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Abstract
Wepropose a geometricmultiparty extension of Clauser–Horne (CH) inequality. The standardCH
inequality can be shown to be an implication of the fact that statistical separation between two events,
A andB, defined as Å( )P A B , where ÈÅ = - -( ) ( )A B A B B A , satisfies the axioms of a
distance. Our extension for tripartite case is based on triangle inequalities for the statistical separations
of three probabilistic events Å Å( )P A B C .We show thatMermin inequality can be retrieved from
our extendedCH inequality for three subsystems in a particular scenario.With our tripartite CH
inequality, we investigate quantum violations byGHZ-type andW-type states. Our inequalities are
compared to another type, so-calledN-site CH inequality. In additionwe argue how to generalize our
method formore subsystems andmeasurement settings. Ourmethod can be used towrite down
several Bell-type inequalities in a systematicmanner.

1. Introduction

Intrinsic randomness of quantummechanics has been a topic of a debate formany years. In 1935, Einstein,
Podolsky, andRosen (EPR) claimed that quantummechanics is an incomplete theory [1], and hidden variables
could be implemented to resolve the issue. In his pioneeringwork [2]Bell formulated an inequality that is
satisfied by local hidden variablemodels, but can be violated by quantummechanics for bipartite and two-level
systems. Bell-theorem significantly improved our understanding of quantum intrinsic randomness with respect
to the assumptions of reality and locality in local hidden variablemodels. Further studies have been done by
consideringmore complicated systems. For examples, there have been Bell inequalities proposed formany
qubits with two dichotomic observables per site [3–7] and formore than two alternative observables [8, 9]. For
higher dimensional systems, different forms of Bell inequalities have been introduced [10–21]. Other
derivations of Bell inequalities can be found also in [22].

Experimental tests to invalidate Bell inequalities faced challenges such as detection and locality loopholes
[22]. In particular, the detection loophole had to be dealt with by the usewith the additional fair-sampling
assumption, i.e., that the detected events give a fair representation of the entire ensemble [23, 24]. In 1974,
Clauser andHorne proposed another type of Bell inequality [24], which is very handy in dealingwith such
problems like detection inefficiency (see the analysis by Eberhard [25, 26]), and can be thought of as themost
elementary Bell inequality. Some attempts to generalize the inequality tomultipartite systems can be found in
[27, 28].We shall continue here this effort, however our generalizationwill be based on different observations
concerning the original Clauser–Horne (CH) inequality and therefore will take a different form.Our extension
is based on a geometric interpretation of Bell inequalities inKolmogorov theory of probability as given by [29],
further developed in [30, 31].

Experimental falsification of Bell’s inequality without the fair-sampling assumptionwas recently presented
in [32, 33]. Recently, loophole free violations of Bell inequality were reported independently byHensen et al [34],
Giustina et al [35], and Shalm et al [36] even thoughmany attempts were previouslymade to close the two
loopholes simultaneously (see [37] for important results). The possibility of having loophole free realizations of
Bell experiments, opens theway for constructing device independent quantum information schemes and
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protocols, whichwould be fully secure. However, thus far we do not have a loophole free Bell experiment for
three ormore subsystems, and therefore onemust continue research towardfinding optimal approaches in this
realm.

The essential traits of our generalization are as follows:

• Wefirst note that at the times inwhichCHSHandCH inequalities were first formulated, they looked as
ad hoc ones. Their starting points were certain, indeed ad hoc, algebraic identities. Still as the CHSH-Bell
inequality is implied by theCHone, the latter one seemed from the very beginning to bemore fundamental.
Much later it turned out that the CH inequality is derivable using a geometric notion of separation of two
probabilistic event [29]. The separation for two eventsA andB reads = + -( ) ( ) ( ) ( )S A B P A P B P A B, 2 , .
It has all properties of a distance, this includesmost importantly the triangle inequality. A single triangle
inequality cannot be used to derive Bell inequalities, still suitable chaining of two triangle inequalities leads to
a quadrangle inequality, which after it is rewritten in terms of probabilities is the CH inequality. This
geometric feature, we think, underlines the fundamental nature of theCH inequality, and singles it out.
Therefore we postulate that three (ormore)Bell inequalities which are direct generalizations of the CHone
should be derivable also using the geometric properties of separations of three (ormore) probabilistic events.

• The statistical separation between probabilistic events,A and B, can also be put as a probability of
symmetric difference between two eventsA and B, Å( )P A B , where the symmetric difference Å =A B

È- -( ) ( )A B B A .We find an extension of CH inequality for a tripartite system, by extending the
separationmeasure to Å Å( )P A B C .Most importantly we have Å Å = Å( ) ( )A B C A B Å =C

Å Å( )A C B . The symmetry property of the two event separation, Å = Å( ) ( )P A B P B A (or S(A, B)=
S(B,A)) has no obvious role in the derivation of the CH inequality. However its extension, shown above in
the three-party scenario, is essential to derive the initial triangle inequalities, with the use of which one can
derive our generalization of the CH inequality for a tripartite system.

• The inequality can used to derive theMermin inequality for three qubits [3], and of course, further on to the
CHSH inequality of two qubits in [24, 38]. So the generalization has an additional trait similar to theCH
inequality.We show also that it can be reduced to a bipartite CH inequality if one party is eliminated.

• The inequality is tight, just as theCHone.

• Themethod can be further extended tomore than three parties, however in this case non-trivial
generalizations (along the lines: a polygon inequality for separations) of theCH inequality, where the parties
play fully symmetric roles, involvemore than two settings for each party.

The paper is organized as follows.We derive a geometric extension of CH inequality for three subsystems by
introducing statistical separation of probabilistic events in section 2. Therewe also discuss the properties of the
inequality such as it being tight, and reducible to a bipartite CH inequality and a tripartiteMermin inequality in a
particular scenario. In section 3, quantum violations of our inequality and comparisons toN-site CH inequality
([27]) are discussed in terms of the degree of noise robustness and critical efficiency of detection. There is region
of parameters inwhich our approach gives quantumviolationswhich aremore resistant to the imperfections.
We also demonstrate the generality of ourmethod by extending the inequality for a three-party systemwith two
measurement settings per site to a three-party systemwith threemeasurement settings per site and a four-party
systemwith threemeasurement settings per site (section 4).We summarize our results in section 5.

2.Derivation

2.1. Geometric approachwith statistical separations
In our derivation of CH-type Bell inequalities, statistical separation plays a crucial role. It is defined by the
probability of symmetric difference between two events [39]. Let (Ω, F, P) be a probability space, whereΩ is a
sample space, F an event space, andP a probabilitymeasure. The symmetric difference of two eventsX andY is
defined by

È ÈÅ = - - = Ç Ç( ) ( )X Y X Y Y X X Y X Y ,c c

whereXc=Ω−X, etc. It satisfies the following properties: (a) Å = ÆX X , (b) Å = ÅX Y Y X , and (c) it is
associative, Å Å = Å Å( ) ( )X Y Z X Y Z . For three events we have,most importantly, the permutation
symmetry, that is Å Å = Å Å = Å Å( ) ( ) ( )X Y Z Y Z X Z X Y . The generalization tomore events is
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inductive. As events ÇX Y c and ÇX Yc aremutually exclusive, one has  Å = Ç +( ) ( )P X Y P X Y1 c

Ç( )P X Y 0.c The probability Å( )P X Y of a symmetric difference is often called statistical separation
between eventsX andY. It was originally put as

Å = + -( ) ( ) ( ) ( ) ( )P X Y P X P Y P X Y2 , , 1

where º Ç( ) ( )P X Y P X Y, .
Statistical separation has a geometric interpretation as it obeys the triangle inequality,

Å + Å Å( ) ( ) ( ) ( )P X Y P Y Z P X Z . 2

Note that for eventsX,Y, andZ one has Å Å Å = Å( ) ( )X Y Y Z X Z.The inequality (2) in terms of
probabilities reads

+ +( ) ( ) ( ) ( ) ( )P Y P X Z P X Y P Y Z, , , . 3

Let us consider probability Å Å( )P X Y Z of themeasure of the symmetric difference of three events,X,Y,
andZ. The aforementioned permutation symmetry implies that it is a statistical separation betweenX and ÅY Z ,
or betweenY and ÅZ X , orfinally betweenZ and ÅX Y .Wedefine it as a statistical separation of three eventsX,
Y, andZ. One can show that Å ÅX Y Z ≡ È È ÈÇ Ç Ç Ç Ç Ç Ç Ç( ) ( ) ( ) ( )X Y Z X Y Z X Y Z X Y Z .c c c c c c

Bynoting Ç ÇX Y Zc c , Ç ÇX Y Zc c, Ç ÇX Y Zc c, and Ç ÇX Y Z aremutually exclusive,we also get

Å Å = + + +( ) ( ) ( ) ( ) ( ) ( )P X Y Z P X Y Z P X Y Z P X Y Z P X Y Z, , , , , , , , , 4c c c c c c

where º Ç Ç( ) ( )P X Y Z P X Y Z, , , and so on. Such considerations can be extended tomore events than three.
In the following subsection, we analyze statistical separations of certain combinations of symmetric

differences of probabilistic events for a specific type of three-qubit experiments.

2.2. A geometric tripartite extension ofCH inequality
Herewe derive a Bell-type inequality with statistical separations for tripartite systems.We consider a scenario of
three qubits. The qubits aremeasured by three observers (Alice, Bob, andCharlie). Each partner chooses one of
twomeasurement settings. Events associatedwithAlice’s (Bob’s andCharlie’s) choice ofmeasurement settings i
are denoted byAi (Bi andCi), for i=1, 2. For example, eventAi for Alice represents the fact that Alice chooses a
measurement relatedwith a projector Âi and detects her qubit.We define the eventsBj andCk for Bob and
Charlie, respectively, in a similar way. The respective outcomes, denoted as ai, bj, and ck, mean ‘detection’ if their
value is 1 and ‘no detection’ is 0, i.e. ai, bj, ck=0, 1.

In local realistic probabilisticmodel, the outcomes build elements of the sample space for the considered
scenario W = ={( ) ∣ }a a b b c c a b c, , , , , , , 0, 1i j k1 2 1 2 1 2 . Note that in such a treatment, we avoid introduction of
other hidden variables. Only the possible full sets of hidden results suffice. Events E are subsets of the sample
space, Í WE , and their probabilities are denoted byP(E). For instance, P(A1) is the probability of event

= = ={( ) ∣ }A a a b b c c a b c1, , , , , , , 0, 1 ,1 1 2 1 2 1 2 2 1,2 1,2

that is, the detection of Alice’s qubit with the choice of projector Â .1 Joint probabilities of two eventsAi andBj,
that Alice’s and Bob’s qubits are all detected for local settings i and j, are denoted by P(Ai,Bj). This applies to the
other pairs, Bob andCharlie, andCharlie andAlice. Similarly, detections of all qubits by the observers (Alice,
Bob, andCharlie) in settings (i, j, and k, respectively) are associatedwith joint probability P(Ai,Bj,Ck) of the three
detection eventsAi andBj andCk.

Note that the following triangle inequality holds

Å Å + Å Å Å Å Å(( ) ) ( ( )) (( ) ( )) ( )P A B C P C A B P A B A B . 51 2 2 2 2 1 1 2 2 1

In the above, the additional inside brackets we introduced point thatwe in fact deal herewith the original triangle
inequality for separation of pairs of events (2). However they can be dropped, as we have the symmetries
mentioned earlier. The second triangle inequality whichwe need is

Å Å Å + Å Å Å Å(( ) ( )) (( ) ) (( ) ) ( )P A B A B P A B C P A B C , 61 1 2 2 2 2 1 1 1 1

and it is written in a similar convention. Note that both inequalities involve events which in the quantumpoint
of view are inaccessible experimentally, if the projectors associatedwithA1 andA2 (alsoB1 andB2) do not
commute.

With the two triangle inequalities, we get an inequality which applies only to operationally accessible
situations
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Å Å + Å Å + Å Å Å Å( ) ( ) ( ) ( ) ( )P A B C P A B C P A B C P A B C . 71 2 2 2 1 2 2 2 1 1 1 1

This is the geometric tripartite extension of CH inequality.
To get a formof it which is expressed in terms of probabilities of events and their coincidences, we expand

this inequality by using equation (1), to get

+ + + + ( )L Q Q Q T2 0, 8AB BC CA

where L is the sumof local (single-site) probabilities,QXY andT are certain combinations of pair- and triple-site
joint probabilities, respectively.More explicitly,

å=

= - - -
= + + -

=

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

L P X

Q P X Y P X Y P X Y P X Y
T P A B C P A B C P A B C P A B C

, , , ,
, , , , , , , , .

X A B C

XY

, ,
2

1 1 1 2 2 1 2 2

1 2 2 2 1 2 2 2 1 1 1 1

The tripartite inequality(8) is reduced to a bipartite CH inequality if one party is eliminated. Assume that
Charlie has no events of detections in hismeasurements, i.e. all probabilities of eventsC1,2 vanish. Then,
L=P(A2)+P(B2),QAB=P(A1,B1)−P(A1,B2)−P(A2,B1)−P(A2,B2),QBC=QCA=0, andT=0. In
otherwords, the tripartite inequality in equation (8) becomes a bipartite CH inequality, if the third party does
notmeasure anything, i.e. its events are represented in the sample space by empty sets [24]. It is worth
mentioning that the left hand side in equation (8) is upper bounded by 1.

Wemay formulate the inequality(8) in a formof Eberhard inequality for 3 qubits, as shown in appendix C.2.
Eberhard inequality [25] includes explicitly non-detection events. Its derivation fromCH inequality is presented
in appendix C.1, showing the algebraic equivalence between the two inequalities [26].

It is worthmentioning that in [40], an information-theoretic inequality for bipartite systems in terms of
triangle inequalities was presented utilizing the concept of information distance. Further developments for
multipartite cases can be found in [41].

2.3.Mermin inequality
Ourmethod can be applied to deriveMermin inequality, just like CHones lead toCHSHones. Let us consider
an experiment where each of three observers possesses a two-channel analyzer and two detectors, eachwith two
outcomes (±1). Suppose the experiment is described by a local hidden variablemodel with sample space
W = = {( ) ∣ }a a b b c c a b c, , , , , , , 1 .i j k1 2 1 2 1 2 In this scenario we assume that every subsystem is detectedwith
one of two outcomes±1, contrary to the previous subsections. Note that, effectively, in this subsectionwe assign
outcome−1 to the ‘no detection’. EventA1 is defined by the detectionwith outcome+1 of Alice’s qubit for a
projector Â1 chosen and event Ac

1 by the onewith outcome−1. That is, events

= = + = {( )∣ }A a a b b c c a b c1, , , , , , , 11 1 2 1 2 1 2 2 1,2 1,2

and

= = - = {( )∣ }A a a b b c c a b c1, , , , , , , 1 .c
1 1 2 1 2 1 2 2 1,2 1,2

Similarly, other events are defined. To this end, we obtain an inequality, as in equation (7), by applying the
procedure similar to section 2.2. The inequality, in the formof equation (7), is thenMermin inequality. To show
this, we construct correlation functions in terms of probabilities. Notefirst that Å = Å =( )X Y X Yc c

ÅX Yc so that ÈÅ Å = WX Y X Y c . This implies Å Å + Å Å =( ) ( )P A B C P A B C 1c , i.e. a normal-
ization condition. The correlation functions are given by

= Å Å - Å Åa b g ( ) ( )E P A B C P A B C ,i j k i j k
c

i j k

whereαi,βj, and γk parameterize the local settings, respectively. Note from equation (4) that Å Å( )P A B C
contains the joint probabilities of even numbers of outcomeswith−1, while Å Å( )P A B Cc does the ones of
odd numbers of outcomeswith−1, so that a b gE , ,i j k

are the same correlation functions as those in [3]. Applying
the normalization condition, we obtain = Å Å -a b g ( )E P A B C2 1.i j ki j k

Replacing Å Å( )P A B Ci j k with
+ a b g( )E1 2

i j k
in equation (7), we obtainMermin inequality [3],

+ + - -a b g a b g a b g a b g ( )E E E E 2. 91 2 2 2 1 2 2 2 1 1 1 1

Here, we have the lower bound ofMermin inequalities. The upper bound 2 can be obtained in a similar way.

2.4. N -site CH inequality
In this subsectionwe briefly discuss one of themultipartite extensions of CH inequality, the so-calledN-site CH
inequality that Larsson and Semitecolos proposed [27]. For three qubits withN=3, the 3-site CH inequality
reads
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- - ( )T T Q 0, 101 2 1

whereQ1 is the sumof a specific set of pair-site probabilities, andT1 andT2 are of triple-site probabilities.More
explicitly,

= + +
= + + +
= + +

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

Q P A B P B C P A C
T P A B C P A B C P A B C P A B C
T P A B C P A B C P A B C

, , ,
, , , , , , 2 , ,
, , , , , , .

1 1 1 1 1 1 1

1 1 1 2 1 2 1 2 1 1 1 1 1

2 1 2 2 2 1 2 2 2 1

They proposed theN-site CH inequality tofind theminimumdetection efficiency required for quantum
mechanics to violate the inequality. In later sections, wewill discuss the results related to the 3-site CH inequality
and compare them to our geometric tripartite extension of CH inequality.

2.5. Tightness of geometric tripartite extension of CH inequality
We show that our geometric tripartite extension of CH inequality is tight, i.e. it is a facet inequality of a local
realistic polytope so that it can discriminate sharply the domains of the local realistic and quantum correlations
[22]. For the purpose we consider the local realistic polytopewith the experimental scenario inwhich the
inequality is derived. The local realistic polytope, called a Bell polytope  , is a collection of probability vectors

å l


= P p ,
i

i i

wherepi are vertices of the polytope (or extremal points),λi are positive real numbers and lå = 1i i . In other

words, these are convex combinations of verticespi . Each vertex
pi consists of all the probabilities of detection

events at single, pair, and triple sites such as Pv(A), Pv(A,B), andPv(A,B,C) [42], wherewe omit the setting
indices. The dimension of  is d=26 in our scenario of three qubits and two settings per site. The component
probabilities of vertices are given by deterministicmodels, where the joint probabilities are factorized into the
single-site, i.e. Pv(A, B, C)=Pv(A)Pv(B)Pv(C), Pv(A, B)=Pv(A)Pv(B), and the others similarly. Here, the
deterministic probabilitiesPv(X) are either 0 or 1 forX=A,B,C. Then, the verticespi have entries 0 and 1 (see
appendix B). In other words, the set of deterministic configurations are the vertices of Bell polytope [43] and
their number is 26.

Every facet inequality of the Bell polytope  is given in a formof

  · ( )P , 110

where the lower bound 0 is a real number and vector  


Î is the normal vector to the facet hyperplane. The

equality holds for the facet. The facet is identified by d independent verticespi such that  
  =· pi 0, if  ¹ 00 .

If  = 00 , on the other hand, the necessary number of linearly independent vertices drops down to d−1, as the
null vertex trivially satisfies the equality with all components being zero.We test the linear independence of the
vertices by thematrix rank, once thematrix is composed of row vectors with the vertices [44].

The tripartite inequality(8) can be cast in the formof equation (11)with the lower bound  = 00 , as shown
in appendix B. The equality to the lower bound is satisfied by 25 vertices. Among themwefind d−1 (=25)
linearly independent vertices (see table B1 in appendix B). Reminded that the dimension of Bell polytope  is
d=26, these imply that geometric tripartite extension of CH inequality(8) is a facet inequality of the Bell polytope
so that it is tight.With the same function as in the inequality(8), we obtain another inequality which is upper

bounded by 1, i.e.   · P 1. Among 25 vertices which satisfy the equality to the upper bound, d (=26) vertices
are found to be linearly independent, implying that this is also a facet inequality of the Bell polytope (see table B2
in appendix B).We get the two tight tripartite inequalities with the given function. This fact is similar to the case
of CH inequality, which defines two facets with a single function [22]. On the other hand, the 3-site CH
inequality(10)defines a single facet.

We note that in the scenario that event ‘no detection’ is assigned to outcome−1, geometric tripartite
extension of CH inequality in equation (8)reproduces theMermin inequality(9), as shown in section 2.3,
although the originalMermin inequality was derived for spin-1/2 particles with up and down events associated
with the dichotomic outcomes. Onemay show the converse:Mermin inequality(9) is reduced to geometric
tripartite extension of CH inequality(8) in the scenario that outcome−1 is associatedwith the event of no
detection. In the scenario, furthermore,Mermin inequality is a facet of the probability polytope [42] as well as a
correlation polytope [4, 6], as shown in [45].

5
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3.Quantumviolation

Quantummechanics violates the geometric tripartite extension of CH inequality(8) and the 3-site CH
inequality (10) due to the combined effects of entanglement of states andmeasurement incompatibility of
observables. Herewe illustrate the quantumviolations of both the inequalities forGHZ-type(13) andW-type
entangled states(14). Quantumviolations are characterized by the robustness of violation and a critical
detection efficiency, belowwhich no quantumviolation is obtained.

A particular three-qubitmixed state can bewritten as


r y y= ñá + -

Ä
ˆ ∣ ∣ ( ) ( )v v1

8
, 12v

3

where yñ∣ is a pure three-qubit state and v is a parameter, called a visibility, with  v0 1.Weconsider two
classes of generalized three-qubit pure states, e.g, generalizedGHZ state [46],

a a añ = ñ + ñ∣ ( ) ∣ ∣ ( )GHZ cos 000 sin 111 , 13

and generalizedW state,

q f q f q f q= + +∣ ( )⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )W , sin cos 001 sin sin 010 cos 100 . 14

a ñ∣ ( )GHZ and q f ñ∣ ( )W , aremaximally entangled for a = p
4
, q f= = p( )arccos and1

3 4
, respectively.

Three qubits aremeasured by spatially separated observers. Each of them locallymeasures with an analyzer,
which is oriented alternatively in two different directions. Themeasurements are represented by projectors,

 sP = +
 ˆ ( · ) ( )b

1

2
, 15i

X
i

X

where s s s s = ( ˆ ˆ ˆ ), ,x y z is the vector of Pauli operators ŝi, and Bloch unit vector

b i

X
stands for ith setting of the

analyzer at siteX.
When considering Bell inequality in terms of symmetric differences, as in equation (7), it is convenient to

define their positive operators, each by

 P º P Ä + Ä P - P Ä PÅˆ ˆ ˆ ˆ ˆ ( )2 , 16
X Y X Y X Y X Y

where X is an identity operator at siteX, P̂X
a projector as in equation (15), and ‘Ä’ is the tensor product.

Equation (16) can be extended tomore sites recursively, for instance,  ÅY Y Z , where  ÅY Z is set to  ÄY Z .
Then, those for the pair- and triple-site joint probabilities are given as

 s sP = -
  Ä

 Å Åˆ ( · · ) ( )b b
1

2
, 17

X Y X Y
X Y

 sP = +
 Å Å Å Å

=

⎛
⎝⎜

⎞
⎠⎟

ˆ ⨂ · ( )b
1

2
, 18

A B C A B C

X A B C

X

, ,

where

b

X
are Bloch vectors of the settings at siteX=A,B,C. Herewe assume the perfect detection.

The quantum joint probability of triple sites, that all the three qubits are detected for given settings, is given
by

r= P Ä P Ä P( ) ( ˆ ˆ ˆ ˆ ) ( )P A B C, , Tr , 19i j k v i
A

j
B

k
C

0

where r̂v is a quantum state, as in equation (12). Single- and pair-site probabilities are obtained similarly. Here,
the detectors together with the analyzers are assumed towork perfectly with unit efficiency h = 1. In realistic
situations, however, detectors can be imperfect with less efficiencies than the perfect detectors. Then the
quantumprobabilities are functions of efficiencies,

h
h

h

=
=

=

( ) ( )
( ) ( )

( ) ( ) ( )

P X P X

P X Y P X Y

P A B C P A B C

,

, , ,

, , , , , 20

i i

i j i j

i j k i j k

0

2
0

3
0

whereX,Y=A,B,Cwith ¹Y X , andP0(Xi), P0(Xi,Yj),P0(Ai,Bj,Ck) are quantumprobabilities with perfect
detections, as in equation (19). Herewe assume that the detectors have the same efficiency ηwith  h0 1 and

projectors in equations (16) are replaced by hP̂X
.

We check the violations of the inequality(8) by replacingKolmogorov probabilities with the quantumones,
as in equations (20).We characterize quantumviolations in terms of experimental imperfections. In particular,
two types of imperfections are accounted inmeasurements and states, i.e., the loss of particles in terms of
detection efficiency η, as in equation (20), and the depolarization by environment in terms of 1−v, as in
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equation (12). Quantum violations can be achieved only if v>vcrit.Wefind the critical visibility vcrit for a given
pure state yñ∣ and detection efficiency η, as the localmeasurement settings are optimized. For a given pure state,
we define the robustness of violation against thewhite noise as

º - ( )n v1 . 21crit

This is also considered as a violation degree (or themaximal fraction of white noise for which the violations are
not found). For the given pure state yñ∣ , we decrease the detection efficiency down to h hcrit, such that no
quantumviolation can be observed evenwith themaximal visibility v=1.We alsofind theminimumof the
critical detection efficiencies hcrit

min over all possible pure states. hcrit
min is obtained by looking for the lowest

eigenvalue of Bell operator associated to geometric tripartite extension of CH inequality(8). Similar kind of
analysis was done for CH inequality in [25].

3.1. Critical visibilities and detection efficiencies
The Bell operator B̂ corresponding to the inequality(8) is written as

= + + + +ˆ ˆ ˆ ˆ ˆ ˆ ( )B L Q Q Q T2 , 22AB BC CA

where L̂ is the sumof local (single-site) projectors, Q̂XY is a combination of pair-site projectors for subsystemsX
andY, and T̂ is a combination of triple-site projectors. Their explicit forms, including the detection efficiency η,
are given by

åh

h

h

= P

= P Ä P - P Ä P - P Ä P - P Ä P

= P Ä P Ä P + P Ä P Ä P

+ P Ä P Ä P - P Ä P Ä P

=

ˆ ˆ

ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )
ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

L

Q

T

. 23

X A B C

X

XY
X Y X Y X Y X Y

A B C A B C

A B C A B C

, ,
2

2
1 1 1 2 2 1 2 2

3
1 2 2 2 1 2

2 2 1 1 1 1

The quantum violation of the inequality(8) is witnessedwhen rá ñ º <ˆ ( ˆ ˆ)B BTr 0. Let yñ∣ be a given pure
state and r̂v be themixed state, as in equation (12). The critical visibility vcrit is defined by v, such that

rá ñ º =ˆ ( ˆ ˆ) ( )B BTr 0, 24v v

where á ñB̂ v isminimized over localmeasurements settings.Here, η is a given detection efficiency.

3.1.1. Critical visibility for GHZ states
Atfirst, we analyze the violations of the inequality(8) byGHZ states (13). Assuming detectors with perfect
efficiency η=1, we find the critical visibility vcrit from equation (24). Here, á ñB̂ v is found to beminimized, if the

local settings

b in equation (19) are chosen along the directions in the x–y plane,

q q


= ( ) ( )b cos , sin , 0 , 25i

X

i
X

i
X

where qi
X are the angles. For a generalizedGHZ state(13) the critical visibility reads

y y
=

- á ñ
=

q ∣ ˆ∣
( )

{ }
v

B M
min

1

1 2

2
, 26crit

GHZi
X

where = Q - Q - Q - Qq ( ){ }M maxGHZ 111 122 212 221i
X , and s sQ = á

  Ä
  Ä∣ · ·b bGHZijk i

A

j

B

s
  ñ· ∣b GHZ .k

C
Wefind a=M 4 sin 2GHZ , wherewe have used q q q q+ + -cos cos cos cos 4122 212 221 111

with q q q q= + + .ijk i
A

j
B

k
C Then, the critical visibility vcrit is given as

a
= ( )v

1

2 sin 2
. 27crit

From this, we obtain the violation robustness n in equation (21),

a
= - ( )n 1

1

2 sin 2
. 28

Infigure 1, we present the violation robustness n as a function of the entanglement degree SA, where SA is the
von-Neunmann entropy of the reduced density operator r̂A for Alice’s qubit, i.e.

a a a a= -( ) ( )S sin ln cos sin ln cos .A
2 2 2 2

This clearly shows that the robustness n increases as increasing the entanglement SA, whereas no violation is
presented for some partially entangledGHZ states with asin 2 1 2 (this coincides with the result with
Mermin inequality [47]). For themaximally entangledGHZ state withα=π/4, the violation robustness n is
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maximal, e.g., n=1/2. As a reference, for amaximally entangled EPR state, e.g. ñ + ñ(∣ ∣ )00 11 2 , andCH
inequality [48], = - »n 1 1 2 0.292 9.

3.1.2. Critical visibility forW states
Assuming perfect detection efficiency η= 1, we check the critical visibility associated to generalizedW state (14)
and the geometric tripartite extension of CH inequality(8), as done for generalizedGHZ state. For generalized

W state, the local settings

b , in equation (19), lie in the x–z plane,

f f


= ( ) ( )b cos , 0, sin , 29i

X

i
X

i
X

where fi
X are angles. Similarly to equations (26) and (27), the critical visibility

=
- á ñ

=
f ∣ ˆ∣

( )
{ }

v
W B W M

min
1

1 2

2
, 30

W
crit

i
X

where = F - F - F - Ff ( ){ }M maxW 111 122 212 221i
X and s s sF = á

  Ä
  Ä

  ñ∣ · · · ∣W b b b Wijk i

A

j

B

k

C
.

For themaximally entangledW state ñp∣ ( ( ) )W arccos ,1

3 4
in equation (14),MW≈3.045 9 [28] so that

» »v n0.656 6 and 0.343 4.crit

Themaximumof robustness for themaximally entangledW state is less than =( )n 0.5 of themaximally
entangledGHZ state but larger than = -( )n 1 1 2 of themaximally entangled EPR state. For otherW states,
we performnumerical analyses.

Note that, for η=1, our inequality is equivalent toMermin inequality (all single-site pair-site events will be
canceled out ). For h ¹ 1 (see figures 2, and 3), one can retrieve the results for visibilities fromMermin
inequality in the scenario that outcome−1 is assigned to the event of ‘no detection’.

3.1.3. Critical efficiency of detection
Wefind the critical efficiency of detection, ηcrit, abovewhich a pure state yñ∣ violates the geometric tripartite
extension of CH inequality (8). For the purpose we employ Bell operator in equation (22) and investigate its

Figure 1.Violation robustness n against thewhite noise, as a function of entanglement SA for generalizedGHZ stateswith the perfect
detectors of η=1. The robustness n increases as increasing the entanglement SA, whereas no violation is revealed for non-maximally
entangledGHZ stateswith asin 2 1 2. For themaximally entangledGHZ state, i.e., p ñ∣ ( )GHZ 4 , the violation robustness n=1/2.

Figure 2.Violation robustness n as a function of detection efficiency ηwith themaximally entangledGHZ state ñp∣ ( )GHZ
4

for the

geometric tripartite extension of CH inequality (8)* and 3-site CH inequality (10), respectively. The inequality(8) provides larger
robustness towhite noise than 3-site CH inequality, even though there is a crossover at low η. In contrast, the critical detection
efficiency, theminimum η to obtain the violation is larger in case of the inequality(8).
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lowest eigenvalue. The critical detection efficiencies for GHZ andW states are to be found by restricting to the
subspaces of generalizedGHZ and generalizedW states. Theirminima are compared to the critical detection
efficiency hcrit

min to be found on thewholeHilbert space.Here, we shall obtain critical detection efficiencies by
assuming particular sets of local settings and numerically confirm themwithout the assumption.

We consider Bell operator B̂ in equation (22), assuming that the three observers choose the same alternating

localmeasurements with Bloch vectors


=


b bi

X

i forX=A, B, C. Furthermore f f


= ( )b cos , 0, sini i i lies in
the x–z plane, wheref1=π/2 andf2=π/2−f. Onemight release this constraint formore general settings
and obtain the same result. Letting f=ˆ ˆ ( )B B , the eigenvalues fˆ ( )B are determined by the roots of the
characteristic polynomial c l f l f= -( ) ( ˆ ( ))B, det . Let the rootsλr be functions off,λr=λr(f). Iff=0,
all the settings are equal to each other and they are compatible, revealing no violation.However, for smallf>0,
onefinds the lowest eigenvalue of B̂, that is negative. In the casewe apply a perturbation theory by expanding
χ(λ,f) and its rootsλr(f) in powers off up to 4th orders. The approximate equation for the roots is given as

åc l f f l f» =
=

[ ( ) ] ({ }) ( )q, 0, 31r
n

n r m
n

0

4

,

where the coefficientsλr,n come from the expansion of l f l f» å =( )r n r n
n

0
4

, . By solving the equations
qn({λr,m})=0 for all n, we obtainλr,n and thus the approximate rootsλr(f).

Wefirstfind the approximate roots on the subspace, spanned by ñ ñ ñ ñ{∣ ∣ ∣ ∣ }001 , 010 , 100 , 111 , which
includes generalizedW states and generalized EPR states such as ñ Ä ñ + ñ∣ ( ∣ ∣ )c c1 00 11 .00 11 The subspace can be
called asW-EPR.Note that our tripartite inequality is reduced to a bipartite CH inequality, andwith the latter
the critical detection efficiency h  2 3crit in the limit to product states, c 1.11 On theW-EPR subspace, the
lowest approximate root (i.e., eigenvalue) is given by

l f
h h

h
f h»

-
-

< >( ) ( )
( )

( )3 2 3

32 1
0, if 2 3. 32r

4

Thus, on theW-EPR subspace, the critical detection efficiency

h =
2

3
.crit

The eigenvector with the lowest eigenvalue is of the form

yñ =
+

ñ + ñ + ñ + ñ∣ ( ∣ ∣ ∣ ∣ )
r

r r r
1

1
001 010 100 111 ,

2
1 2 3

where = + +r r r r .1
2

2
2

3
2 The critical detection efficiency ηcrit=2/3 remains unchanged for states with any

r1,2,3 being non-zero. In other words, ηcrit=2/3 for generalizedW states as well as for generalized EPR states.
We apply the similarmethod to thewholeHilbert space and find the same value of critical detection efficiency,
h = 2 3.crit

min This is equal to thatwith a bipartite CH inequality [25].
Some generalizedGHZ states do not violate the geometric tripartite extension of CH inequality unless their

entanglement are large enough, andwe cannot apply the previousmethod. Insteadwe directly diagonalize Bell
operator B̂ on the subspace of generalizedGHZ states, spanned by ñ ñ{∣ ∣ }000 , 111 .Herewe assume the settings

q q


= ( )b cos , sin , 0i i i , where θ1=θ and θ2=π/2. The settings were chosen in equation (25) tofind the critical
visibility for theGHZ states. Onemight release the constraint formore general settings and obtain the same
result. The lowest eigenvalue of Bell operator B̂ is given by

Figure 3.With themaximally entangledW state ñp∣ ( ( ) )W arccos ,1

3 4
, violation robustness n as a function of detection efficiency η for

the geometric tripartite extension of CH inequality (8)* and 3-site CH inequality (10), respectively. The violation robustness is larger
in the inequality (8) than 3-site CH inequality over all η. The critical detection efficiency is smaller in the geometric tripartite extension
of CH inequality, contrary to theGHZ state in figure 2.
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l h h q= - + - +( ) ( ) ( )3

2
1

1

2
1 1 3 cos . 33min

2 2

It follows from equation (33) that on theGHZ subspace, the critical detection efficiency

h =
-21 3

2
,crit

for which q = 0.UsingGarg–Mermin approach [49] forMermin inequality andGHZ state, the similar bound
for ηcrit is obtained in [50]. The according eigenvector is themaximally entangledGHZ state, ñp∣ ( )GHZ

4
=

ñ + ñ(∣ ∣ )000 111 2 . Theminimumcritical detection efficiency for theGHZ states is 0.791 3, which is larger

than h =crit
min 2

3
, forW-EPR states.

3.2. Numerical calculations
Wepresent our numerical results for the geometric tripartite extension of CH inequality(8) and 3-site CH
inequality(10). Infigure 2, we plot the robustness of violation n as a function of detection efficiency η for the
maximally entangledGHZ state with the geometric tripartite extension of CH inequality and 3-site CH
inequalities. The violation robustness n is amonotonically increasing function of detection efficiency η for the
maximally entangledGHZ state, while it vanishes if h hcrit. It is shown that the inequality (8) provides larger
robustness of violation than 3-site CH inequality, even though there is a crossover at low η. In contrast, the
critical detection efficiency, theminimum η to see the violation is larger in the geometric tripartite extension of
CH inequality inequality. Figure 3 analyses robustness of violations for themaximally entangledW state. From
figure 3we see that for themaximally entangledW state, the violation robustness is larger in the inequality (8)
than 3-site CH inequality over all values of η between 0 and 1. The critical detection efficiency is smaller in the
geometric tripartite extension of CH inequality, contrary to theGHZ state infigure 2.

Comparing the two states with the geometric tripartite extension of CH inequality infigures 2 and 3, it is
remarkable that themaximally entangledGHZ state ismore robust against white noise than themaximally
entangledW state over all values of detection efficiency η between 0 and 1. In particular, the critical detection
efficiency h = - »( )21 3 2 0.791 3crit for theGHZ state, slightly smaller than ηcrit≈0.809 0 for theW
state.With the 3-site CH inequality, on the contrary, themaximally entangledGHZ state is less robust than that
ofW state.

For a set of generalizedGHZ states(13) and both types of inequalities, the violation robustnesses n, critical
visibilities vcrit, and critical detection efficiencies ηcrit are presented in table 1. Critical visibilities vcrit are
computed for η=1. The analyses are done forα=2π/18, 3π/18, and 4π/18, for which the entanglement
degree SA≈0.52, 0.81, and 0.98, respectively. For η=1, the robustnesses of violations n increase for the
geometric tripartite extension of CH inequality and 3-site CH inequality as we increase the degree of
entanglement SA (orα). The violations of the inequality (8)have the larger robustnesses than the 3-site CH for all
values ofα. However, critical detection efficiency ηcrit decreases in case of the inequality (8), whereas it increases
in the 3-site CH inequality. Themaximumof critical detection efficiencies of 3-site CH, h » 0.763 1crit

max , is
smaller than theminimumof detection efficiencies of the geometric tripartite extension of CH inequality,
h » 0.791 3.crit

min Theminimumof critical detection efficiencies hcrit
min associated to 3-site CH inequality is

estimated to be 0.6 in theGHZ subspace [51].
Table 2 presents the results for a set ofW states for different pairs of values of (θ,f) in generalizedW

state(14). For η=1, the robustnesses of the violations of the geometric tripartite extension of CH inequality, n,
are larger than those of the 3-site CH inequality. Furthermore, critical detection efficiencies ηcrit for the
inequality (8) are lower than those associated to 3-site CH inequality. For the biseparable EPR state (q = p

2
and

Table 1.Violation robustness n, critical visibilities vcrit, which are obtained
for η=1, and critical detection efficiencies ηcrit for the geometric tripartite
extension of CH inequality (8)* and 3-site CH inequality (10)with a set of
GHZ states.

α

Type 2π/18 3π/18 4π/18 π/4

* n 0.222 1 0.422 7 0.492 3 0.500 0

vcrit 0.777 9 0.577 3 0.507 7 0.500 0

ηcrit 0.919 5 0.831 2 0.795 4 0.791 3

3-site CH n 0.178 1 0.266 6 0.312 1 0.317 8

vcrit 0.821 9 0.733 4 0.687 9 0.682 2

ηcrit 0.749 0 0.758 8 0.762 6 0.763 1
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f = p
4
, or specifically, ñ Ä ñ + ñ∣ (∣ ∣ )0 01 10 2 ) and the geometric tripartite extension of CH inequality

inequality, the critical detection efficiency h = + »( )2 1 2 0.828 4crit , which coincideswith that of the
critical detection efficiency associated toCH inequality and the EPR state [24, 25, 48]. The value of ηcrit for 3-site
CH inequality and the biseparable EPR state is obtained as 0.872 4, which is greater than the critical detection
efficiency obtained for the geometric tripartite extension of CH inequality.

4. Extension of CH inequality formoremeasurement settings than two per site andmore
subsystems than three

First, we present an extension of CH inequality for three subsystems and threemeasurement settings per site.
Then, following the similarmethodwe obtain aCH inequality for four qubits with threemeasurement settings
per site.

Let us consider a set of eventsAl,Bm,Cn for Alice, Bob, andCharlie, respectively, where l,m, n=1, 2, 3. For
detailed descriptions, the reader is referred to section 2.2. As discussed in case of three subsystems and two
measurement settings per site, we can find similar kind of relations between symmetric differences of three
events for the situation at hand. For example, for a pair of statistical separations, the following inequality holds:

Å Å + Å Å Å Å Å = Å Å Å ( )(( ) ) (( ) ) (( ) ( )) ( ) 34P A B C P A B C P A B B A P A B B A .1 2 3 3 3 3 1 2 3 3 1 2 3 3

Also, due to permutation symmetry, Å Å Å = Å Å Å( ) (( ) )P A B B A P A B B A .1 2 3 3 1 2 3 3 Using the fact, we
can have another triangle inequality

Å Å Å + Å Å Å Å Å Å
= Å Å Å Å

(( ) ) ( ( )) (( ) ( ))
( ) ( )

P A B B A P A B C P A B B B C
P A B B B C . 35

1 2 3 3 3 1 2 1 1 3 2 2

1 1 3 2 2

Following the similar argument, we obtain

Å Å Å Å + Å Å Å Å Å = Å Å Å
( )

(( ) ( )) ( ( )) (( ) ( )) ( )
36

P A B B B C P A B C P A B A B P A B A B ,1 1 3 2 2 2 2 2 1 1 2 3 1 1 2 3

andfinally,

Å Å Å + Å Å Å Å(( ) ( )) (( ) ) (( ) ) ( )P A B A B P A B C P A B C . 371 1 2 3 2 3 1 1 1 1

With the four inequalities:(34)–(37), a CH inequality for three qubits and three settings per site reads


Å Å + Å Å + Å Å + Å Å
+ Å Å Å Å

( ) ( ) ( ) ( )
( ) ( ) ( )

P A B C P A B C P A B C P A B C
P A B C P A B C . 38

1 2 3 3 3 3 3 1 2 2 2 2

2 3 1 1 1 1

It is worthmentioning that we can have several invariant forms of the inequality(38) by choosing different sets
of symmetric differences associatedwith statistical separations.

Let us consider a set of eventsAl,Bm,Cn,Dp for Alice, Bob, Charlie andDaniel, respectively, where l,m, n,
p=1, 2, 3. From earlier discussionswe know that the statistical separations obey triangle inequalities. Thus
following set of inequalities can be obtained by chaining

Table 2.Violation robustness n, critical visibilities vcrit, which are obtained for η=1,
and critical detection efficiencies ηcrit for the geometric tripartite extension of CH
inequality (8)* and 3-site CH inequality (10)with a set ofW states.

(θ,f)

Type
p p( )
6

,
4

p p( )
2

,
4

p p( )
4

,
4

p( ( ) )arccos ,
4

1

3

* n 0.255 4 0.292 9 0.333 3 0.343 4

vcrit 0.744 6 0.707 1 0.666 7 0.656 6

ηcrit 0.763 6 0.828 4 0.802 4 0.809 0

3-site CH n 0.248 8 0.292 9 0.318 7 0.329 3

vcrit 0.751 2 0.707 1 0.681 3 0.670 7

ηcrit 0.800 4 0.872 4 0.836 7 0.837 5
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
Å Å Å + Å Å Å

Å Å Å Å Å
= Å Å Å Å Å

(( ( )) (( ( ))
(( ) ( ))
( ) ( )

P A B C D P A B C D
P B C D B C D
P B C D B C D , 39

1 1 1 1 1 2 3 3

1 1 1 2 3 3

1 1 1 2 3 3

using permutation symmetry of symmetric difference, we also have


Å Å Å Å Å + Å Å Å

Å Å Å Å Å
= Å Å Å Å Å

(( ) ( )) (( ) ( ))
(( ) ( ))
( ) ( )

P C D B C B D P A C B D
P C D B C A C
P C D B C A C , 40

1 1 2 3 1 3 3 2 1 3

1 1 2 3 3 2

1 1 2 3 3 2

next,


Å Å Å Å Å + Å Å Å

Å Å Å Å Å
= Å Å Å Å Å

(( ) ( )) (( ) ( ))
(( ) ) ( ))
( ) ( )

P A C D B C C P A C B D
P D B C C B D
P D B C C B D , 41

3 1 1 2 2 3 3 1 3 2

1 2 2 3 3 2

1 2 2 3 3 2

andfinally,


Å Å Å Å Å + Å Å Å

Å Å Å
(( ) ( )) (( ) )

(( ) )) ( )
P B C D D B C P B C D A

P D B C A . 42
3 3 1 2 2 2 3 3 1 2

2 2 2 2

From these four inequalities (39)–(42)we obtain



Å Å Å + Å Å Å
+ Å Å Å + Å Å Å
+ Å Å Å Å Å Å

( ) ( )
( ) ( )
( ) ( ) ( )

P A B C D P A B C D
P A B C D P A B C D
P A B C D P A D B C . 43

1 1 1 1 1 2 3 3

3 1 2 3 3 3 1 2

2 3 3 1 2 2 2 2

Quantummechanics violates the inequalities (38) and (43). It is interesting to note that because the basic
formalism leading to the inequalities (7), (38), and (43) is same, in principle, wemay obtain several CH
inequalities for arbitrary number of subsystemswithmanymeasurement settings per site. It will be discussed
elsewhere.

5. Remarks

Wepropose a geometricmethod to construct a set of CH inequalities inKolmogorov theory of probability.We
show that the inequalities result from a set of triangle inequalities in terms of the statistical separations, defined
by the probability of symmetric differences between local detection events. Themethod can be generalized to
obtain inequalities formore qubits than three andmoremeasurement settings than two per site. Also, a new set
of inequalities, which lead toMermin inequalities, are presented (see appendixD) up tofive subsystems. It is also
shown that our inequality (8) can be reduced to theCH inequality of two subsystems and theMermin inequality
of 3 qubits under the appropriate conditions.

The inequalities are characterized in terms of two parameters, e.g., detection efficiency and robustness of
quantumviolation against white noise. The latter is employed as a degree of violation. For the three qubits, we
show that the geometric tripartite extension of CH inequality can be quantum-mechanically violated by the pure
entangled generalizedGHZ andW states, even though no violation is found for some non-maximally entangled
GHZ states. In terms of the violation robustness and critical efficiency of detection, we compare our inequality to
the 3-site CH inequality (10), another generalization of CH inequalities for tripartite systems. Our inequality (8)
shows violation robustness stronger than the 3-site CH inequality by generalizedGHZ andW states with the
perfect detections.Wefind that, for the givenGHZ states, the 3-site CH inequality has the critical efficiencies
lower than the geometric tripartite extension of CH inequality, whereas it is opposite for the givenW states. In
particular, theminimal critical efficiency of detection over all the states is lower in the 3-site than the geometric
tripartite extension of CH inequality. It is worthmentioning that the authors in [27] did not account background
noises, even though they conjectured that the inclusion of background noise would increase the bounds on the
minimumdetection efficiency.Wefind that biseparable states can violate the inequality (8), as expected by the
fact that two-qubit CH inequality can be retrieved from the geometric tripartite extension of CH inequality (8)
and violated by two-qubit pure entangled states.

The quantum violations of the geometric tripartite extension of CH inequality (8) are expected to
experimentally realize with detectors, which differentiate single- andmulti-photon detectionswith high
efficiency and negligible dark count [52]. It is conjectured that themethod to extendCH inequality can be
further developed for arbitrary number of outcomes. This will be presented in a forthcomingwork.
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AppendixA.Upper bound of left hand side of (8)

Let [a] denote non-negative residue amodulo 2,

º[ ] ( )a a mod 2. A1

Two residues [a] and [b] satisfy triangle inequality,

+ +[ ] [ ] [ ] ( )a b a b . A2

Also onemay have an identity,

= - -[ ] [ ]a a1 1 .

Thus, one obtains the relation,

+ - +[ ] [ ] [ ] ( )a b a b2 . A3

Using equations (4) and (A3), we have

Å Å + Å Å - Å Å Å( ) ( ) ( ) ( )P A B C P A B C P A B A B2 . A41 2 2 2 1 2 1 2 2 1

Using triangle inequality (A2), we also obtain

Å Å Å Å Å + Å Å( ) ( ) ( ) ( )P A B C P A B A B P A B C . A52 2 1 1 2 2 1 1 1 1

Summing (A4) and (A5)we get

 Å Å + Å Å + Å Å - Å Å( ) ( ) ( ) ( ) ( )P A B C P A B C P A B C P A B C2 . A61 2 2 2 1 2 2 2 1 1 1 1

Combining equation (A6) and equation (7), we obtain

 Å Å + Å Å + Å Å - Å Å( ) ( ) ( ) ( ) ( )P A B C P A B C P A B C P A B C0 2. A71 2 2 2 1 2 2 2 1 1 1 1

Or equivalently, in the formof equation (8),

 + + + + ( )L Q Q Q T0 2 1. A8AB BC CA

Thuswe have two bounds, 0 for the lower bound and 1 for the upper bound.

Appendix B. Polytope for the geometric tripartite extension of CH inequality

Verticespi of the Bell polytope  are defined,

= ( ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

p P A P A P B P B P C P C

P A P B P A P B P A P B P A P B
P B P C P B P C P B P C P B P C
P A P C P A P C P A P C P A P C
P A P B P C P A P B P C P A P B P C P A P B P C
P A P B P C P A P B P C P A P B P C P A P B P C

, , , , , ,

, , , ,
, , , ,
, , , ,

, , , ,
, , , ,

i v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

1 2 1 2 1 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 1 1 2 1 2 1 2 1 1

1 2 2 2 1 2 2 2 1 2 2 2

where the probabilities Pv(X) are either 0 or 1 forX=Ai,Bj,Ck. The vector l


= å
P pi i i in  is given in a form

of

13

New J. Phys. 20 (2018) 093006 ADutta et al




= ( ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ))

P P A P A P B P B P C P C
P A B P A B P A B P A B
P B C P B C P B C P B C
P A C P A C P A C P A C
P A B C P A B C P A B C P A B C
P A B C P A B C P A B C P A B C

, , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , , , , , ,
, , , , , , , , , , , .

1 2 1 2 1 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 1 1 2 1 2 1 2 1 1

1 2 2 2 1 2 2 2 1 2 2 2

The geometric tripartite extension of CH inequality in equation (11) is specified by   · P 0 with  = 00

and




= - - - - - - - - - -( )0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 2, 2, 2, 0 .

The inequality (8) is a facet inequality as shown in themain text and the facet is specified by the set of linearly
independent vertices.We present them in table B1 and also those of another facet inequality with the upper
bound 1 in table B2.

AppendixC. Explicit inclusion of non-detection events

C.1. CHandEberhard inequalities
Assume each observer gets three outcomes {+,−, u}, where ‘u’ is a undetected outcome. CH inequality is given
by

+ - - - ++ + + + + + + + + +( ) ( ) ( ) ( ) ( ) ( )P A P B P A B P A B P A B P A B, , , , 0,1 1 1 1 1 2 2 1 2 2

where P(A+) are probabilities of Alice’s detecting the outcome ‘+’ and P(A+,B+) are joint probabilities
of both detecting outcomes ‘+.’Wemay expand the single-site probabilities in a form of the pair-site
probabilities,

å=+

=

+( ) ( ) ( )P X P X Y, . C1
y u

y
1

,
1 2

Table B1.Row vectors of vertices in the Bell polytope, which yield the lower bound of the inequality (8). These 25 extreme vertices are
linearly independent (excluding the null vector of vertex).

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0

1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
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CH inequality in equation (C1) then becomes

+ + + + -+ - + - + + + + + +( ) ( ) ( ) ( ) ( ) ( ) ( )P A B P A B P A B P A B P A B P A B, , , , , , 0. C2u u
1 2 1 2 2 1 2 1 2 2 1 1

This version of CH inequality is equivalent to Eberhard inequality [26].
Consider all the possible data ofN events in each pair of local settings, assuming that arbitrarily largeN is the

same for the 4 pairs of local settings. Then, the CH inequality in terms of probabilities can be changed to the one
with the coincident counts,

+ + + + -+ - + - + + + + + +( ) ( ) ( ) ( ) ( ) ( ) ( )N A B N A B N A B N A B N A B N A B, , , , , , 0. C3u u
1 2 1 2 2 1 2 1 2 2 1 1

where =( ) ( )N A B NP A B, ,i
a

j
b

i
a

j
b , the number of coincident counts at both sites with outcome pair (a, b) for a

given setting pair (i, j). Note that we also account the number of counts at one site and no count at the other site
with ¹ =( )N A B,i

a u
j
b u or = ¹( )N A B,i

a u
j
b u . This is an Eberhard inequality.

C.2. Eberhard inequality for 3 qubits
Wederive a 3-qubit Eberhard inequality fromour inequality (8), based on themethod in sectionC.1. The
inequality in equation (8) is recalled,

+ + + +L Q Q Q T2 0,AB BC CA

where

å=

= - - -

= + + -

=

+

+ + + + + + + +

+ + + + + + + + + + + +

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

L P X

Q P X Y P X Y P X Y P X Y

T P A B C P A B C P A B C P A B C

, , , ,

, , , , , , , , .

X A B C

XY

, ,
2

1 1 1 2 2 1 2 2

1 2 2 2 1 2 2 2 1 1 1 1

Similarly to equation (C1), we expand the local- and pair-site probabilities in a formof the triple-site. The
single-site term L is rewritten by

å å=
= =

+( )L P X Y Z, , ,
X A B C y z u

y z

, , , ,
2 2 1

Table B2. 26 linearly independent row vectors of extreme vertices in the Bell polytope, which yield the upper bound.

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0

0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0

0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0

1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
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where (X,Y,Z) is one of cyclic permutations of (A,B,C). The pair-site termsQXY are rewritten as

å= - - -
=

+ + + + + + + +( ( ) ( ) ( ) ( ))Q P X Y Z P X Y Z P X Y Z P X Y Z, , , , , , , , .XY
z u

z z z z

,
1 1 1 1 2 2 2 1 2 2 2 1

Herewe takeZk for each (Xi,Yk) such that k=1 if i=j=1 or i=j=2, and k=2 if i=1 and j=2 or i=2
and j=1. Then, the geometric tripartite extension of CH inequality is rewritten by

+ + +T T T T 0,111 122 212 221

where, for = ( )P P A B C, ,ijk
abc

i
a

j
b

k
c ,

= + + + + + +

=- + + + - +

=- + + - + +

=- + + + + -

+++ ++- +-+ -++ ++ + + ++

+-+ -+- + -+ + + +-

++- --+ + ++ - + -+

-++ +-- + +- + - ++

T P P P P P P P

T P P P P P P

T P P P P P P

T P P P P P P .

u u u

u u u u u

uu u u u

uu u u u

111 111 111 111 111 111 111 111

122 122 122 122 122 122 122

212 212 212 212 212 212 212

221 221 221 221 221 221 221

We replace Pijk
abc with the coincident counts =N NPijk

abc
ijk
abc and obtain a 3-qubit Eberhard inequality.

AppendixD. Amethod to obtain a new set of inequalities which can reproduceMermin
inequalities for subsystemsmore than three

In this subsection, we propose amethod to derive an inequality for four qubits and also show that the extension
tofive qubits is also possible. Our derivation is based on the following identity,

+ + = +( ) ( ) ( ) ( ) ( ) ( )P X P X P X P Y P Z2 , D1i i i i i1 2 3 4 4

whereXij are events in the event space F (see section 2.1), = Å =Y Xi j ij4 1
3 , and = Ç Å Ç( ) ( )Z X X X Xi i i i i4 1 2 1 3

Å Ç( )X X .i i2 3 This applies to i=1, 2, 3. Thuswe have a set of 3 equations. In addition, we consider the 4th
equation,

+ = + +( ) ( ) ( ) ( ) ( ) ( )P Y P Z P Y P Y P Y2 , D244 44 41 42 43

where = Å =Y Xj i ij4 1
3 , = Å =Y Yj j44 1

3
4 , and = Ç Å Ç Å Ç( ) ( ) ( )Z Y Y Y Y Y Y .44 41 42 41 43 42 43 We sum the 4

equations in equations (D1) and (D2). Collecting the left hand sides together and similarly the right hand sides,
we obtain a single equation. If = Å =Z Zi i44 1

3
4, then

å
=

( ) ( ) ( )P Z P Z . D3
i

i
1

3

4 44

Hence, the summed equation can bewritten by an inequality,

å å+ +
= =

( ) ( ) ( ( ) ( )) ( )P X P Y P Y P Y . D4
i j

ij
k

k k
, 1

3

44
1

3

4 4

Weapply the procedure from equation (D1) to equation (D4) in order to derivemultipartite inequalities by
replacing eventsXijwith symmetric differences between spatially separated subsystems. For example, let us
considerAl,Bm,Cn,Dp are events associatedwith themeasurements of Alice, Bob, Charlie, andDaniel,
respectively, where l,m, n, p= 1, 2. Letting g = Å Å ÅA B C Dlmnp l m n p, the replacements

g g g
g g g
g g g

  
  
  

X X X
X X X
X X X

, , ,
, , ,
, , ,

11 1112 12 1121 13 1122

21 1221 22 1212 23 1211

31 2121 32 2112 33 2211

in equation (D4) yield an inequality for four qubits, as they satisfy equation (D3).
5-qubit inequality is derived, as done for four qubits.We define g = Å Å Å ÅA B C D Elmnpr l m n p r, where

the extra events Er belong to Eve for r=1, 2. The inequality forfive qubits results from inequality(D4) by
replacing

g g g
g g g
g g g

  
  
  

X X X
X X X
X X X

, , ,
, , ,
, , .

11 11122 12 11212 13 11221

21 12211 22 12121 23 12112

31 21211 32 21121 33 22111

Here, we have used = Å =Z Zi i44 1
3

4 and equation (D3). In addition one can apply the procedure in section 2.3 to
deriveMermin inequalities for four and five qubits by using inequality(D4).

We remark that the inequality presented in the section is derived by a vector of eventsXi for two and three
qubits, and the one by amatrix of eventsXij for four (equation (D4)) andfive qubits. It is conjectured that one
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needs an nth rank tensor of events Xi i in1 2
for the specific type of inequalities of n2 and +n2 1qubits. This is

beyond the scope of this work.
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