B (Z® X) = Z® (X @ Y). The generalization to more events is
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inductive. Asevents X N Y¢and X° N Y are mutually exclusive,onehas1 > P(X & Y) = P(XN Y°) +
P(X°NY) > 0. The probability P(X & Y) of asymmetric difference is often called statistical separation
between events X and Y. It was originally put as

P(X & Y)=P(X) 4+ P(Y) — 2P(X, Y), (1)

where P(X, Y) = P(XNY).
Statistical separation has a geometric interpretation as it obeys the triangle inequality,

PXDY)+PYDZ) >2PXD2Z). @)

Note that for events X, Y, and Zonehas (X & Y) & (Y & Z) = X & Z.Theinequality (2) in terms of
probabilities reads

P(Y) + P(X, Z) > P(X, Y) + P(Y, Z). 3)

Let us consider probability P(X & Y & Z) of the measure of the symmetric difference of three events, X, Y,
and Z. The aforementioned permutation symmetry implies that it is a statistical separation between Xand Y & Z,
orbetween Yand Z @ X, or finallybetween Zand X @ Y. Wedefineitas a statistical separation of three events X,
Y,and Z.Onecanshowthat X § YH Z = X°NY'NZ2) U XNY'NZH U XNYNZH) U XNYN2Z).
Bynoting XN Y‘NZ,XNY‘NZ, X°NYNZSand X N YN Z are mutually exclusive, we also get

PXeY®Z)=PX,Y,2) + P(X, Y, 2 + P(X, Y, Z) + P(X5, Y, Z9), 4

where P(X, Y, Z) = P(XN YN Z),and so on. Such considerations can be extended to more events than three.
In the following subsection, we analyze statistical separations of certain combinations of symmetric
differences of probabilistic events for a specific type of three-qubit experiments.

2.2. A geometric tripartite extension of CH inequality

Here we derive a Bell-type inequality with statistical separations for tripartite systems. We consider a scenario of
three qubits. The qubits are measured by three observers (Alice, Bob, and Charlie). Each partner chooses one of
two measurement settings. Events associated with Alice’s (Bob’s and Charlie’s) choice of measurement settings
are denoted by A; (B;and C)), for i = 1, 2. For example, event A; for Alice represents the fact that Alice chooses a
measurement related with a projector A; and detects her qubit. We define the events Bjand Cy for Bob and
Charlie, respectively, in a similar way. The respective outcomes, denoted as a;, b;, and ¢, mean ‘detection’ if their
valueis 1 and ‘no detection’is 0, 1.e. a;, bj, ¢, = 0, 1.

Inlocal realistic probabilistic model, the outcomes build elements of the sample space for the considered
scenario ) = {(aj, a, by, by, ¢, &) | aj, bj, ¢ = 0, 1}. Note that in such a treatment, we avoid introduction of
other hidden variables. Only the possible full sets of hidden results suffice. Events E are subsets of the sample
space, E C 2, and their probabilities are denoted by P(E). For instance, P(A,) is the probability of event

Al = {(611 = l) a, bl) b23 5} CZ) | a, b1,2) Cl,2 = 0) 1})

that is, the detection of Alice’s qubit with the choice of projector A,. Joint probabilities of two events A;and B;,
that Alice’s and Bob’s qubits are all detected for local settings i and j, are denoted by P(A;, B;). This applies to the
other pairs, Bob and Charlie, and Charlie and Alice. Similarly, detections of all qubits by the observers (Alice,
Bob, and Charlie) in settings (i, j, and k, respectively) are associated with joint probability P(A;, Bj, C;) of the three
detection events A;and Bjand Cy.

Note that the following triangle inequality holds

P((Al @ By) @ Cy) + P(C, © (A2 @ By) = P((A1 @ By) @ (A @ By)). )

In the above, the additional inside brackets we introduced point that we in fact deal here with the original triangle
inequality for separation of pairs of events (2). However they can be dropped, as we have the symmetries
mentioned earlier. The second triangle inequality which we need is

P((A; @ B) @ (A, @ By)) + P((A, @ By) @ G) = P((A @ B) @ G, (6)

and it is written in a similar convention. Note that both inequalities involve events which in the quantum point
of view are inaccessible experimentally, if the projectors associated with A, and A, (also B; and B,) do not
commute.

With the two triangle inequalities, we get an inequality which applies only to operationally accessible
situations
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PA @SB, ®C)+PA EB B C)+PA &B, & C) = PA & B & Q). (7)

This is the geometric tripartite extension of CH inequality.
To get a form of it which is expressed in terms of probabilities of events and their coincidences, we expand
this inequality by using equation (1), to get

L+ Qap+ Qpc+ Qca + 2T 2 0, (8)

where L is the sum of local (single-site) probabilities, Qxyand T are certain combinations of pair- and triple-site
joint probabilities, respectively. More explicitly,

L= > PX)

X—A,B,C
Qxy =P(X, V) — P(X;, V2) — P(X3, ) — P(X,, Vo)
T = P(Ay, By, Cy) + P(Ay, By, Cy) + P(Ay, By, G) — P(Ay, By, G).

The tripartite inequality (8)is reduced to a bipartite CH inequality if one party is eliminated. Assume that
Charlie has no events of detections in his measurements, i.e. all probabilities of events C; , vanish. Then,

L = P(A;) + P(B,), Qup = P(A1, B1) — P(Ay, By) — P(A3, B1) — P(Ay, By), Qpc = Qca = 0,and T = 0.1In
other words, the tripartite inequality in equation (8) becomes a bipartite CH inequality, if the third party does
not measure anything, i.e. its events are represented in the sample space by empty sets [24]. It is worth
mentioning that the left hand side in equation (8) is upper bounded by 1.

We may formulate the inequality (8) in a form of Eberhard inequality for 3 qubits, as shown in appendix C.2.
Eberhard inequality [25] includes explicitly non-detection events. Its derivation from CH inequality is presented
in appendix C.1, showing the algebraic equivalence between the two inequalities [26].

Itis worth mentioning that in [40], an information-theoretic inequality for bipartite systems in terms of
triangle inequalities was presented utilizing the concept of information distance. Further developments for
multipartite cases can be found in [41].

2.3. Mermin inequality

Our method can be applied to derive Mermin inequality, just like CH ones lead to CHSH ones. Let us consider
an experiment where each of three observers possesses a two-channel analyzer and two detectors, each with two
outcomes ( £1). Suppose the experiment is described by alocal hidden variable model with sample space

Q = {(a, @, by, by, 6, ©) | a, bj, ¢ = £1}. Inthis scenario we assume that every subsystem is detected with
one of two outcomes £1, contrary to the previous subsections. Note that, effectively, in this subsection we assign
outcome —1 to the ‘no detection’. Event A is defined by the detection with outcome +1 of Alice’s qubit for a
projector A, chosen and event A{ by the one with outcome — 1. That is, events

A = {(a = +1, ap, by, by, 6, )ag, b1, = 1}
and

Af = {(a = —1, ap, by, by, a, @)|ag, b1, ap = £1}.

Similarly, other events are defined. To this end, we obtain an inequality, as in equation (7), by applying the
procedure similar to section 2.2. The inequality, in the form of equation (7), is then Mermin inequality. To show
this, we construct correlation functions in terms of probabilities. Note firstthat (X @ Y)* = X @ Y =

X @ Ysothat X ® YU X @ Y = Q. Thisimplies P(A & B® C) + P(A & B & C°) = 1,i.e.anormal-
ization condition. The correlation functions are given by

Ea5, = P(A; ® B; & Cp) — P(A; ® B; ® CD),

where o, 3;, and vy, parameterize the local settings, respectively. Note from equation (4) that P(A & B © C)
contains the joint probabilities of even numbers of outcomes with —1, while P(A & B & C°) does the ones of
odd numbers of outcomes with —1, so that E,, 3., are the same correlation functions as those in [3]. Applying
the normalization condition, we obtain E,, 5., = 2P(A; @ B; & G) — 1.Replacing P(A; & B; & Ci) with
(1 + Eq,5,) /2 inequation (7), we obtain Mermin inequality [3],

Eal,ﬁz'yz + Eazﬁl'yz + Eazﬂzw’l - Emﬂl'y] 2 —2. (9)

Here, we have the lower bound of Mermin inequalities. The upper bound 2 can be obtained in a similar way.

2.4. N-site CH inequality

In this subsection we briefly discuss one of the multipartite extensions of CH inequality, the so-called N-site CH
inequality that Larsson and Semitecolos proposed [27]. For three qubits with N = 3, the 3-site CH inequality
reads
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where Q; is the sum of a specific set of pair-site probabilities, and T} and T), are of triple-site probabilities. More
explicitly,

Qi =P(A;, B) + P(Bi, ) + P(A, &)
Ty = P(Ay, By, Cy) + P(A, By, G) + P(Ay, By, G) + 2P (A, By, )
T, = P(Ay, By, Cy) + P(Ay, By, Cy) + P(Ay, By, ).

They proposed the N-site CH inequality to find the minimum detection efficiency required for quantum
mechanics to violate the inequality. In later sections, we will discuss the results related to the 3-site CH inequality
and compare them to our geometric tripartite extension of CH inequality.

2.5. Tightness of geometric tripartite extension of CH inequality

We show that our geometric tripartite extension of CH inequality is tight, i.e. it is a facet inequality of a local
realistic polytope so that it can discriminate sharply the domains of the local realistic and quantum correlations
[22]. For the purpose we consider the local realistic polytope with the experimental scenario in which the
inequality is derived. The local realistic polytope, called a Bell polytope 13, is a collection of probability vectors

?:Z/\i?i,

where H are vertices of the polytope (or extremal points), ); are positive real numbersand >*; A; = 1.Inother
words, these are convex combinations of vertices f; Each vertex E) consists of all the probabilities of detection
events at single, pair, and triple sites such as P,(A), P,(A, B), and P,(A, B, C) [42], where we omit the setting
indices. The dimension of B isd = 26 in our scenario of three qubits and two settings per site. The component
probabilities of vertices are given by deterministic models, where the joint probabilities are factorized into the
single-site, i.e. P,(A, B, C) = P,(A)P(B)P,(C), P(A, B) = P,(A)P,(B), and the others similarly. Here, the
deterministic probabilities P,(X) are either 0 or 1 for X = A, B, C. Then, the vertices E} have entries 0 and 1 (see
appendix B). In other words, the set of deterministic configurations are the vertices of Bell polytope [43] and
their number is 2°.

Every facet inequality of the Bell polytope B is given in a form of

C-P >0, (11)

where the lower bound Cy is a real number and vector c € Bisthenormal vector to the facet hyperplane. The
equality holds for the facet. The facet is identified by d independent vertices E suchthat C - E = Cy,if Cy = 0.
If Cy = 0, on the other hand, the necessary number of linearly independent vertices drops down tod — 1, as the
null vertex trivially satisfies the equality with all components being zero. We test the linear independence of the
vertices by the matrix rank, once the matrix is composed of row vectors with the vertices [44].

The tripartite inequality (8) can be cast in the form of equation (11) with the lower bound Cy = 0, as shown
in appendix B. The equality to the lower bound is satisfied by 2° vertices. Among them we find d — 1(=25)
linearly independent vertices (see table B1 in appendix B). Reminded that the dimension of Bell polytope 5 is
d = 26, these imply that geometric tripartite extension of CH inequality (8) is a facet inequality of the Bell polytope
so that it is tight. With the same function as in the inequality (8), we obtain another inequality which is upper
bounded by 1, i.e. P < 1. Among 2’ vertices which satisfy the equality to the upper bound, d (=26) vertices
are found to be linearly independent, implying that this is also a facet inequality of the Bell polytope (see table B2
in appendix B). We get the two tight tripartite inequalities with the given function. This fact is similar to the case
of CH inequality, which defines two facets with a single function [22]. On the other hand, the 3-site CH
inequality (10) defines a single facet.

We note that in the scenario that event ‘no detection’ is assigned to outcome —1, geometric tripartite
extension of CH inequality in equation (8) reproduces the Mermin inequality (9), as shown in section 2.3,
although the original Mermin inequality was derived for spin-1,/2 particles with up and down events associated
with the dichotomic outcomes. One may show the converse: Mermin inequality (9) is reduced to geometric
tripartite extension of CH inequality (8) in the scenario that outcome —1 is associated with the event of no
detection. In the scenario, furthermore, Mermin inequality is a facet of the probability polytope [42] as well as a
correlation polytope [4, 6], as shown in [45].
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3. Quantum violation

Quantum mechanics violates the geometric tripartite extension of CH inequality (8) and the 3-site CH
inequality (10) due to the combined effects of entanglement of states and measurement incompatibility of
observables. Here we illustrate the quantum violations of both the inequalities for GHZ-type (13) and W-type
entangled states (14). Quantum violations are characterized by the robustness of violation and a critical
detection efficiency, below which no quantum violation is obtained.

A particular three-qubit mixed state can be written as

13
Py =) (¥l + (1 - v)?, 12)

where |1} is a pure three-qubit state and v is a parameter, called a visibility, with 0 < v < 1. We consider two
classes of generalized three-qubit pure states, e.g, generalized GHZ state [46],

|GHZ(«)) = cos «|000) + sin a|111), (13)
and generalized W state,
[W (0, ¢)) = sin@ cos ¢|001) + sin @ sin ¢|010) + cos 6]100). (14)

|GHZ (o)) and |W (0, ¢)) are maximally entangled for @ = g, 0= arccos(%) and ¢ = %, respectively.
Three qubits are measured by spatially separated observers. Each of them locally measures with an analyzer,
which is oriented alternatively in two different directions. The measurements are represented by projectors,

i = a+ b 9, as)
—X
where @ = (6, &, 0,)is the vector of Pauli operators 6;, and Bloch unit vector b; stands for ith setting of the
analyzer at site X.
When considering Bell inequality in terms of symmetric differences, as in equation (7), it is convenient to
define their positive operators, each by

A XDY

M = er+ e’ - 21" o 11", (16)

AT . A X . . . s
where 1X is an identity operator at site X, II" a projector as in equation (15), and ‘®’ is the tensor product.
Equation (16) can be extended to more sites recursively, for instance, Y — Y @& Z, where I"®Zissetto I ® 1%.
Then, those for the pair- and triple-site joint probabilities are given as

e = %(JIX@Y -0 -TFeb o) a

A X

[A®BEC _ l(lAaaBeC + ® v 7], (18)
2 X=A,B,C

—X
where b are Bloch vectors of the settings at site X = A, B, C. Here we assume the perfect detection.
The quantum joint probability of triple sites, that all the three qubits are detected for given settings, is given
by

Py(Aiy By, Co = Tr(p, 11} @ 11} & 11, (19)

where p, is a quantum state, as in equation (12). Single- and pair-site probabilities are obtained similarly. Here,
the detectors together with the analyzers are assumed to work perfectly with unit efficiency 7 = 1. Inrealistic
situations, however, detectors can be imperfect with less efficiencies than the perfect detectors. Then the
quantum probabilities are functions of efficiencies,

P(X;) = nPy(X5),
P(X;, Y)) = n*Po(X, Y)),
P (A, Bj, Co) = n°Po(Ai, Bj, Co)s (20)

where X, Y = A, B, Cwith Y = X, and Py(X;), Po(X;, Y)), Po(A; Bj, Cy) are quantum probabilities with perfect
detections, as in equation (19). Here we assume that the detectors have the same efficiency nwith 0 < 1 < land
projectors in equations (16) are replaced by nﬁX.

We check the violations of the inequality (8) by replacing Kolmogorov probabilities with the quantum ones,
asin equations (20). We characterize quantum violations in terms of experimental imperfections. In particular,
two types of imperfections are accounted in measurements and states, i.e., the loss of particles in terms of
detection efficiency 7, as in equation (20), and the depolarization by environment in terms of 1 — v, asin
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equation (12). Quantum violations can be achieved only if v > v;. We find the critical visibility v ,; for a given
pure state |¢/) and detection efficiency 7, as the local measurement settings are optimized. For a given pure state,
we define the robustness of violation against the white noise as

n=1— Vit (21)

This is also considered as a violation degree (or the maximal fraction of white noise for which the violations are
not found). For the given pure state |1)), we decrease the detection efficiency down to 7 < 7., such that no
quantum violation can be observed even with the maximal visibility v = 1. We also find the minimum of the
critical detection efficiencies 77?;:? over all possible pure states. n‘;‘:‘ is obtained by looking for the lowest
eigenvalue of Bell operator associated to geometric tripartite extension of CH inequality (8). Similar kind of
analysis was done for CH inequality in [25].

3.1. Critical visibilities and detection efficiencies
The Bell operator B corresponding to the inequality (8) is written as
B =14 Qap+ Qpc+ Qca + 2T, (22)

where I is the sum of local (single-site) projectors, Q xy is a combination of pair-site projectors for subsystems X
and Y, and T is a combination of triple-site projectors. Their explicit forms, including the detection efficiency 7,
are given by

A A X
L=n Z 11,
X=A,B,C
A AX _ AY  aAX o AY  aX o AY  aAX _ aY
Qur=n*1L @I 1 @1, — 1, ® II; — 1T, ®II,)
N AA  AB _ aC  aA  aB _ AC
T=ndL @IL @1, + 1, ® I @11,
AA  aAB _ AC  AA _ aAB _ AC
+1L, @ IL, @ Iy — 11} ® I} @ 1I}). (23)
The quantum violation of the inequality (8) is witnessed when (B) = Tr(pB) < 0. Let [)) be a given pure
stateand p, be the mixed state, as in equation (12). The critical visibility v.,; is defined by v, such that

(B), = Tr(p,B) = 0, (24)

where (B), is minimized over local measurements settings. Here, ) is a given detection efficiency.

3.1.1. Critical visibility for GHZ states
At first, we analyze the violations of the inequality (8) by GHZ states (13). Assuming detectors with perfect
efficiency n = 1, we find the critical visibility v.,; from equation (24). Here, <§>V is found to be minimized, if the
local settings b in equation (19) are chosen along the directions in the x—y plane,
—X
b; = (cosf¥, sinf, 0), (25)
where 0 are the angles. For a generalized GHZ state (13) the critical visibility reads

1 2

min ~ = , (26)
165y 1 — 2(|Blv)  Mguz

Verit =

—A N —B N
where MGHZ = max{gx_x}(@m — @122 — 6212 — @221), and @ijk = <GHZ| bi -0 ® b] -0 ®
—C
by - e |GHZ). We find Mgy = 4 sin 2, where we have used cos 615, + cos 6,1, + cos 055 — cos ;) < 4
with O = 0/ + 0? + 6. Then, the critical visibility v is given as

1

Verit = . 27
T 2sin2a @7
From this, we obtain the violation robustness # in equation (21),
1
n=1- — . (28)
2sin2¢

In figure 1, we present the violation robustness 7 as a function of the entanglement degree S 4, where S, is the
von-Neunmann entropy of the reduced density operator p, for Alice’s qubit, i.e.
Sy = sina In (cos? o/ sin? ) — In (cos? ).

This clearly shows that the robustness n increases as increasing the entanglement S, whereas no violation is
presented for some partially entangled GHZ states with sin 2« < 1/2 (this coincides with the result with
Mermin inequality [47]). For the maximally entangled GHZ state with & = 7/4, the violation robustness 7 is
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Figure 1. Violation robustness n against the white noise, as a function of entanglement S, for generalized GHZ states with the perfect

detectors of 7 = 1. The robustness 7 increases as increasing the entanglement S, whereas no violation is revealed for non-maximally
entangled GHZ states with sin 2cv < 1/2. For the maximally entangled GHZ state, i.e., |GHZ(7 /4)), the violation robustness n = 1/2.

n
0.5

0.4

0.3 - *

0.2 3-site CH
0.1 y.

0.70 0.75 0.80 0.85 0.90 0.95 1.00 n

Figure 2. Violation robustness 7 as a function of detection efficiency 7 with the maximally entangled GHZ state IGHZ(%)) for the
geometric tripartite extension of CH inequality (8)" and 3-site CH inequality (10), respectively. The inequality (8) provides larger
robustness to white noise than 3-site CH inequality, even though there is a crossover atlow 7. In contrast, the critical detection
efficiency, the minimum 7 to obtain the violation is larger in case of the inequality (8).

maximal, e.g.,n = 1/2. Asareference, for a maximally entangled EPR state, e.g. (|00) + |11)) /~/2,and CH
inequality [48],n = 1 — 1/4/2 &~ 0.292 9.

3.1.2. Critical visibility for W states
Assuming perfect detection efficiency = 1, we check the critical visibility associated to generalized W state (14)
and the geometric tripartite extension of CH inequality (8), as done for generalized GHZ state. For generalized

=
W state, the local settings b , in equation (19), lie in the x—z plane,

—X

b, = (cos ¢f(, 0, sin¢f(), (29)

where d)ix are angles. Similarly to equations (26) and (27), the critical visibility
1 2

mn—m————— = —, (30)
(677 1 — 2(W|B|W) My

Verit =

—A —B —C N
WhereMW = max{gs)zx}(q)m — @122 — @212 — <I>221)and<I>ijk = <W| bi 0 R® b] o0 R® bk -0 |W>

For the maximally entangled W state |W (arccos(%), %)) in equation (14), My, ~ 3.045 9 [28] so that
Vit & 0.656 6 and n &~ 0.343 4.

The maximum of robustness for the maximally entangled W state is less than (n = 0.5) of the maximally
entangled GHZ state but larger than (n = 1 — 1/+/2) of the maximally entangled EPR state. For other W states,
we perform numerical analyses.

Note that, for n = 1, our inequality is equivalent to Mermin inequality (all single-site pair-site events will be
canceled out). For 7 = 1 (see figures 2, and 3), one can retrieve the results for visibilities from Mermin
inequality in the scenario that outcome —1 is assigned to the event of ‘no detection’.

3.1.3. Critical efficiency of detection
We find the critical efficiency of detection, 7).;, above which a pure state |1} violates the geometric tripartite
extension of CH inequality (8). For the purpose we employ Bell operator in equation (22) and investigate its

8
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n

0.5

0.4

0.3 - *
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Figure 3. With the maximally entangled W state |W (arccos(%), g)), violation robustness 7 as a function of detection efficiency 7 for

the geometric tripartite extension of CH inequality (8)" and 3-site CH inequality (10), respectively. The violation robustness is larger
in the inequality (8) than 3-site CH inequality over all 7). The critical detection efficiency is smaller in the geometric tripartite extension
of CH inequality, contrary to the GHZ state in figure 2.

lowest eigenvalue. The critical detection efficiencies for GHZ and W states are to be found by restricting to the
subspaces of generalized GHZ and generalized W states. Their minima are compared to the critical detection
efficiency n?::t“ to be found on the whole Hilbert space. Here, we shall obtain critical detection efficiencies by
assuming particular sets of local settings and numerically confirm them without the assumption.

We consider Bell operator B in equation (22), assuming that the three observers choose the same alternating

local measurements with Bloch vectors zx = E for X = A, B, C. Furthermore E) = (cos ¢, 0, sin @) liesin
the x—z plane, where ¢; = w/2and ¢, = /2 — ¢. One might release this constraint for more general settings
and obtain the same result. Letting B = B(¢), the eigenvalues B(¢) are determined by the roots of the
characteristic polynomial x (A, ¢) = det(A\l — B(¢)). Let the roots A, be functions of ¢, A, = A\(¢).If ¢ = 0,
all the settings are equal to each other and they are compatible, revealing no violation. However, for small ¢ > 0,
one finds the lowest eigenvalue of B, that is negative. In the case we apply a perturbation theory by expanding
X(A, ¢) and its roots A,(¢) in powers of ¢ up to 4th orders. The approximate equation for the roots is given as

4
XA (@), 01~ 3 q,({ArmD) " = 0, (1)
n=0
where the coefficients A, ,, come from the expansion of A, (¢) ~ th:o Ar,u@". By solving the equations
4:({ A\rm}) = Ofor all n, we obtain A, , and thus the approximate roots A,(¢).

We first find the approximate roots on the subspace, spanned by {|001), |010), [100), |111)}, which
includes generalized W states and generalized EPR states such as |1) ® (cgo|00) + ¢1/11)). The subspace can be
called as W-EPR. Note that our tripartite inequality is reduced to a bipartite CH inequality, and with the latter
the critical detection efficiency 7). ;, — 2/3 in thelimit to product states, ¢;; — 1. Onthe W-EPR subspace, the
lowest approximate root (i.e., eigenvalue) is given by

32— 3n)

t<0, ifn>2/3. 32
32(1_77)</’>< ifn>2/ (32)

Ar(9) &

Thus, on the W-EPR subspace, the critical detection efficiency

Nerit = g
The eigenvector with the lowest eigenvalue is of the form
1
|p) = —=(n|001) + r|010) + 5/100) + |111)),

N

where r = /1 + 13 + r{.The critical detection efficiency 7).y = 2,/3 remains unchanged for states with any
1123 being non-zero. In other words, 7.,;; = 2/3 for generalized W states as well as for generalized EPR states.
We apply the similar method to the whole Hilbert space and find the same value of critical detection efficiency,
n?r‘l‘:‘ =2 / 3. Thisis equal to that with a bipartite CH inequality [25].

Some generalized GHZ states do not violate the geometric tripartite extension of CH inequality unless their
entanglement are large enough, and we cannot apply the previous method. Instead we directly diagonalize Bell
operator B on the subspace of generalized GHZ states, spanned by { |000), [111)}. Here we assume the settings

—

b; = (cos B, sin6;, 0),where§; = fand 6, = 7/2. The settings were chosen in equation (25) to find the critical
visibility for the GHZ states. One might release the constraint for more general settings and obtain the same
result. The lowest eigenvalue of Bell operator B is given by

9
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Table 1. Violation robustness #, critical visibilities v..j, which are obtained
forn = 1, and critical detection efficiencies 7, for the geometric tripartite
extension of CH inequality (8)" and 3-site CH inequality (10) with a set of

GHZ states.
«a
Type 2m/18 37w/18 47/18 /4
* n 0.222'1 0.4227 0.492 3 0.500 0
Verit 0.777 9 0.577 3 0.507 7 0.500 0
Nerit 0.9195 0.8312 0.795 4 0.791 3
3-site CH n 0.178 1 0.266 6 0.3121 0.317 8

Verit 0.8219 0.733 4 0.687 9 0.682 2
Nerit 0.749 0 0.758 8 0.762 6 0.763 1

Amin = %(1 —-n) + %772(1 — 1 + 3cos?0). (33)

It follows from equation (33) that on the GHZ subspace, the critical detection efficiency

V21 -3
Nerit = f ’
for which 6 = 0. Using Garg—-Mermin approach [49] for Mermin inequality and GHZ state, the similar bound
for 1 is obtained in [50]. The according eigenvector is the maximally entangled GHZ state, |GHZ(%)> =

(J000) + |111))/+/2. The minimum critical detection efficiency for the GHZ states is 0.791 3, which is larger
than ngrll‘t“ = %, for W-EPR states.

3.2. Numerical calculations

We present our numerical results for the geometric tripartite extension of CH inequality (8) and 3-site CH
inequality (10). In figure 2, we plot the robustness of violation n as a function of detection efficiency 7 for the
maximally entangled GHZ state with the geometric tripartite extension of CH inequality and 3-site CH
inequalities. The violation robustness 7 is a monotonically increasing function of detection efficiency 7 for the
maximally entangled GHZ state, while it vanishes if 7 < 77,;,. Itis shown that the inequality (8) provides larger
robustness of violation than 3-site CH inequality, even though there is a crossover at low 7). In contrast, the
critical detection efficiency, the minimum 7 to see the violation is larger in the geometric tripartite extension of
CH inequality inequality. Figure 3 analyses robustness of violations for the maximally entangled W state. From
figure 3 we see that for the maximally entangled W state, the violation robustness is larger in the inequality (8)
than 3-site CH inequality over all values of  between 0 and 1. The critical detection efficiency is smaller in the
geometric tripartite extension of CH inequality, contrary to the GHZ state in figure 2.

Comparing the two states with the geometric tripartite extension of CH inequality in figures 2 and 3, it is
remarkable that the maximally entangled GHZ state is more robust against white noise than the maximally
entangled W state over all values of detection efficiency 1 between 0 and 1. In particular, the critical detection
efficiency 1, = (v/21 — 3)/2 ~ 0.791 3 for the GHZ state, slightly smaller than 7).,;; ~ 0.809 0 for the W
state. With the 3-site CH inequality, on the contrary, the maximally entangled GHZ state is less robust than that
of Wistate.

For a set of generalized GHZ states (13) and both types of inequalities, the violation robustnesses #, critical
visibilities v, and critical detection efficiencies 7). are presented in table 1. Critical visibilities v, are
computed for 7 = 1. The analyses are done for « = 27/18, 37/18, and 47/18, for which the entanglement
degree S, & 0.52,0.81,and 0.98, respectively. For n = 1, the robustnesses of violations # increase for the
geometric tripartite extension of CH inequality and 3-site CH inequality as we increase the degree of
entanglement S4 (or «). The violations of the inequality (8) have the larger robustnesses than the 3-site CH for all
values of a.. However, critical detection efficiency 7).,; decreases in case of the inequality (8), whereas it increases
in the 3-site CH inequality. The maximum of critical detection efficiencies of 3-site CH, n717* ~ 0.763 1, is
smaller than the minimum of detection efficiencies of the geometric tripartite extension of CH inequality,

772‘:1‘:‘ ~ 0.791 3. The minimum of critical detection efficiencies 772‘:1‘:‘ associated to 3-site CH inequality is
estimated to be 0.6 in the GHZ subspace [51].

Table 2 presents the results for a set of W states for different pairs of values of (6, ¢) in generalized W
state (14). Forn = 1, the robustnesses of the violations of the geometric tripartite extension of CH inequality, #,
are larger than those of the 3-site CH inequality. Furthermore, critical detection efficiencies 7, for the
inequality (8) are lower than those associated to 3-site CH inequality. For the biseparable EPR state (f = % and

10
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Table 2. Violation robustness #, critical visibilities v, which are obtained forn = 1,
and critical detection efficiencies 7)., for the geometric tripartite extension of CH
inequality (8)" and 3-site CH inequality (10) with a set of W states.

(0, ¢)
T ™ T m™ T 1 m
— — —, — — — arccos(—=), —
Type (6 4) (2 4) (4 4) ( (7 4)
* n 0.255 4 0.2929 0.3333 0.343 4
Verit 0.744 6 0.707 1 0.666 7 0.656 6
Nerit 0.763 6 0.828 4 0.802 4 0.809 0
3-site CH n 0.248 8 0.2929 0.318 7 0.3293
Verit 0.751 2 0.707 1 0.681 3 0.670 7
Terit 0.800 4 0.872 4 0.836 7 0.8375

¢ = %, or specifically, |0) ® (|01) + [10))/+/2) and the geometric tripartite extension of CH inequality
inequality, the critical detection efficiency 1., = 2/(1 + +/2) ~ 0.828 4, which coincides with that of the
critical detection efficiency associated to CH inequality and the EPR state [24, 25, 48]. The value of 1, for 3-site
CH inequality and the biseparable EPR state is obtained as 0.872 4, which is greater than the critical detection
efficiency obtained for the geometric tripartite extension of CH inequality.

4. Extension of CH inequality for more measurement settings than two per site and more
subsystems than three

First, we present an extension of CH inequality for three subsystems and three measurement settings per site.
Then, following the similar method we obtain a CH inequality for four qubits with three measurement settings
per site.

Let us consider a set of events A;, B,,,, C,, for Alice, Bob, and Charlie, respectively, where ], m,n = 1,2, 3. For
detailed descriptions, the reader is referred to section 2.2. As discussed in case of three subsystems and two
measurement settings per site, we can find similar kind of relations between symmetric differences of three
events for the situation at hand. For example, for a pair of statistical separations, the following inequality holds:

P((Ay @ By) @ C3) + P((A3 @ Bs) @ C3) = P((AL ® By) @ (Bs @ A3)) = P(A @ B, ®© Bs © A3z).  (34)

Also, due to permutation symmetry, P(A; & B, @ B; @ As) = P((A; ® B, @ B;) @ As). Using the fact, we
can have another triangle inequality

P((A; © B, @ B3) D A3) + P(A3 & (Bi D Cy) = P((A @ B @ B3y) © (B, ® (Cy)
=P(A @ B, @ B; ® B, © Cy). (35)

Following the similar argument, we obtain

P((A1 & B & B3) & (B, ® Cy)) + P(A & (B2 Cy)) 2 P((AI & B) & (A & B3)) =P(A & Bi A & By),

(36)
and finally,
P((A1 & B) & (A, © B3)) + P((A @ Bs) ® G)= P((A1 @ By) @ C). (37)
With the four inequalities: (34)—(37), a CH inequality for three qubits and three settings per site reads
P(A ® B, ® C3) + P(A3 @ B3 © C3) + P(As ® BI D Cy) + P(A & B, © Cy)
+P(A & B3 ® G) = P(A & B & Q). (38)

It is worth mentioning that we can have several invariant forms of the inequality (38) by choosing different sets
of symmetric differences associated with statistical separations.

Let us consider a set of events Ay, B,,,, C,,, D,, for Alice, Bob, Charlie and Daniel, respectively, where I, m, n,
p = 1,2,3. From earlier discussions we know that the statistical separations obey triangle inequalities. Thus
following set of inequalities can be obtained by chaining
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P((A @ B @ G @ Dy) + P((A @ (B, @ C5 @ D))
2 P((B1® G ® D) & B, ®Cs D Ds))
=PB,® G D D@ B, d Cs D D3), (39)

using permutation symmetry of symmetric difference, we also have

P(C® D@ B, ® C3) @ (B @ D3)) + P(A3s & Cy) & (B @ D3))
>PU(CG® D @B, ®C3) @ (A3 B Cy))

:P(Cl@Dl@Bz@C3€BA3€BC2), (40)
next,
P(A ;@ Q) D D1 @B, C,® G)) + P((A3 & G) @ (B; ® D)
2 P((D1® B, @ Cy) ® C3) @ (B; @ D))
=P, ® B, ® C, ® C3 @ Bs & Dy), (41)
and finally,

P(B; @ CsP D)) (D@ B, & Cy) +P((Bs @ C3 @ D)) DAy
= P((D; ® B, ® Cy) ® Ay)). (42)

From these four inequalities (39)—(42) we obtain

P(A @ B ® G ® Dy) + P(A © B, © C5 @ Ds)
+P(A3 & B, ® C, ® D;3) + P(As & Bs @ G @ D)
+PA, ®B;® C® Dy) 2 P(A, © D, @ B, © Cy). (43)

Quantum mechanics violates the inequalities (38) and (43). It is interesting to note that because the basic
formalism leading to the inequalities (7), (38), and (43) is same, in principle, we may obtain several CH
inequalities for arbitrary number of subsystems with many measurement settings per site. It will be discussed
elsewhere.

5.Remarks

We propose a geometric method to construct a set of CH inequalities in Kolmogorov theory of probability. We
show that the inequalities result from a set of triangle inequalities in terms of the statistical separations, defined
by the probability of symmetric differences between local detection events. The method can be generalized to
obtain inequalities for more qubits than three and more measurement settings than two per site. Also, a new set
of inequalities, which lead to Mermin inequalities, are presented (see appendix D) up to five subsystems. It is also
shown that our inequality (8) can be reduced to the CH inequality of two subsystems and the Mermin inequality
of 3 qubits under the appropriate conditions.

The inequalities are characterized in terms of two parameters, e.g., detection efficiency and robustness of
quantum violation against white noise. The latter is employed as a degree of violation. For the three qubits, we
show that the geometric tripartite extension of CH inequality can be quantum-mechanically violated by the pure
entangled generalized GHZ and W states, even though no violation is found for some non-maximally entangled
GHZ states. In terms of the violation robustness and critical efficiency of detection, we compare our inequality to
the 3-site CH inequality (10), another generalization of CH inequalities for tripartite systems. Our inequality (8)
shows violation robustness stronger than the 3-site CH inequality by generalized GHZ and W states with the
perfect detections. We find that, for the given GHZ states, the 3-site CH inequality has the critical efficiencies
lower than the geometric tripartite extension of CH inequality, whereas it is opposite for the given W states. In
particular, the minimal critical efficiency of detection over all the states is lower in the 3-site than the geometric
tripartite extension of CH inequality. It is worth mentioning that the authors in [27] did not account background
noises, even though they conjectured that the inclusion of background noise would increase the bounds on the
minimum detection efficiency. We find that biseparable states can violate the inequality (8), as expected by the
fact that two-qubit CH inequality can be retrieved from the geometric tripartite extension of CH inequality (8)
and violated by two-qubit pure entangled states.

The quantum violations of the geometric tripartite extension of CH inequality (8) are expected to
experimentally realize with detectors, which differentiate single- and multi-photon detections with high
efficiency and negligible dark count [52]. It is conjectured that the method to extend CH inequality can be
further developed for arbitrary number of outcomes. This will be presented in a forthcoming work.
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Appendix A. Upper bound of left hand side of (8)

Let [a] denote non-negative residue a modulo 2,

[a] = amod?2. (A1)

Two residues [a] and [b] satisfy triangle inequality,

la + b] < [a] + [b]. (A2)

Also one may have an identity,
[al]=1—[1 — a].
Thus, one obtains the relation,
l[a]l + [b] <2 —[a + b]. (A3)
Using equations (4) and (A3), we have
PA®B, PC)+PASB &C) < 2—PA & B,® A, & B). (A4)
Using triangle inequality (A2), we also obtain
PA, ® B, ® Q)< P(A @B, DA, @ B) + P(A @ B @ Q. (A5)
Summing (A4) and (A5) we get
2>2PA @©B,®C) +P(A & B @®Cy)+ P(A®B, @ C) — P(A @ B & (). (A6)
Combining equation (A6) and equation (7), we obtain
0SPA B, dC)+PADPBPC)+PASBECG) —PAPB P G) <2 (A7)
Or equivalently, in the form of equation (8),
0< L+ Qup+ Qpc+ Qea+2T< 1. (A8)

Thus we have two bounds, 0 for the lower bound and 1 for the upper bound.

Appendix B. Polytope for the geometric tripartite extension of CH inequality

Vertices E of the Bell polytope B are defined,

7, = (B(A), R(Ay), R(B), B(By), B(C), R(Cy),
P, (A)R,(B), B, (A)R/(Ba), P,(A2) P, (By)s F,(A2)F,(By),
P,(BY P, (CQ, P, (B)P,(Ca), B (BB (G, B (By) P (C),
P, (A)R.(C), B (A)R.(Cy), B, (A)F,(Q), B (A)F,(Cy),
B, (ADF,(BY R, (C), B, (A)R.(B)F,(Cy), B, (A)R(B2)F,(C), B (A2) R, (B) P (C),
P (AD R (B2) B (Cy), B (A2) R (B)R,(Cy), B (A)F,(Bo)F,(C), B (A2)F,(B2)E(Cy),

where the probabilities P,(X) are either 0 or 1 for X = A;, Bj, Ci. The vector P = > )\iﬁ in B is given in a form
of
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Table B1. Row vectors of vertices in the Bell polytope, which yield the lower bound of the inequality (8). These 25 extreme vertices are
linearly independent (excluding the null vector of vertex).
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P = (P(A), P(Ay), P(By1), P(By), P((3), P(Cy),
P (A1, By), P(A1, By), P(Az, By), P(Az, By),
P (B, G1), P(By, Cy), P(B,, G1), P(B,, Co),
P(A1, G), P(A1, Cy), P(Ay, G, P(Az, Cy),
P (A1, Bi, ), P(A1, By, Cy), P(Ay, By, ), P(A;, By, ),
P(Ay, B,, Cy), P(Ay, By, Cy), P(Ay, By, ), P(Ay, By, Cy)).

The geometric tripartite extension of CH inequality in equation (11) is specified by c-P > CowithCy =0
and

C=01,01,011,-1,-1,-1,1, -1, -1, -1, 1, -1, -1, -1, =2, 0, 0, 0, 2, 2, 2, 0).

The inequality (8) is a facet inequality as shown in the main text and the facet is specified by the set of linearly
independent vertices. We present them in table B1 and also those of another facet inequality with the upper
bound 1 in table B2.

Appendix C. Explicit inclusion of non-detection events

C.1. CH and Eberhard inequalities
Assume each observer gets three outcomes {+, —, u}, where ‘«’ is a undetected outcome. CH inequality is given
by

P(A]") + P(B") — P(A[", Bi") — P(A[", B)) — P(A)", B{") + P(A;, B)) >0,
where P(A™") are probabilities of Alice’s detecting the outcome ‘+”and P(A*, B") are joint probabilities
ofboth detecting outcomes ‘+.” We may expand the single-site probabilities in a form of the pair-site

probabilities,

P(X) = Y P, Y. (CDH
y=%,u
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Table B2. 26 linearly independent row vectors of extreme vertices in the Bell polytope, which yield the upper bound.
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CH inequality in equation (C1) then becomes
P(AT", By) + P(AT, B) + P(4;, B/") + P(A, B") + P(A]', B) — P(A", B") > 0. (C2

This version of CH inequality is equivalent to Eberhard inequality [26].

Consider all the possible data of N events in each pair of local settings, assuming that arbitrarily large N'is the
same for the 4 pairs of local settings. Then, the CH inequality in terms of probabilities can be changed to the one
with the coincident counts,

N4, By) + N, BY) + N(A5, B') + N(AY, B') + N(AS, Bf) - N4, B") > 0. (C3

where N (A/, Bf ) = NP(Af, B}’ ), the number of coincident counts at both sites with outcome pair (a, b) for a
given setting pair (i, j). Note that we also account the number of counts at one site and no count at the other site
with N (A7, Bf “Mor N(A™Y, B}”“). This is an Eberhard inequality.

C.2. Eberhard inequality for 3 qubits
We derive a 3-qubit Eberhard inequality from our inequality (8), based on the method in section C.1. The
inequality in equation (8) is recalled,

L+ Qup+ Qpc+ Qca +2T 20,

where

L= 3. P&
X=A,B,C
Qxy = P(X1+7 Y1+) - P(X1+> Y2+) - P(XZJF) Y1+) - P(X2+> Y2+)
T= P(A1+) B2+) C2+) + P(A2+) Bl+) C2+) + P(A2+> B2+> C1+) - P(A1+> B1+) C1+ .

Similarly to equation (C1), we expand the local- and pair-site probabilities in a form of the triple-site. The
single-site term L is rewritten by

L= > > P&, Y2z,

X=A,B,C y,z=+,u

)

)
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where (X, Y, Z) is one of cyclic permutations of (A, B, C). The pair-site terms Qxy are rewritten as
Qer = X (POYL Y, Z9) = P, Y5, Z9)—P (XS, Vs Z5) — POXS, Y5, Z).
z=%,u
Here we take Z, for each (X}, Vi) such thatk = 1ifi = j = lori = j = 2,andk = 2ifi = landj = 2 ori = 2
and;j = 1. Then, the geometric tripartite extension of CH inequality is rewritten by
T+ T+ T+ T 20,

where, for P,;’,fc =P(A}, B}’, Co)

Tu=Ph "+ P + P T+ P P P A P

T = *P1§{+ + P1722+7 + Pluzgu + P152+“ - Pﬁz?+ + P1u2T

To=-P)\j + Py "+ B — P+ Pyt + Pt

Tor=—Pp{ "+ P~ + PO + Phy " + Phi — Py

We replace P,;-‘,f “ with the coincident counts Ngkb ‘= NP,;’,E “ and obtain a 3-qubit Eberhard inequality.

Appendix D. A method to obtain a new set of inequalities which can reproduce Mermin
inequalities for subsystems more than three

In this subsection, we propose a method to derive an inequality for four qubits and also show that the extension
to five qubits is also possible. Our derivation is based on the following identity,

P(Xi) + P(Xin) + P(Xi3) = P(Yis) + 2P(Zia), (DD

where Xj;are events in the event space F (see section 2.1), Y4 = EB;:IXI-]-, and Z;, = XqgNXp) & XN Xiz)
@ (X;» N Xj3). Thisappliestoi = 1,2, 3. Thus we have a set of 3 equations. In addition, we consider the 4th
equation,

P(Yas) + 2P(Z4s) = P(Ya1) + P(Ya2) + P(Y), (D2)

where Yy; = @ Xjj, Yoy = &3 Yyj,and Zyy = (Y51 N Ypo) ® (Yo N Yy3) © (Yo N Yi3). Wesum the 4
equations in equations (D1) and (D2). Collecting the left hand sides together and similarly the right hand sides,
we obtain a single equation. If Zy, = @&?_,Z;, then

3
S P(Zis) = P(Zua). (D3)
i=1

Hence, the summed equation can be written by an inequality,

3 3
Y PXy) + P(Yas) = Y (P(Yia) + P(Ya)). (D4)
iji=1 k=1

We apply the procedure from equation (D1) to equation (D4) in order to derive multipartite inequalities by
replacing events X;; with symmetric differences between spatially separated subsystems. For example, let us
consider A, B,,,, C,,, D, are events associated with the measurements of Alice, Bob, Charlie, and Daniel,
respectively, where ], m, n, p = 1, 2. Letting Vinp = A @ B, ® C, ® Dy, the replacements

X1 — M1z X2 — M2 Xi3 — 7122
Xo1 — Y1221 X22 — Y1212 X23 — V211
X31 — Y2121 X32 — V2112 X33 — Y2211

in equation (D4) yield an inequality for four qubits, as they satisfy equation (D3).

5-qubit inequality is derived, as done for four qubits. We define Vinnpr = A @ B, ® C, © D, ® E,, where
the extra events E, belong to Eve for r = 1, 2. The inequality for five qubits results from inequality (D4) by
replacing

X1 — 71122 Xi2 — 212 Xi3 — Mi22n
Xo1 — Y2211 X22 — Y2121 X23 — V121125
X31 — Y2121 X32 — V2112 X33 — V22111

Here, we have used Zyy = ®?_,Z;4 and equation (D3). In addition one can apply the procedure in section 2.3 to
derive Mermin inequalities for four and five qubits by using inequality (D4).

We remark that the inequality presented in the section is derived by a vector of events X; for two and three
qubits, and the one by a matrix of events X;; for four (equation (D4)) and five qubits. It is conjectured that one
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needs an nth rank tensor of events X,
beyond the scope of this work.

;, for the specific type of inequalities of 21 and 2n + 1 qubits. Thisis

iy
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