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a b s t r a c t 

We propose an ensemble clustering approach using group diffusion to reveal community structures in 

data. We represent data points as a directed graph and assume each data point belong to single clus- 

ter membership instead of multiple memberships. The method is based on the concept of ensemble 

group diffusion with a parameter to represent diffusion depth in clustering. The ability to modulate the 

diffusion-depth parameter by varying it within a certain interval allows for more accurate construction 

of clusters. Depending on the value of the diffusion-depth parameter, the presented approach can deter- 

mine very well both local clusters and global structure of data. At the same time, the ability to combine 

single outcomes of the method results in better cluster segmentation. Due to this property, the pro- 

posed method performs well on data sets where other conventional clustering methods fail. We test the 

method with both simulated and real-world data sets. The results support our theoretical conjectures on 

improved accuracy compared to other selected methods. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Interest in the analysis of complex networks has rapidly grown

over the past few years. Network models have been used in differ-

ent areas including economics, biology, social sciences, and com-

puter science, where systems are often represented as graphs. An-

alyzing network models in practice is a challenging task due to

the complexity of the networks, particularly when the underly-

ing community structure is unknown. There are two general ap-

proaches to reveal the community structure of networks. The first

approach is graph partitioning when the number of clusters is

known. The second approach, called community structure detec-

tion, is more challenging, as it divides a network into clusters

or groups graph nodes when the number of clusters is unknown

beforehand. For community structure detection, both identifying

clusters and determining the number of clusters must be solved

simultaneously. 

The detection of community structures in an arbitrary graph is

a challenging task. In recent years, several methods have been de-

veloped and applied, including min-cut based approaches, clique
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ased approaches, modularity based approaches, clustering ap-

roaches, and so forth [1] . These approaches share an essential

ool, clustering, in a sense to find good clusters of nodes in a

raph that improve a certain criterion. Clustering, indeed, is a uni-

ersal tool applied in many different fields of data analysis, such

s data mining, statistics, marketing, and others [2] . The goal of

luster analysis is to partition data into groups or clusters based

n pairwise similarity so that observations inside one cluster are

ore similar than the ones belonging to different clusters [3] . The

imensionality of the data set has a strong influence on the per-

ormance of clustering algorithms. Some methods work well for

ow-dimensional data, whereas they are unable to find structure in

igh-dimensional data sets. High-dimensional data pose a number

f challenges for researchers and practitioners. First of all, high-

imensional data are more likely to be sparse, which makes it dif-

cult for algorithms to find structures in the data. Moreover, in

igh-dimensional data sets, points may belong to diverse clusters

n different subspaces. Capturing the geometric structure of the

anifold from the data, whether low- or high-dimensional, plays

n essential role in reliable clustering results. Clustering meth-

ds without considering such geometric structures can fail to pro-

uce accurate results and find mere local structures in sparse high-

imensional data. 

In addition to geometric structures of real-world data, another

hallenge for clustering in community detection tasks is that the
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esults cannot be validated as there is no ground truth available for

he data sets, as in supervised learning. Furthermore, various clus-

ering methods often generate different and biased structures in a

ata set due to different optimization criteria they adopt. To over-

ome these issues in different clustering results, combining mul-

iple partitions can improve the quality of clustering results sig-

ificantly. In this sense, a collective approach called clustering en-

emble aims to provide more robust, stable, and novel solutions

y leveraging a consensus of multiple clustering runs. The main

oal of clustering ensemble algorithms is to define a clustering so-

ution that maximizes a consensus function and to select a parti-

ion generation procedure. Partitioning can be performed using (1)

ata resampling [4,5] , (2) different parameter values or initializa-

ions [6,7] , and (3) different clustering algorithms such as k -means,

ensity-based, graph-partitioning-based, and statistics-based [8] . 

In this paper, we propose an ensemble clustering algorithm

ased on the concept of ensemble group diffusion, denoted by En-

emble Group Diffusion, EGD. The proposed method takes into ac-

ount not only the geometric structure of data using group dis-

ances, but also the diffusion of group distances across connec-

ivity scales. Moreover, the presented method is able to produce

ore robust clustering results by collectively integrating views

rom individual diffusion scales. The method is also capable of

easonably regulating cluster sizes by an admitted group depen-

ence level. In addition, it nicely handles directed graphs as op-

osed to other approaches. Further, we present a detailed anal-

sis of the degree of the collective integration and propose a

uideline for parameter settings. We demonstrate the efficacy of

he proposed method using not only an illustrative simple ex-

mple, demonstration test cases and simulation studies, but also

eal-world data sets such as the researcher collaboration net-

ork in a healthcare system from the National Institute of Health

NIH) in the U.S., a consumer behavioral pattern captured by the

o-purchasing network from Amazon, a leading consumer online

hopping place in the U.S. and a gene-expression microarray data

ets. 

The rest of the paper is organized as follows. Section 2 re-

iews clustering techniques used in community detection.

ection 3 describes preliminary concepts for the proposed al-

orithm. Section 4 provides theoretical justification for the

roposed clustering method. Section 5 compares the performance

f the proposed method to popular and state-of-the-art clustering

lgorithms under different settings and data sets. Section 6 dis-

usses the implications of our development of the algorithm and

oncludes the paper. 

. Related work 

Many clustering algorithms have been proposed in the liter-

ture of community structure detection and clustering analysis.

odularity-based methods established by Newman [9] have shown

xceptional performance in many cases [10–12] . These methods are

onparametric and are designed to maximize the modularity as an

bjective function. These methods, however, fail to detect smaller

ommunities in some cases where such granular identification is

esirable. It is hard to say whether the detected clusters are indeed

ingle communities or clusters of smaller communities. For ex-

mple, Fortunato and Barthélemy [13] analyzed modularity-based

ethods and their applicability in the area of community detec-

ion. Their research points out that the modularity function has

 resolution limit. Communities that are smaller than a threshold

n a certain criterion may not be revealed, even when the whole

raph is identified as a single community. In addition, working

ith pairwise similarity between nodes, modularity-based meth-

ds are inherently unable to handle directional relationships com-

only observed in reality. 
Other clustering methods for community detection also exist.

ierarchical clustering [3] , agglomerative or divisive, is another

echnique commonly used for community detection. Hierarchical

lustering [3] first defines a similarity measure between clusters

nd computes a similarity matrix between vertices of a graph.

mong the most critical disadvantages of hierarchical clustering

s that the results can be different depending on the similarity

easure used, although it is a universal phenomenon in most

lustering methods. Besides, agglomerative hierarchical clustering 

oes not scale well, which is crucial for clustering graphs [14] .

n essence, approaches based on a predefined number of clus-

ers require an additional important step that involves a decision

riterion for the optimal number of clusters. Spectral clustering

3] refers to the group of methods based on eigenvalue decom-

osition of the similarity matrix or its derivative matrices for clus-

ering data sets. This approach is good at finding non-convex clus-

ers, able to take into account geometric structures of the data [3] .

owever, it works with similarity matrices, which reflect only bidi-

ectional relationships among the nodes in a graph. The result de-

ends on the number of selected eigenvectors. Along with spec-

ral and density-based methods considering geometric structures

f data, Park and Lee [15] proposed a group-dependence cluster-

ng approach. This approach is based on the idea of maximizing a

easure called group dependence. The central idea of the method

s that any two nodes in the graph can be considered as being

onnected through Markovian transitions. This conceptualization

llows for the calculation of ‘dependence distance’ [16] between

raph nodes in a certain evolution step, which can adjust the level

f connectivity scale in group assignment. Though the method sup-

orts the ability to adjust the level of the connectivity scale in

lustering, it fails to present a collective view of clusters accord-

ng to the connectivity scale and was insufficient in coping with

irectional structures between nodes. Density-based methods de-

ect clusters according to the local density of data points. Based on

 density threshold, the points from disconnected regions of high

ensity are assigned to different clusters when the rest are marked

s noise. However, such methods, computationally expensive, are

uitable only for data defined by a set of coordinates. To overcome

hese drawbacks, an alternative approach, called clustering by ‘fast

earch and find of density peaks’ (FSFDP) [17] , defines the clus-

er centers as local density maxima that are relatively distant from

ny point of higher local density. After that, each remaining point

s assigned to the same cluster as its nearest neighbor of higher

ensity. 

Attempts to improve the quality of clustering results brought

orth developing a number of ensemble clustering approaches dur-

ng recent years. Zheng et al. used aggregated distance matrices

nd combined both partitional clustering and hierarchical cluster-

ng results [18] . Wang et al. used a Bayesian graphical model to

ggregate mixed cluster results and maximized an approximation

f the posterior distribution [19] . The clustering approach, pro-

osed in [8] as one of the state-of-the art approaches, addresses

he problem of combining multiple partitions of a set of objects us-

ng the knowledge-reuse framework [20] . It formulates the cluster

nsemble problem by introducing an objective function for com-

ining multiple clustering solutions and by solving the correspond-

ng optimization problem. This way the final consensus solution

s obtained without accessing original features. The authors pro-

ose the following three consensus functions: cluster-based sim-

larity partitioning algorithm (CSPA) based on a measure of pair-

ise similarity, HyperGraph Partitioning Algorithm (HGPA) based

n approximation of the maximum mutual information objective,

nd meta-cLustering algorithm (MCLA) based on solving a cluster

orrespondence problem. The final solution is selected among the

hree consensus clusterings as the one with the highest average

utual information. 
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3. Preliminary concepts 

In this section, we briefly summarize the concept of group de-

pendence that links data points by a Markov random walk and

the concept of a clustering ensemble that combines several divi-

sion outcomes. Then, in the next section, we propose the concept

of ensemble group diffusion to measure a multiscale cohesion level

for a group division in an integrative fashion. Ensemble group dif-

fusion gives rise to a new clustering method for community detec-

tion, which will be discussed in detail in regards to its characteris-

tics and parameters. 

3.1. Group dependence 

The concept of group dependence is closely related to the

Markov random walk and provides a general foundation for a dis-

tance measure between data points that considers the geometri-

cal structure [21] . Group dependence proposed by Park and Lee

[15] is a measure that quantifies the goodness-of-division of an

undirected graph. In this paper let us suppose that a directed graph

of data points (nodes) x 1 , · · · , x n ∈ R 

b is given. Denote the set of

data points by � = { x 1 , . . . , x n } . We view the graph as a Markov

chain, assuming the whole chain is ergodic and all transitions fol-

low the Markovian property. 

We start with a simple case of bisecting the graph, then provid-

ing instructions on how to divide it into more than two groups in

the following section. Let s i = 1 , a decision variable, if data point

i belongs to group 1 and s i = −1 if it belongs to group 2. Ob-

serve that the quantity (s i s j + 1) / 2 is 1 if i and j are in the same

group and 0 otherwise. Denote the group assignment vector by

s = [ s 1 , . . . , s n ] . Group dependence is defined as follows: 

Definition 1. Group dependence D t for a given group assignment

s and connectivity scale parameter t is 

D t = 

∑ 

x i ,x j ∈ �

(
Dep(X 0 = j, X t = i ) − 1 

) (s i s j + 1) 

2 

, 

in which Dep(X 0 = j, X t = i ) , as dependence, is defined by
P(X 0 = j,X t = i ) 

P (X 0 = j) P (X t = i ) and t , as an exogenously given parameter, means the

t -step-wide neighborhood evolution in �. 

Dependence is closely linked to the point-wise mutual infor-

mation in information theory and the lift measure in associa-

tion rule learning. Intuitively speaking, dependence captures how

x j in the initial state is inter-dependent with x i at the t th step:

Dep(X 0 = j, X t = i ) < 1 means that j and i are negatively depen-

dent; Dep(X 0 = j, X t = i ) = 1 means that they are independent;

Dep(X 0 = j, X t = i ) > 1 means that they are positively dependent.

The term, Dep(X 0 = j, X t = i ) − 1 , represents the degree of relative

dependence in comparison to the level of independence as the ref-

erence point. Accordingly, group dependence D t measures the over-

all coherence of group assignment s in terms of dependence for

the whole data set at the t -step transition. Based on group depen-

dence, we propose another measure of ensemble group diffusion

to reflect the multiscale dependence structure in a directed graph.

We then look for a good group assignment s of all n points to max-

imize the measure. 

3.2. Clustering ensemble 

As the idea of ensemble group diffusion closely relates to clus-

tering ensembles, we briefly introduce the basic concept of a clus-

tering ensemble. Cluster ensembles basically address the problem

of combining multiple base clustering results for the same data set

into a final consensus solution. Depending on how to reach a con-

sensus solution, several approaches (such as graph-based, matrix-
ased, and probabilistic models [22] ) exist in the literature. How-

ver, the problem formation in cluster ensembles is universal as

ollows. We start with a base clustering algorithm that generates

he group assignment s of the data points in �. We prepare M base

lustering results by supplying different parameters to one base

lgorithm. From them, we obtain M different group assignments

 

(1) , ���, s ( M ) . The results from the M base clustering algorithms can

e stacked together to form an overall clustering matrix. Given the

verall clustering matrix, the cluster ensemble problem is to com-

ine the M base clustering results for the n data points to generate

 consensus clustering, which should be more accurate and stable

han the individual base clusterings. 

In this paper, we calculate diffusion matrices of dependence

or each parameter value of connectivity level t and aggregate the

iffusion matrices. Specifically, we similarly start with a directed

raph of n data points in � with probability matrix P . Having a

et of possible parameters, denoted by T , we calculate [ Dep(X 0 =
j, X t = i )] i, j=1 , ··· ,n for every t ∈ T and then obtain a cumulative ma-

rix, the ensemble group diffusion, as the sum of the individual

roup diffusion results: 

 ( s ) = 

∑ 

t∈ T 
D t = 

∑ 

t∈ T 

∑ 

x i ,x j ∈ �

(
Dep(X 0 = j, X t = i ) − 1 

) (s i s j + 1) 

2 

. (1)

he final clustering is obtained through solving the maximiza-

ion problem for the cumulative matrix D ( s ) . Combining individ-

al diffusion matrices to ensemble group diffusion can be viewed

s a peer regularization. Diffusion matrices obtained with a small

 value pull the overall solution towards having smaller clusters.

imilarly, diffusion matrices from a large t value shift the optimal

olution towards coarser and larger scale representations. The con-

truction of ensemble group diffusion brings stable clustering re-

ults under various degrees of resolution and heterogeneous struc-

ures in the data set. Thus, it aims to solve the resolution limit is-

ue in which an obvious small-sized community is rarely detected

hen the whole graph is sufficiently large. 

. Clustering with ensemble group diffusion 

We incorporate group dependence and ensemble clustering to

resent a new approach of ensemble group diffusion that finds the

ommunity structure in a directed graph. Given a transition ma-

rix P , we denote the one-step backward transition matrix by P B ,

hich is calculated from P . Then by backward Markovian transi-

ions, the t -step transition matrix is P t 
B 
: P t 

B ;i, j 
= P (X 0 = j| X t = i ) . We

bserve that if x i and x j are close in the geometric structure of

he data, the backward transition probability should be large. The

osterior transition probability involves a backward Markov chain,

epresenting the probability of the initial state j after reaching state

 at the t th step transition as a measure of the difference between

he two states i and j in the directed graph. 

In particular, the backward transition probability P t 
B ;i, j 

should be

t least greater than the probability that x i and x j are connected by

hance among all data points. Thus, the greater P t 
B ;i, j 

is among the

ata points in a cluster, the better the cluster is. Also, a partition of

he data set is meaningful when a whole connectivity level by the

artition should increase more than that by a random configura-

ion. The quantity 
∑ 

i, j (P t 
B ;i, j 

− 1 /n ) should be great for all x i and x j 
airs in the same cluster, where the threshold probability 1/ n rep-

esents the random probability among n data points. If one seeks a

ight configuration, one may use a value larger than 1/ n . In quanti-

ying the connectivity level in detail, we use not only the concept

f geometric diffusion, but also modulate the diffusion depth pa-

ameter t by varying t in a certain interval. Thus, we define the
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ollective geometric diffusion to be 
 

t∈ T 

∑ 

i, j 

(P t B ;i, j − 1 /n ) , 

here T is the set of diffusion depth values. 

We denote the group assignment vector by s = [ s 1 , . . . , s n ] . Let

 i = 1 if data point i belongs to group 1 and s i = −1 if it belongs to

roup 2. To obtain a good partition in terms of collective geometric

iffusion, we solve the following programming: 

rgmax s 
∑ 

t∈ T 

∑ 

i, j 

(P t B ;i, j − 1 /n ) 
(s i s j + 1) 

2 

. (2)

e show that collective geometric diffusion is in proportion to en-

emble group diffusion when all initial states have equal probabil-

ty as non-informative prior because 
 

t∈ T 

∑ 

i, j 

(P t B ;i, j − 1 /n ) = 1 /n 

∑ 

t∈ T 

∑ 

i, j 

(P (X 0 = j| X t = i ) n − 1) 

= 1 /n 

∑ 

t∈ T 

∑ 

i, j 

(
P (X 0 = j, X t = i ) 

P (X t = i ) 1 
n 

− 1 

)

= 1 /n 

∑ 

t∈ T 

∑ 

i, j 

(
P (X 0 = j, X t = i ) 

P (X t = i ) P (X 0 = j) 
− 1 

)

= 1 /n 

∑ 

t∈ T 

∑ 

i, j 

(Dep(X 0 = j, X t = i ) − 1) . 

hus, the programming in (2) is equivalent to maximizing the en-

emble group diffusion 

rgmax s 
∑ 

t∈ T 

∑ 

i, j 

(Dep(X 0 = j, X t = i ) − 1) 
(s i s j + 1) 

2 

. 

Note again that the quantity (s i s j + 1) / 2 is 1 if i and j are in the

ame group and 0 otherwise. Thus, an optimal clustering scheme

s achievable through maximizing the collective geometric diffu-

ion measure by varying the group assignment s of all n points.

o express the level of closeness to a group, the group identity

 i is extended from discrete to continuous with the norm of s

xed. By the set of diffusion depths T , we can effectively adjust

he level of the connectivity scale for which two points are associ-

ted. When infinite diffusion steps are taken, for the infinite value

f t , the Markov chain converges to the stationary distribution and

he collective geometric connectivity becomes trivial. For instance,

ne can set T to be {1, 2} as a short-range scale or {5, 6, 7, 8} as a

id-range scale. In practice, one could start with T as a long-range

cale such as {1, ���, 8} and, depending on the result, shrink it, or

ice versa (start with T as a short-range scale and expand it). We

ill see the effect of T by varying it in the experiment section. We

xpress the maximization of the ensemble group diffusion with re-

pect to s subject to ‖ s ‖ = 1 as follows: 

rgmax s s � 
∑ 

t∈ T 

(
P t B − 1 /n 1 1 

� )s := argmax s s � G s , (3) 

here 

 = 

∑ 

t∈ T 

(
P t B − 1 /n 1 1 

� )
. (4) 

e numerically find the eigenvalues and eigenvectors of G . The ex-

stence of the largest and positive eigenvalue and its eigenvector s 1 
mplies that the ensemble group diffusion is maximally increased

y adjusting a division of the data set on the direction of the cor-

esponding eigenvector s 1 . We mention the computational hurdle

s computing eigenvalues and eigenvectors of G , and we compare

ts running times in the experiment section. Moreover, the divi-

ion of the data points is based on the signs of s 1 . In fact, s 1 is

 one-dimensional representation of the data points, which can be
sed for a general purpose such as visualization and classification

ecause the sign and magnitude of s 1 relate to the degree of close-

ess to one group against the other. We note that the eigenvector

ssociated with the zero eigenvalue represents assigning all data

oints to just one group. On the contrary, nonexistence of a pos-

tive eigenvalue implies any further division of the data yields no

ain. 

.1. Detecting more than two groups 

The procedure explained so far either divides a graph into two

roups or decides not to divide further. It is natural to consider a

etwork with more than two groups latent in its community struc-

ure. To obtain more than two clusters, we adopt a standard ap-

roach to subsequently divide the groups found [9,15] . We look for

 possible division for each group found in the previous step by

onstructing a new backward transition matrix P B | g for a detected

roup g as a subset of the data set: P B | g with size | g | × | g |, defined

y 

 

t 
B | g;i, j = { P (X 0 = j| X t = i ) |∀ i, j ∈ g} . 
ollowing the same procedure based on P B | g , the solution of

rgmax ‖ s ‖ =1 G 

(g) in (3) enables us to decide whether a division is

ossible or not. 

It is important to note that the new group configuration with a

ew division found does not always result in an increase in the en-

emble group diffusion of the whole graph because the new simi-

arity matrix P B | g reflects only a part of the whole data set without

onsidering connections to the nodes belonging to other groups.

ence, among the possible divisions, we look for only the division

hich causes the ensemble group diffusion in (3) for the whole

ata set to increase most when the new division is applied. 

Furthermore, we require that the increase is at least by certain

argin. Specifically, for the purpose of regularizing the solution,

e introduce a dependence gain parameter δd ∈ [0, 1]. This param-

ter is used for calculating the minimal dependence gain value re-

uired to split a cluster into two sub-clusters and is defined as 

d = δd 

∑ 

g i, j > 0 

G, 

here G = [ g i, j ] is defined in (4) . For setting the value of δd in

ractice, we recommend starting with quite a small value, close

o zero, and increasing it depending on the results. One can ver-

fy that 
∑ 

g i, j > 0 
G is the upper bound for cumulative collective geo-

etric diffusion. Thus, the division into sub-clusters proceeds if the

ifference between the collective geometric diffusion values corre-

ponding to the group configurations before and after the division

s higher than the dependence gain: 

 ( s ′ ) − D ( s ) > n �d , 

here D is defined in (1) , s and s ′ denote the group configura-

ions before and after the division into sub-clusters, respectively,

nd n stands for the size of the set of data points �. The depen-

ence gain parameter prevents the algorithm from identifying clus-

ers that are too small or not clear enough, which allows control-

ing the desired level of clarity in finding clusters. In summary, we

top dividing the group when we find no positive eigenvalues from

roup ensemble matrix G 

( g ) or the dependence gain fail to exceed

 �d . 

.2. Illustrative examples 

This section demonstrates the performance and steps of the

roposed algorithm. For illustration, we construct a simulated sim-

larity matrix, which is generated as follows. We randomly gener-

te 500 points in two dimensional space where every point be-

ongs to one of three clusters. One cluster is generated from a
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Fig. 1. (a) The original data set and true cluster division from illustrative example, (b) similarity matrix corresponding to the data in (a). 
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Gaussian distribution with identity covariance matrix I and con-

tains 200 points. The second cluster is formed by a Gaussian distri-

bution with covariance matrix 0 . 25 × I and consists of 100 points.

It is shifted from the center of the first cluster by approximately

2.7 units. The third cluster is constructed from a uniform distribu-

tion in the interval (0, 2). It consists of 200 points and is shifted

from the center of the first cluster by approximately 2.8 units. The

obtained data is illustrated in Fig. 1 (a), where clusters are colored

differently. The data set has quite a visible underlying community

structure, although cluster membership for some of the points on

the border is not clear. We construct a distance matrix using the

Euclidean distance. The distance between two points x and y is

calculated as ‖ x − y ‖ = 

√ ∑ 

i (x i − y i ) 
2 , where i denotes a dimen-

sion. The similarity matrix shown in Fig. 1 (b) is formed from the

distance matrix using the general form of a Gaussian radial basis

function 

h (x, y ) = exp (−‖ x − y ‖ 

2 /σ 2 ) , (5)

where σ > 0. In this example, considering the units of x i − y i , we

empirically set the parameter σ to 0.2 and δd to 0.12. We notice

that three standard deviations of x i − y i , 3 σx i −y i , is 0.212 and the

choice of δd from the interval [0.05, 0.12] brings no change in the

clustering result. Therefore, we choose the upper limit of this in-

terval δd = 0 . 12 . 

We apply the proposed method (EGD) clustering to the ob-

tained similarity matrix. We consider the diffusion depth pa-

rameter values T = { 3 } , T = { 8 } and their combination T = { 3 , 8 } .
Fig. 2 (a)–(c) shows clustering results with EGD for the data and pa-

rameters described above. Every cluster is marked in its own color.

The clusters corresponding to original data clusters are displayed

in similar colors. The algorithm with T = { 3 } fails to find the un-

derlying data structure and assigns nearly all points to one cluster

(see Fig. 2 (a)). For T = { 8 } , the method successfully determines one

cluster marked green (see Fig. 2 (b)), but shuffles the two remain-

ing clusters. For T = { 3 , 8 } , the proposed EGD approach discovers

all three clusters, except for a few elements near the border and

a small group of points treated as a separate cluster. We note that

the border between clusters in this data set is not obvious and the

problem of clustering such points belonging to the border will be

addressed further in Section 6 . Apparently, the collective nature of

the proposed method leverages the benefits of runs with a single t

(see Fig. 2 (c)). 

Furthermore, using the data set with ground-truth, we show

the effectiveness of the EGD algorithm by providing clustering re-

sults under various settings of the parameter T . Figs. 2 (d), (e), and

(f) display clustering results for T = { 2 } , T = { 7 } and their combi-

nation T = { 2 , 7 } , respectively. The algorithm with T = { 2 } assigns

nearly all points to one cluster (see Fig. 2 (d)). For T = { 7 } , the
ethod determines two clusters marked green and blue, but mixes

oints in the third cluster (see Fig. 2 (e)). For T = { 2 , 7 } , the EGD

lgorithm discovers all three clusters, except for a few elements

ear the border and a small group of points treated as a separate

luster. Clustering results for T = { 1 } , T = { 9 } and their combina-

ion T = { 1 , 9 } , displayed in Figs. 2 (h), (i), and (j), are similar to the

nes obtained for T = { 3 } , T = { 8 } , and T = { 3 , 8 } , and consistently

how the benefit of collective diffusion depths. 

To demonstrate the functioning of the ensemble algorithm, we

isplay how the data set is split by the eigenvectors of the en-

emble group diffusion matrix G in (4) in every iteration. We con-

ider the case when T = { 3 , 8 } . The first eigenvector correspond-

ng to the first iteration of the algorithm splits the data set into

wo clusters, green and black (see Fig. 3 (a)-(b)). At the second it-

ration, its own first eigenvector splits the green cluster into two

arts, green and blue (see Fig. 3 (c)-(d)). Last, the first eigenvec-

or corresponding to the third iteration separates the green cluster

rom the previous step into two subclusters, marked green and red

see Fig. 3 (e)-(f)). In Fig. 3 values of the eigenvectors and the cor-

esponding points on the scatter plots are displayed in the same

olor. In addition, we add Figs. 10 and 11 in Supplementary Mate-

ials to show how the data set is split by the eigenvectors of the

atrix G in every iteration for T = { 2 , 7 } and T = { 1 , 9 } , respec-

ively. The results demonstrate that the algorithm is stable under

arious parameter settings and provides reasonable separation into

roups. Then, we set δd = 0 to promote cluster splits. We run EGD

y varying t from small to bigger values to show how cluster struc-

ure evolves by changing t values. Fig. 4 demonstrates the effect

f increasing t on clustering results, evolution from local to global

tructure. 

For comparison, we provide the results of the modularity, spec-

ral, and hierarchical clustering methods used further in this work

see Fig. 5 ). As parameter values for spectral and hierarchical meth-

ds we provide true ( k = 3 ) and wrong numbers of clusters ( k =
 , 4 ). Hierarchical clustering method places all data points mainly

n one cluster for all tested parameter values (see Fig. 5 (a)–(c)).

pectral clustering correctly determines one cluster for k = 5 but

huffles points belonging to the other two clusters. However, for

 = 3 , spectral clustering performs relatively well, which is quite

atural in that the true number of clusters was provided in this

ase. The results of the spectral clustering approach can be seen in

ig. 5 (d)–(f). The modularity approach fails for this data set as it

iscovers too many clusters (see Fig. 5 (g)). 

Next, we applied the EGD algorithm to the test cases in

hich underlying manifold structures exist, as presented in Fig. 6 .

ig. 6 (a)–(c) refer to artificial data sets representing classes of dif-

erent shapes [23] . Fig. 6 (d) displays the test case which the FLAME
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pproach [24] used as a challenging test case. For computing dis-

ance matrices we adopted Manhattan distance measure for the

wo spirals data set displayed in Fig. 6 (a) and standardized Eu-

lidean distance measure for the remaining test cases. Similarity

atrices were calculated from distance matrices using Gaussian ra-

ial basis function as in (5) . EGD successfully determined true clus-

ers for the test cases as shown in Figs. 6 (a)–(c). In particular, the

esults for the test case (d) are comparable to the original method.

ote that unlike original method, EGD assigned two outlier points

isplayed in red to a separate cluster that looks natural in this case

nd shows a potential ability to reveal a community that is small

n scale. 

The illustrative and demo examples show that the proposed

GD clustering approach can determine the underlying geometry

f the data, even for those data sets where some of the common

lustering methods fail. We attribute it to the property of ensem-

le group diffusion that inherently combines individual outcomes

o result in better cluster segmentation. 

. Experimental and empirical results 

.1. Benchmark methods 

We compare the EGD clustering with other well-known meth-

ds frequently used for community structure detection. Among

hose methods are agglomerative hierarchical clustering, spectral

lustering, modularity clustering [9] , density-based clustering and

 knowledge reuse framework-based (KRF) clustering ensemble ap-

roach proposed in [8] . We apply the KRF approach to the results
btained by Metis [25] and graph partitioning (GP) [26] algorithms

y varying the number of clusters. 

As a density-based method we refer to clustering by ‘fast search

nd find of density peaks’ (FSFDP) by Rodriguez and Laio [17] . We

se a Matlab implementation of FSFDP as was expounded in [27] .

n order to define cluster centers the original method adopted a

anual setting by supervised analysis of a decision graph that

isplays local density ρ i versus distance δi from points of higher

ensity for each data point i . Then one finds a rectangular region

here both δi and ρ i are high [27] . As the procedure was quite

nefficient and deteriorated in the multiple data sets used, we de-

igned a heuristic for automatic selection of cluster centers by bin-

ing the data points into k equally spaced intervals along the axes

nd marking points with maximal δ in each bin as cluster centers.

We employ both simulated and real-life data sets to compare

erformance of the clustering algorithms, including the proposed

GD method in this paper. In order to evaluate the performance

f these algorithms, we need to have “true clustering labels” for

ach data set. The simulated data set clearly has one, as we sim-

late the data set from a predefined correlation matrix structure.

or other real-world data sets, we deliberately chose empirical set-

ings where we can define such true clustering for all nodes. 

.2. Performance evaluation 

Given true clustering labels, we measure the performance of the

lustering results using two approaches: Rand measure [28] and

ormalized mutual information (NMI) [8] . The Rand measure is

ased on the dyad-level accuracy of clustering results, counting the
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Fig. 3. EGD clustering steps in illustrative example for T = { 3 , 8 } . (a) The first eigenvector of similarity matrix at the first iteration, (b) the first division, (c) the first 
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Fig. 5. Clustering results for illustrative example: (a) hierarchical clustering ( k = 2 ), (b) hierarchical clustering ( k = 3 ), (c) hierarchical clustering ( k = 4 ), (d) spectral clustering 

( k = 2 ), (e) spectral clustering ( k = 3 ), (f) spectral clustering ( k = 4 ), (g) modularity clustering. 
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Fig. 6. EGD clustering results for the data sets: (a) two spirals, (b) outlier, (c) half 

kernel, (d) FLAME. 
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umber of pairs in which an algorithm’s clustering result and the

rue clustering specification agree. In essence, it combines the ra-

io of correctly clustered pairs (CC) and the ratio of correctly sepa-

ated pairs (CS). CC and CS quantify the performance of clustering

lgorithms in terms of what percentage of pairs are correctly clus-

ered or separated given the true clustering results. They represent
wo extremes of a clustering algorithm’s performance. If an algo-

ithm tends to cluster aggressively by putting too many nodes into

he same cluster, it will score high in CC but low in CS, and vice

ersa. Thus, a desirable clustering algorithm should score high in

he Rand measure, balancing CC and CS. 

These three measures are computed as follows: 

C = 

∑ 

i, j 1 { x i = x j } 1 { y i = y j } ∑ 

i, j 1 { x i = x j } 1 { y i = y j } + 

∑ 

i, j 1 { x i � = x j } 1 { y i = y j } 
, 

S = 

∑ 

i, j 1 { x i � = x j } 1 { y i � = y j } ∑ 

i, j 1 { x i = x j } 1 { y i � = y j } + 

∑ 

i, j 1 { x i � = x j } 1 { y i � = y j } 
, 

and = 

∑ 

i, j 1 { x i = x j } 1 { y i = y j } + 

∑ 

i, j 1 { x i � = x j } 1 { y i � = y j } ∑ 

i � = j 1 

, 

here X = { x i } , i = 1 , · · · , n is the clustering result under evalua-

ion and Y = { y i } , i = 1 , · · · , n is the true cluster labels. n represents

he number of nodes in the graph. 

On the other hand, we employ another measure, NMI, to cap-

ure similarity between the true and test clustering results in a

olistic way. Mutual information is a concept from information

heory and increases as two input sequences are similar to each

ther. The normalized variant that we use in this paper scales it

nto the range between zero and one. The normalization process is

imilar to that of the Pearson correlation coefficient. In this case,

he information-theoretic entropy serves as a normalization fac-

or. The information entropy measures how random each input se-

uence is. Following Strehl and Ghosh [8] , NMI is calculated as fol-

ows: 

MI (X, Y ) = 

I(X, Y ) √ 

H(X ) H(Y ) 
, 

here I ( X, Y ) denotes mutual information between X and Y , and

 ( X ) and H ( Y ) denote the information entropy of X and Y , respec-

ively. 
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Fig. 7. Performance summary of the proposed method and other methods in terms of (a) NMI, (b) RAND. 
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We show the performance summary of the proposed method

and other methods in terms of NMI and RND across 9 data sets

in Fig. 7 . We give detailed description of the data sets and perfor-

mance comparisons in the following sections. 

5.3. Simulation tests 

Our evaluation starts with the tests on synthetically generated

data sets. We use a simulated correlation matrix with four ev-

ident groups, which represents a graph of 12 nodes. The group

structure imposed into the correlation matrix is {1,2}, {3,4,5,6},

{7,8,9}, {10,11,12}. Within-group true correlation coefficients are 0.9,

0.7, 0.6, and 0.8. Nodes in groups 1 and 2 are positively corre-

lated by 0.2 and those in groups 3 and 4 are negatively corre-

lated by −0 . 4 . All other inter-group correlations are set to zero.

Each node represents a random variable and the edges of the graph

are Pearson sample correlation coefficients r i, j in the range from

−1 to 1. The distance between two points i and j is calculated as

‖ x i − x j ‖ = 1 / (r i, j + 1) . For calculating the similarity matrix W , a

general form of the Gaussian radial basis function in Eq. (5) was

used. More detailed information about the data can be found in

[15,29] . 

We evaluate each clustering method as an average over 10,0 0 0

replications. For each replication, we build a sample correlation

matrix from random realizations from the true correlation ma-

trix. Following Stone and Ayroles [29] , we extract nine observations

from the true correlation matrix using a multivariate normal dis-

tribution. In order to see the effects of the width parameter σ , we

vary σ from 0.1 to 0.15 and 0.3. 

We tested EGD by varying the diffusion depth parameter set

as T = {1}, {1,2}, {1,2,3,4}, and {1,2,3,4,5,6,7,8} from short-range

to long-range scales. Our benchmark methods include agglomer-

ative hierarchical clustering, spectral clustering, modularity clus-

tering, density-based clustering and KRF applied to the results of

Metis and GP. We informed benchmark methods other than Modu-

larity about the number of clusters with both the true value ( k = 4 )

and misleading values ( k = 3 , 5 ). Table 4 in Supplementary Mate-

rials shows the results of simulation experiments using the nine

clustering methods. Boldface values denote the highest number in

each column. EGD outperforms other methods for all values of σ .

The method demonstrates more accurate results for relatively low

values of σ = 0 . 1 , 0 . 15 and low values of the parameter δd , with

the highest NMI and Rand scores of 0.91 and 0.94, correspondingly

for both σ values. 

To verify the performance differences between the proposed

method and the other methods, we applied post statistical anal-

ysis using repeated measures ANOVA. The tests showed that the

proposed method outperformed the other methods in the simula-

tion experiments with 95% confidence levels. Please refer to Sup-

plementary Materials (Table 2) to see the p-values of the tests. 
.4. Co-PI network from the NIH research funding data 

To benchmark the performance of the proposed method in

he real-world context, we constructed a principal-investigator (PI)

etwork from the funding data of the National Institute of Health

NIH) of the United States. The NIH is a collective body of 27 insti-

utes and centers (ICs), disbursing $25-30B every year for biomed-

cal research. This accounts for a significant portion of the total

iomedical research funding of the U.S. and the NIH is the single

argest public entity in the picture. As a public agency, the NIH

eeps track of detailed funding information for each grant includ-

ng grant application abstract, activity type, amount of grant, list of

o-PIs, and institution of the head PI. 

For each grant, one or more researchers are in charge of car-

ying out the proposed research project. Among them, one per-

on is designated as head PI (or contact PI), who is meant to

e the primary corresponding agent for the project. Each project

ecord also contains the head PI’s associated institution (university,

esearch institute, or private company) and its address. Although

ost grants are executed by a single PI, a few projects are led by

ultiple PIs, in which case the project is run by a head PI and co-

Is. 

We focus on the projects having multiple co-PIs to construct

he collaboration network of researchers in biomedical research.

y counting the number of co-occurrences of PIs, we obtain the

eighted undirected graph of the co-PI network. 

In order to test the clustering algorithms, we need not only a

etwork but also true labels of the nodes. We prepared the true

abels based on the location of the affiliated institution of a PI. In

ssence, we infer whether PIs are co-located from the collaboration

etwork structure among the co-PIs. Reasoning behind this infer-

nce is that researchers in the same geographical region are more

ikely to collaborate on research project supported by NIH funding.

We first collected all grant data between 20 0 0 and 2012 from

IH’s data retrieval interface called ExPORTER. The NIH publishes

unding records not only for its 27 ICs but also for some other

elated agencies. Then, a small number of research grants are

warded to non-US institutions. Last, some large projects are bro-

en into subproject records occasionally. In such cases, we only

onsider the ultimate parent project record. Since our focus is on

he NIH’s U.S. funding records, we remove non-U.S. projects from

ur sample. After filtering out non-NIH, non-US grants, and sub-

roject records, we are left with 707,496 grants. 14,093 projects

mong them have more than one PI and the number of unique

Is is 11,999. As institution information is only available for the

ead PI, we removed PIs for which we cannot identify the institu-

ion, and 9769 PIs remain. The collaboration network is extremely

parse because of a myriad of isolated cliques of two or three PIs.

e extracted the connected components of size greater than or
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qual to 10 from the entire landscape. At last, we are left with

93 PIs from 217 institutions in 44 states. Assuming that inves-

igators affiliated with institutions that are geographically close to

ach other have a higher chance to collaborate as co-PIs, we use

he state as a true clustering label for each PI based on the loca-

ion of their institution. 

Table 5 in Supplementary Materials shows the performance

omparison with the NIH data set. The EGD clustering with δd = 0

nd T = { 1 } outperforms all other configurations and algorithms,

ncluding modularity clustering. We observe a high Rand measure

nd low NMI consistently across all methods. Low CC and high CS

cores explain why Rand measure is higher than NMI. This im-

lies that the co-PI network is highly fragmented and it has a fairly

ow chance that two PIs are associated with the institutions in the

ame state. When algorithms place nodes into the same cluster,

t is more likely to be wrong than when they separate out nodes

nto different clusters. Thus, under this sparse clustering structure,

e see that NMI is a more robust measure than the Rand mea-

ure, although these two measures were close to each other in the

imulation study in the previous section. Last, the hierarchical clus-

ering and FSFDP clustering scores are low in both Rand and NMI,

hich suggests that the methods clearly failed to correctly identify

he latent community structure. Spectral clustering, Metis, GP, and

RF produced better results, but still fell short of the results from

odularity clustering and the EGD clustering. 

.5. Social network data with ground truth membership records 

Social networks have gained a significant number of users over

he past decade. Various social network services operate in the

eb with a different focus, such as for friendship or professional

areer networks. This trend led to an explosion of availability of

ocial network data that could be used for academic research. In-

eed, various fields such as marketing and psychology have used

ata sets from real world social network services to address a spe-

ific research question. Clustering algorithm development is one

f the fields that can immediately benefit from using these so-

ial network data sets. One hurdle that prevents one from doing

uch research is that raw social network data usually does not pro-

ide ground truth membership of the nodes. In order to test clus-

ering algorithm performance, we need a true clustering that can

e compared against as a benchmark. The notion of ground truth

embership depends on how you frame the clustering task. For

nstance, suppose that we are interested in clustering people in a

rofessional career social network. Depending on our research in-

erest, community structure may be defined by age group or the

ndustry that they are working in. In this case, both age group and

ndustry code can serve as the ground truth membership label for

ach person in the network. 

This section is devoted to the analysis using ground truth net-

orks provided by Yang and Leskovec [30] , who constructed a

arge set of networks with explicit ground truth community struc-

ure from a number of different domains. We apply the EGD algo-

ithm to the Stanford Network Analysis Project (SNAP) data con-

isting of three data sets and compare its performance with the

enchmark methods in the same way as before. SNAP data used in

his section are in fact undirected graphs with binary edge weights

escribing three well known real world networks. 

The first data set is Amazon’s product co-purchasing network.

he data set is constructed based on the feature which lists corre-

ponding products (goods) under the tag “Customers Who Bought

his Item Also Bought” [30] . The ground truth community is con-

tructed in a way that all its members share a common pur-

ose. Amazon-defined product categories (e.g., electronics, beauty

 health, or clothing) serve as the ground-truth communities. The

econd data set is from DBLP, which is a widely known bibliog-
aphy repository archiving archiving publication records particu-

arly focusing on the field of computer science. Yang and Leskovec

30] extracted authors’ collaboration network from publication

ata. The authors are connected if they have a joint publication.

he publication venues serve as ground-truth communities for the

uthors. Last, the third data set comes from YouTube, an online

ideo sharing community. It acts as a social network where users

an form friendships, create own groups, and join other groups.

uch group membership provides ground-truth communities of the

sers. 

In the original data set, Yang and Leskovec [30] provided the

ist of the top 5,0 0 0 largest communities along with network data

i.e., nodes and edges). Since the size of the networks is too large,

e first need to reduce the data to check how the clustering al-

orithms work with smaller data sets. We preprocessed the data

n a way that we randomly select top 10 mutually exclusive com-

unities. This guarantees that each node belongs to only a single

ommunity, which clears the ambiguity concern of multiple mem-

ership. Second, in order to lift the computational burden, we re-

ect a sample containing more than 300 nodes. Last, we randomly

hoose 100 samples to construct the final set of samples. The net-

ork and community statistics averaged over 100 samples are as

ollows. The average number of nodes and edges in three data sets

Amazon, DBLP, YouTube) are (132, 107, 103) and (387, 314, 171), re-

pectively. All data sets have similar number of nodes, but samples

rom YouTube are much more sparse networks, as they have about

alf the number of edges compared to the other two data sets. The

verage clustering coefficients are (0.69, 0.88, 0.30); DBLP exhibits

he highest level of clustering coefficients. In sum, these three sets

f samples have different network-level characteristics, which al-

ows us to examine the sensitivity of algorithm performance by

omparing the algorithms in these three different settings. 

Table 6 in Supplementary Materials shows the performance

omparison among the nine clustering algorithms with various

onfigurations. In these results, the EGD method predominantly

utperformed all other benchmark algorithms. δd = 0 and 0.001

roduce the best outcome and a larger set of t led to a better

utcome than the smaller set, such as T = { 1 } . The overall accu-

acy scores measured in NMI are in the descending order of DBLP

95.74%), Amazon (94.05%), and YouTube (88.81%), which suggests

hat higher average clustering coefficient is associated with more

ccurate clustering outcomes. The statistical testing for the three

ata sets showed that the proposed method outperformed the

ther methods in the SNAP experiments with 95% confidence lev-

ls except for comparisons with spectral clustering. Notice that for

BLP and YouTube we informed spectral clustering of the correct

umber of clusters. To see the p-values of the tests, refer to Sup-

lementary Materials (Table 3). 

.6. Amazon co-purchasing relationships 

Since our proposed method and the dependence clustering

orks on the adjacency matrix of the network, it is not limited

o undirected graphs. Rather, we surmise that our method may

ork better on directed graphs compared to other favored choices

f clustering methods. We construct a set of directed graph sam-

les from Amazon’s co-purchasing relationship between products.

f product i is purchased together with product j frequently, we de-

ote the relationship as a directed edge from i to j . Note that this

elationship is not necessarily reflexive because the absolute level

f demand for the two products may starkly differ. This data set

s also compiled by SNAP [31] . SNAP collected the co-purchasing

etwork data at multiple points in time. The version we used to

onstruct our samples was collected by SNAP on June 1, 2003.

he original population data set consists of 403,394 nodes and

,387,388 directed edges. 
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Table 1 

Description of the data sets. 

Data set # classes # samples # features Distance/Similarity 

Lung cancer 4 197 10 0 0 Euclidean/ 

Gaussian ( σ = 0 . 1) 

St. Jude 6 248 985 Standardized Euclidean/ 

leukemia | D − max (D) | ∗
∗ D refers to distance matrix 
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Product co-purchasing networks can serve our purpose of test-

ing the clustering algorithms only if we also have true labels of

all nodes. SNAP also provides the metadata for each node such as

the product name, product group, and optional subcategories that

the product belongs to. SNAP collected the metadata in summer

2006, approximately three years after the co-purchasing network

was collected. However, we argue that this gap in data collection

time does not affect our samples and results in a significant way

because product group and subcategories do not change frequently

over time. Most of the nodes fall into one of four product groups:

books, music CDs, videos, and DVDs. We decide to select one prod-

uct group and choose books only for our final samples for three

reasons. First, we narrow down to a single product group because

we suspect co-purchasing links exist extremely sparsely across dif-

ferent product groups. Second, books are highly standardized prod-

ucts and have a well-defined classification scheme based on the

topical subject. Third, books represent more than 70% of the orig-

inal SNAP data set, thus, choosing books does not undermine the

representativeness of our samples. In order to uniquely assign each

book to a single true label, we pick the most frequent subject cat-

egory for a book when the book is tagged with multiple subject

areas. 

With these settings in place, it is impractical for us to run vari-

ous clustering algorithms on the full data set. We thus create sam-

ples from the full data set with which we test and compare the

performance of different clustering algorithms within a reasonable

amount of time. The detailed sampling steps are as follows. First,

we choose a random book and the randomly chosen book then be-

comes the only member of the seed set. Second, for each book

in the seed set, we look up books frequently co-purchased with

the focal book. Third, we add the co-purchased books to the seed

set. Fourth, we repeat Step 2 and 3 until the size of the seed set

reaches the previously defined threshold. We set the threshold at

100 for our sampling process, so all of our sampled networks have

at least 100 nodes. Last, we extract all directed edges between the

nodes in the final seed set. In essence, this sampling process gener-

ates multiple layers of egonetworks superposed to each other. The

adjacency matrix resulting from the sampling process is binary and

asymmetric. We create 10 sample networks and labels using this

sampling process. The performance metrics are averaged across the

10 samples when reported in the results section. 

Each sampled network, on average, contains 165.3 nodes and

774.8 edges, which results in an average network density of

0.03132. 34% of the directed edges are reciprocal, which means

that the two nodes have a bidirectional relationship in such cases.

The frequently co-purchased relationship is not reflexive by itself,

but a significant portion of the relationship in our samples is in-

deed bidirectional, largely because of our sampling process relying

on egonetworks. Still, more than 60% of the relationships are unidi-

rectional. The average number of subject categories for each sam-

pled network is 22.3. One may suspect that most of the nodes in

a sampled network belong to a single category also because of our

reliance on egonetworks for sampling. However, category member-

ship turns out to be quite evenly distributed. The most frequent

category accounts for only 16% of the nodes in a network and the

average Herfindahl-Hirschman Index, representing the concentra-

tion of proportions, is 0.0873, which is not particularly high. 

Table 7 in Supplementary Materials shows the performance

comparison between the proposed EGD and modularity clustering

methods. After the previous tests we decided to narrow down the

comparison analysis to these two methods, as they show the most

stable results and both methods do not require a parameter spec-

ifying the number of clusters. EGD with low values of t and δd 

outperforms modularity clustering in terms of NMI. Moreover, our

method is able to inherently handle the directed relationship by

a transition matrix, whereas the modularity approach forces the
irected relationship to be symmetric. Thus, compared to modu-

arity clustering, our approach can better handle problems where

ata sets with inherent directed nature are involved. 

.7. Gene-expression data 

In this section we consider two high-dimensional data sets as

egards to gene-expression profiles. One is the lung cancer data

et [32] including four known classes of speciments: 139 ade-

ocarcinomas (AD), 21 squamous cell carcinomas (SQ), 20 pul-

onary carcinoids (COID), and 17 normal lung (NL). The other is

t. Jude leukemia data set [33] that contains samples from pedi-

tric acute lymphoblastic leukemia patients. The data set includes

ix leukemia subtypes: 43 T-lineage (T-ALL), 27 E2A-PBX1, 15 BCR-

BL, 79 TEL-AML1, 20 MLL rearrangements, and 64 hyperdiploid

aryotype (i.e., > 50 chromosomes). More detailed description of

he data sets can be found in Table 1 . 

For both data sets similarity matrices are obtained from the

istance matrices using the measures described in Table 1 . For

he lung cancer data set the test results show that EGD outper-

orms other approaches demonstrating the highest NMI and Rand

easure scores, as shown in Table 8 (Supplementary Materials).

ote that though Modularity clustering method performs better in

erms of NMI, it assigns every point to a separate cluster, which

s hardly practical. Moreover, hierarchical clustering that provides

he highest Rand measure score allocates nearly all the points to a

ingle cluster with an exception of only a few samples. The same

appens to FSFDP and KRF. Spectral clustering neither succeeds. 

For the St. Jude leukemia data set EGD performs best with the

ighest NMI value of 0.88, as shown in Table 9 (Supplementary

aterials). The highest Rand measure score of 0.96 is provided by

pectral clustering. However, compared to spectral clustering the

oss of EGD in Rand measure is not significant. Hierarchical and

RF approaches fail by assigning the majority of the points to a

ingle cluster which is verified by significantly low values of CS

nd high values of CC. 

.8. Running times 

Finally, the running time for the methods and the data sets

sed in this work are displayed in Fig. 8 . The experiments were

onducted on a system with the following characteristics: 64-bit

indows 10 operating system, Intel(R) Core(TM) i5-3317U CPU

.70 GHz, 8GB RAM, and MATLAB (R2014b). MATLAB implementa-

ions of the KRF approach, Metis, and GP used in the experiments

re available at [34,35] . For the methods which require the num-

er of clusters as a parameter, only iterations when the true pa-

ameter values are provided were considered during the running-

ime evaluation. Fig. 8 (a) displays running times on the logarithmic

cale grouped by the data sets and averaged over the data sets,

orrespondingly. Fig. 8 (b) shows running times in seconds for each

ethod averaged over the data sets. The proposed EGD demon-

trated good performance and proved to be the most efficient for

he majority of the data sets among the ensemble methods used

or comparison in this work. In addition, we show running times

ccording to the length of input data in Fig. 9 . The data set consists
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Fig. 8. Running times of the methods (a) grouped by the data sets (logarithmic scale), (b) averaged over the data sets. 

Fig. 9. Running times of the methods against data input length (logarithmic scale). 
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f randomly generated points in two dimensional space where ev-

ry point belongs to one of three clusters ( n points in a cluster),

imilarly to the example from Fig. 1 (a). In the tests, n varies in

he interval from 50 to 60 0 0. The experiments were conducted

n a system with the following characteristics: 1TB of RAM, 64

PU cores (8 cores Intel(R) Xeon(R) E7-8837 2.67 GHz per CPU),

nd MATLAB (R2017a). The proposed EGD showed consistent per-

ormance among the tested methods. One can see that EGD is

omparable to Modularity, outperforming it for large input lengths

 n > 20 0 0) and KRF+GP for all the values of T . 

. Discussions and conclusion 

Cluster ensemble algorithms recently became popular in the

eld of data analysis because of the growing capabilities of com-

uting technologies. With careful selection of consensus procedure,

hey prove to be more accurate compared to individual cluster-

ng results. Ensemble strategies benefit from combining individual

uns of a component algorithm diversified in a randomized or sys-

ematic fashion. Randomized diversity is usually achieved by ma-

ipulating data (e.g., bagging and nonparametric bootstrapping),

hereas systematic diversity is the result of varying parameters

e.g., parametric bootstrapping). In this paper, we employ the latter

pproach. 

Our method, EGD, proposed in this paper is an ensemble ap-

roach that maximizes the group diffusion measure. Ensemble di-

ersity is achieved by varying the diffusion depth parameter t . This

ay, the combined effect of both bias and variance error compo-

ents reduction is expected. Cluster size can be bounded below by

roper settings of the dependence gain parameter δ ranging in
d 
he interval [0, 1]. We suggest using small values of δd for the data

ets with sparse clustering structure. On the other hand, for the

ata sets with dense structure and expected unclear boundaries,

e recommend using higher values of δd . We must note that the

luster size can be bounded below by setting a hard threshold on

he minimal number of points in the cluster. This provides direct

ntuition to setting the threshold according to the expected size of

he smallest cluster. The solution with a dependence gain param-

ter is more flexible and acts as a form of soft threshold. The in-

uition for setting the dependence gain parameter is, however, less

traightforward. 

For evaluating the algorithm, we use both simulated and real-

orld data sets. In the simulated data set, EGD outperforms mod-

larity clustering with respect to Rand and NMI measures. When

mall values of the width parameter σ are used, better perfor-

ance is achieved for larger sets of t values. Similarly, structures of

he SNAP and gene-expression data sets are best revealed by EGD

ith a larger set of t values. This is likely due to the non-uniform

ensity of the underlying data, which requires consideration at dif-

erent scales. On the other hand, for the NIH data set with sparse

lustering structure, EGD outperforms all other methods including

odularity clustering for small t values. This implies that this data

et has a fine-grained structure which is better discovered by small

iffusion depths. In general, this zooming mechanism is ensured by

he parameter t in particular. The method is able to determine lo-

al clusters with smaller values of t , whereas higher t values allow

or determining the global structure. The combination of its values

llows for defining clusters more accurately. 

Therefore, we conclude that EGD is suitable for solving struc-

ure discovery problems for data sets covering a wide spectrum of

nderlying structural and density properties thanks to flexibility in

he tuning of the parameters. Diffusion depth and dependence gain

arameters serve the purpose of selectively addressing data analy-

is at different scales, whereas the ensemble binding provides inte-

ration over the scales. The benefit of the proposed method, how-

ver, presents the questions of how one should set the parameters

nd of what are the theoretical interpretations, and of how one

an optimally set the gain parameter depending on cluster depths,

hich will be a future research direction. 

Despite accurate results shown in our tests, the proposed EGD

lgorithm can be improved further by a number of advances. In

articular, we will give more detailed attention to the regulariza-

ion of the algorithm’s optimization criterion and the ability to

fficiently handle large-sized data in the next phase of our re-

earch. Additionally, it is highly demanded to extend the method

y adding the ability to determine overlapped clusters, where
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each instance may belong to multiple clusters simultaneously. This

problem is particularly important in the field of community detec-

tion in social networks, where multiple membership is a natural

attribute. 
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