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Reproducing a failure is the first and most important step in debugging because it enables us to understand the failure and
track down its source. However, many programs are susceptible to nondeterministic failures that are hard to reproduce, which
makes debugging extremely difficult. We first address the reproducibility problem by proposing an OS-level replay system for a
uniprocessor environment that can capture and replay nondeterministic events needed to reproduce a failure in Linux interactive
and event-based programs. We then present an analysis method, called replay analysis, based on the proposed record and replay
system to diagnose concurrency bugs in such programs.The replay analysis method uses a combination of static analysis, dynamic
tracing during replay, and delta debugging to identify failure-inducingmemory access patterns that lead to concurrency failure.The
experimental results show that the presented record and replay system has low-recording overhead and hence can be safely used in
production systems to catch rarely occurring bugs. We also present few concurrency bug case studies from real-world applications
to prove the effectiveness of the proposed bug diagnosis framework.

1. Introduction

Debugging is the hardest part of software development.
Traditionally, the process of debugging begins by reproducing
a failure, then locating its root cause, and finally fixing it.
The ability to reproduce a failure is indispensable, as, in most
cases, it is the only way to provide clues to developers in
tracking down the sources of failure. However, in the case
of some nondeterministic failures such as concurrency bugs,
it is not always possible to reproduce the failure provided
a given set of inputs and environmental configurations.
Without the ability to reproduce, debugging becomes an
inefficient and time-consuming process of trial and error.
Consequently, some software practitioners report that it takes
them weeks to diagnose such hard-to-reproduce failures [1].

To deal with nondeterministic failures, record and replay
tools have been demonstrated to be a promising approach.
Such tools record the interactions between a target program

and its environment and later replay those interactions
deterministically to reproduce a failing scenario. A number of
record and replay systems have been proposed in recent years,
but many of them incur high overheads [2–4], others lack
supporting low-level events [5, 6], while others may require
special hardware support [7, 8].

In this work, we first show that a computer program’s
nondeterministic behavior can be fully identified, captured,
and reproduced with instruction-accurate fidelity at the
operating system level by using existing hardware support in
modern processors. From this vantage point, a developer can
replay a nondeterministic failure of a program and effectively
diagnose it using traditional cyclic debugging methods.

We then present an analysismethod, called replay analysis
that allows us to effectively locate the source of failures.
Although many bugs can be diagnosed with the help of
debuggers during replay, finding the root cause of certain elu-
sive bugs such as concurrency bugs still remains a challenging
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task for developers. To help developers locate the root cause of
such failures, we present a framework based on the proposed
record and replay.The contributions of this paper are twofold:

(1) It presents an idea of OS-based record and replay
system capable of intercepting the nondeterminis-
tic events occurring in interactive and event-driven
programs. To substantiate this idea, we implemented
it in an ARMv7 uniprocessor-based Linux system.
The system incurs low overhead during recording.
Therefore, it can be used in an always-on mode
in testing phases or production systems to catch
nondeterministic and rarely occurring bugs.

(2) It describes a replay analysis method for diagnosing
concurrency bug failures based on the proposed
record and replay system. The method specifically
targets single-variable data races and atomicity viola-
tions. The method uses a combination of static anal-
ysis, dynamic tracing during replay, and delta debug-
ging to identify failure-inducing memory access pat-
terns that lead to a concurrency bug.

The remainder of this paper is organized as follows.
In Section 2, we describe the record and replay system
and its implementation details for the ARMv7-based Linux
system. We present its evaluation results in the same section.
In Section 3, we present the concurrency bug diagnosis
framework based on the proposed record and replay system
and show its effectiveness by presenting a few debug case
studies. We present some related work in Section 4 and
discuss the implications and limitations of our current work
in Section 5. We finally conclude with Section 6.

2. OS-Level Record and Replay System

2.1. Overview. A program is considered to be deterministic
if, when it starts from the same initial state and executes
the same set of instructions, it then reaches the same final
state every time. In modern computer systems, however,
even sequential programs can show unpredictable behavior
because of their interaction with the environment, such as
I/O, file systems, other processes, and with humans through
UIs. Moreover, the occurrence of interrupts and signals can
result in varying control flow during successive runs of the
same program.

For debugging, these subsequent runs of a failing pro-
gram can be made deterministic by recording the nonde-
terministic factors in the original run and substituting their
results during replay. For a user-level program, such factors
generally include external inputs, system call return values,
scheduling, and signals.There are indeed some other sources
of nondeterminism that exist at the microarchitecture level,
for example, cache or bus states, blocking of I/O operations,
and memory access latencies. Such nondeterminism causes
a timing variation which may affect when external data is
delivered to a user program or when an asynchronous event-
handler is invoked. To handle this type of nondeterminism,
we use a logical notion of time by keeping track of the number
of instructions executed by a process between two nonde-
terministic events. The logical time helps in maintaining the

relative order of the nondeterministic events during replay
and guarantees the replication of the functional behavior
of the program. For a debugging usage model where the
goal is to find errors in a user program, it is sufficient to
reproduce the functional behavior of the program rather than
its temporal behavior. Therefore, nondeterministic factors
existing at the architecture or circuit level which may cause
timing variations are out of scope of this work.

The nondeterministic events exposed to a user program
can be captured at different abstraction levels, that is, library-
level, OS-level, and hardware-level. In general, the higher the
abstraction level is, the smaller the performance overhead is,
but with less accuracy. In the current work, we implemented
the record and replay framework at the OS-level because
we believe that the operating system is the perfect place
to intercept nondeterministic events with instruction-level
accuracy before they are projected to a user-space program.
Moreover,manymodern computer architectures such as Intel
x86, PowerPC, and ARM include rich hardware resources
such as performance monitors, breakpoints, and watchpoints
that can be exploited at the OS-level to support deterministic
replay. Implementation at the OS-level also has the advantage
that it does not require any modifications to the target
program or the underlying architecture.

Figure 1 illustrates an overall idea of OS-level record and
replay system. Using this system, a target program can be
run in either a record or a replay mode. During the testing
or production run, the program is executed in record mode
wherein the system captures its nondeterministic events.
Each event is stored in an event log created for the target
program inside the kernelmemory.As the programcontinues
execution, events keep on adding to this log and are moved
periodically to a log file in permanent storage.

When a program is set to run in replay mode, the
prerecorded events from its log file are moved to the pro-
gram’s event log. Whenever the program tries to execute a
nondeterministic event, for example, a system call, its results
are extracted from the event log and sent to the target
process. Thus, all the events are executed deterministically,
and the program considers that those events are happening
as they actually did during recording in view of both the
data transferred and the timing of events. To perform cyclic
debugging, it is possible to attach a standard debugger to
the process being replayed, for example, GDB. The debugger
can control the execution of the program normally through
single step, continue, or breakpoint commands and present
the results to the user as if they are generated live.

The record and replay system is implemented at the
system call and signal interface in the operating system since
together these interfaces represent most of the nondetermin-
istic events found in sequential and event-based programs.
These events include data from external devices and the
file system, input from timers, interprocess communication,
asynchronous event-notification, and interrupts. Therefore,
the proposed record and replay system is suitable for debug-
ging a large class of interactive programs including those
that generally come with a Linux distribution and other high
throughput programs such as Lynx [9], Lighttpd [10], and
Nginx [11].
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Figure 1: Record and replay system at OS-level.

In the following subsections, we discuss how we imple-
mented the proposed record and replay framework for a
Linux-based ARMv7 system. The entire record and replay
system is transparent from the target program and is imple-
mented in software by using support from the ARM’s debug
and performance management unit (PMU) architecture.
Although the implementation details given here are specific
to one architecture, the presence of hardware debug registers
and performance monitoring counters in other architectures
along with the existing support in commodity operating
systems to use these resources makes our approach more
generic.

2.2. SystemCalls. System calls in an operating systemprovide
an interface for a user-level process to interact with its
external environment by sending requests to the kernel.
In a typical UNIX system, there are around 300 system
calls. However, the effect of all the system calls may not
be nondeterministic with respect to a process. We broadly
categorize the system calls as follows:

(i) I/O control: read(), write(), socket(), sendmsg(), and
so on.

(ii) Interprocess communication (IPC): pipe(), mq open(),
mq unlink(), and so on.

(iii) Time related: gettimeofday(), gettimer(), utimes(),
and so on.

(iv) Process control: fork(), exec(), wait(), and so on.
(v) Memorymanagement:mmap(),munmap(),mremap(),

and so on.

The I/O system calls allow a process to interact with
hardware devices, networks, and file systems whereas IPC
system calls are used to interact with other processes. The
results of these system calls cannot be predicted by the user

application, so we consider these as nondeterministic system
calls. Time-related system calls always return values local to a
processor on which they are executed and are different every
time.

The process control system calls manage a process status.
Such calls only change or get the value of a process control
block, so the associated events can be considered determin-
istic. The memory control system calls are used to handle
memory allocation, heap management functions, and so on.
Even if these system calls are recorded, we must re-execute
them during replay to generate their side effects within the
operating system kernel. Otherwise, if, for example, memory
is not actually allocated during the replay phase, the kernel
will throw an exception when the program tries to access the
memory region it has supposedly allocated.

Recording of system calls belonging to the latter two
categories is therefore redundant, and in the current work,
we do not record them. By eliminating these system calls,
we significantly reduce the recording overhead, making the
entire record and replay system more efficient.

When a user program invokes a system call, the processor
switches from user mode to kernel mode and begins execut-
ing the system call handler. If the program is in the recording
mode, the system call execution is allowed normally, but
before returning to user mode, we log the return value of the
system call. In the ARM architecture, this value is returned
in 𝑟

0
register. Some system calls also return nondeterministic

data by updating special data structures in the kernel-space.
For example, a read system call returns the data that has
been read from a file descriptor on behalf of the user process
making the system call. Such data is sent from kernel to user-
space through copy to user or put user functions.We log the
data returned by system calls in these functions and add it to
the corresponding system call log in the process’s event log.

During the replay mode, when the program tries to
execute a nondeterministic system call, its handler is replaced
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by a default function. This function reads the return value
of the current system call from the recorded event log and
sends it to the process. Any data associated with the system
call which was saved during the recording is also returned
to the program. Thus, we simulate the effect of a system call
completely, rather than executing it during replay.

2.3. Signals. Signals are a type of software interrupt present
in all modern UNIX variants. They are used for many non-
trivial purposes, for example, interprocess communication,
asynchronous I/O, and error-handling. Signals are sent to
a process asynchronously and proactively by the kernel.
Therefore, signal handling is a challenging task for any
record and replay system. Many existing record and replay
frameworks do not support signal replay. Somemethods exist
to support signal replay [12, 13], but they change a signal’s
semantics during the record phase by deferring its delivery
until a certain synchronized point in the process execution,
for example, invocation of a system call. Some applications
are very sensitive to the occurrence of asynchronous events,
and changing the semantics of signals can distort their
behavior entirely; it is, therefore, important to guarantee the
exact record and replay of signals.

Before describing our process of signal record and replay,
we briefly discuss how signals are handled in Linux. When
a signal is sent to a process, the process switches to kernel
mode. If it is already in the kernel mode, then after carrying
out the necessary tasks and before returning to the user
mode, the kernel checks if there are any pending signals to
be delivered to the process. If a pending signal is found, it is
handled in the do signal() routine, where the corresponding
signal handler’s address is placed into the program counter
(PC), and the user mode stack is set up. When the process
switches back to user mode, it executes the signal handler
immediately.

During the recording mode, whenever a signal is deliv-
ered to a process being recorded, we log the signal number
and the user process register context in the do signal() rou-
tine before it modifies the current PC. The exact instruction
in the process’s address space “where” the signal arrived is
indicated by the PC logged in the register context. How-
ever, recording only the instruction address is not sufficient
because the same instructionmay be executedmultiple times
during the entire program execution, for example, in a loop.
We also need to log the exact number of instructions executed
by the process to identify “when” the signal arrived. To count
the number of instructions, we utilize ARM’s performance
monitor unit (PMU) architecture. The Cortex-A15 processor
PMU provides six counters. Each counter can be configured
to count the available performance events in the processor.
We programmed one of the counters to count the number
of instructions architecturally executed by a user process.
During the recording phase when a nondeterministic event
occurs, the current instruction count is also stored in that
event’s log. The instruction count is then reset, and it
starts counting again until the process encounters another
nondeterministic event to be logged. Thus, two sequentially
occurring nondeterministic events, for example, a system
call and a signal, are separated by the exact number of

instructions executed between the two events by the process
being recorded.

To replay the signals we make use of ARM’s hardware
breakpoint mechanism. During the replay phase, after pro-
cessing an event, we always check what an upcoming event is
in the process’s recorded log. If the next event in the log is a
signal, then a breakpoint is set at the instruction address of
the user program recorded in the signal log. The instruction
counter is reset to begin counting the instructions from the
last replayed event. When the replayed program reaches the
instruction where the breakpoint is set, a prefetch abort
exception occurs, and the process switches to kernel mode.
In the exception handler, we compare the current number of
instructions executed to the instructions stored in the signal
log. If they match, the signal is immediately delivered to the
user process. If they are not, the breakpoint is maintained at
the current PC using the ARM’s breakpoint address match
and mismatch events, and the process execution is allowed
until both PC and instruction count match those of the
recorded values in the signal log. In this way, the signal
delivery to the target programwith instruction-level accuracy
is guaranteed during the replay phase. The replay process for
a signal is illustrated in Figure 2.

2.4. Evaluation. To capture nondeterministic bug, recording
is often required to be done in production systems.Therefore,
it is very important that recording overhead be low enough
and minimally intrusive to avoid any adverse effect on a
production application’s normal execution. We evaluated
the performance of our record and replay system regarding
recording overhead for various real applications. The exper-
iments were performed on a Samsung Exynos Arndale 5250
board based on Cortex-A15 processor, with record and replay
mechanism implemented in Linaro 13.09 server with a Linux
3.12.0-rc5 kernel.

We recorded and replayed some Linux applications,
which are listed with their workload conditions in Table 1.
These programs were run in their default configuration. For
each of these applications, tests were repeated three times.We
report here the average of the three results.

The performance overhead of recording the application
workloads is shown in Figure 3. For each workload, we mea-
sured the performance as CPU time in seconds except for the
netperf tests where it is measured as throughput in Mb/sec
for the TCP stream test and completed transactions/sec for
the request/response test.

The results are displayed normalized to native execution
without recording. The overhead of recording was under 5%
for all the experiments, except the TCP request/response
test, which caused 15% overhead. The recording overhead
is directly related to the size of the logs. The events gen-
erated during recording must be moved from the kernel
memory to permanent storage, causing extra overhead. Dur-
ing the request/response test, a large number of requests
are generated. Each request/response has the potential to
generate enormous quantities of network data that must be
logged, resulting in a relatively larger log size as compared
to other tests and therefore causing more slowdown. The
slowdown can be improved by compressing the logs or by
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Figure 2: Signal replay process.

Table 1: Test application scenarios.

Program Description Workload
lame A high-quality MPEG Audio Layer III (MP3) encoder Encode a 3.5-minute (7751 frames) .wav file

GNU bc An arbitrary precision numeric processing language
calculator

Load the math library and process an input file containing
mathematical operations

vim Vim 7.3 text editor Open an existing text file in vim, and append an
eight-character string 10,000 times

bzip2 A high-quality data compression/decompression utility Decompress Linux-3.0.1.tar.bz2 of size 73.1MB
netperf-
TCP STREAM Networking performance measuring benchmark TCP STREAM test between the local host and a remote

host for 60 secs with default window size

netperf-TCP RR Networking performance measuring benchmark TCP request/response test between the local host and a
remote host for 10 secs

better scheduling of write operations to permanent memory.
However, discussion of these optimization methods is out of
the scope of current research.

3. Replay Analysis for Diagnosing
Concurrency Bugs

Concurrency bugs are generally associated with multi-
threaded programs. However, researchers have shown that
they also exist in sequential [14], interrupt-driven [15], and
event-based programs [16].The execution of signal-handlers,
interrupt-handlers, and other asynchronously invoked event-
handlers interrupts the control flow of these programs
and so introduces fine-grained concurrency. Data among
event-handlers and the main code is shared through global
variables. (In the rest of this paper, we shall use the term
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event-handler for the signal handler, interrupt handler, and
other callback functions that are asynchronously invoked in
response to some events.) Such datamay have an inconsistent
state because it can be changed by both the main code and
event-handler in a nondeterministic manner and can cause
a program to fail unexpectedly. Our approach to diagnosing
such failures is based on the record and replay system
presented in Section 2, so the debug process can be started
as soon as a buggy execution has been captured and its event
log saved. Since the recording overhead is small enough to
avoid any probe effect, it can be assumed that the recorded
execution is identical to the original execution andwill follow
the same memory access order during replay. Therefore, we
can dynamically track the program execution during replay
to find out any memory access violations that have occurred
during recording.

The proposed replay analysis works in three phases: static
analysis, dynamic tracing, and delta analysis, as shown in
Figure 4. In the first phase, we take as input a failure report,
the program’s source code, and the binary executable. Using
these inputs, we identify the location in the program where
the failure occurs. We then perform a static analysis of the
programbinary to extract the addresses of the global variables
that are accessed within the identified scope. In the second
phase, dynamic tracing phase, we replay the failing execution
deterministically and insert hardware watchpoints on the
addresses obtained from static analysis phase to log memory
access to these locations. The same work is performed for
a prerecorded successful execution of the same program. In
the final phase, the delta analysis phase, we compare the
memory access logs for each variable obtained from the
failing execution to those in a successful execution in order
to isolate the failure-inducing memory pattern.

3.1. Static Analysis. Many concurrency bug detection meth-
ods are proposed for shared memory parallel programs.
These methods tend to trace memory access to all the
shared memory locations in a program to detect possible
concurrency bugs. Unlike concurrency bug detection, our
proposed system aims to diagnose a concurrency bug that
has caused a given program execution to fail. There may
be a number of shared memory accesses in the program

which are not related to a given failure. Therefore, it is
redundant to track all the shared memory locations in a
program while debugging. Hence, our first goal is to reduce
the scope of shared memory access that might be involved
in inducing a given failure. To do this, we make use of an
important characteristic of bugs, observed by researchers [17–
19], that concurrency bugs just like sequential bugs manifest
themselves as common software failures, such as an incorrect
output, an assertion violation, file corruption, and memory
segmentation fault. Therefore, similar to sequential bugs,
it is possible for developers to relate the concurrency bug
failure to a specific section in the program source code,
for example, a function. In the case of errors like incorrect
output, assertion failure, or display of specific error messages
(inserted by the developers or library), it is straightforward
for the developers to locate the function in which the failure
has appeared. However, in the case of other failures, such as a
memory error, we make use of core dump. The core dump
is typically generated as a by-product of a failed program
execution. We load it in a debugger, for example, GDB, to
obtain a call stack which helps us to identify the function in
which a memory failure has been encountered.

Keeping in view the short propagation distance heuristic
of a bug, we believe that the shared global variable involved in
the concurrency bug must be accessed within that function.
Therefore, we limit our scope of tracing memory access to
only those global variables accessed in the identified function.
We use the debugging symbols embedded into the program’s
binary to disassemble the target function. We extract the
addresses of all global memory locations accessed within that
function, eliminating all thememory access operations to the
function’s stack and also those referring to the read-only data
section, as this access is not involved in concurrency bugs.

The output of the static analysis phase is a set of global
variables that are accessed within the failure scope, and at
least one of these is involved in the concurrency bug that we
validate through dynamic tracing during replay.

3.2. Dynamic Tracing. To trace the access to shared memory
locations, existing analysis methods typically rely on the use
of heavyweight dynamic binary instrumentation tools such
as Valgrind [20], DynamoRIO [21], and PIN [22]. Such tools
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(4) StartReplay(ex, log)
(5) while (replay)
(6) if wp ∈ {wp
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4
} is hit

(7) addr← ReadAddress(wp)
(8) {op, val,PC} ← LogMemoryAccess(addr)
(9) end if
(10) end while
(11) end while

Algorithm 1: Dynamic tracing.

work by instrumenting every memory access instruction in
the program binary at runtime. Since the instrumented code
is executed at every memory access, it results in substantial
slowdown [23]. Although the overhead during the replay
should not be a big problem, the memory consumption by
the instrumentation framework is not feasible for debug-
ging programs on embedded platforms that have limited
resources. The availability of the instrumentation tool for
various platforms is also an issue.

Most importantly, since we aim to trace memory access
for a limited subset of global variables obtained during
the static analysis phase, we want to avoid the inherent
expense of instrumenting memory access to every shared
memory location as it is redundant to the bug diagnosis
process. In the current work, rather than using dynamic
binary instrumentation, we employ an alternate approach in
which we use the processor’s hardware watchpoint registers
to monitor the access to the desired memory addresses.
The watchpoint registers are used to stop a target program
automatically and temporarily upon read/write operations to
a specified memory address. These registers are often used
in debuggers as data breakpoints. The main benefit of using
hardware watchpoint registers is that they can be used to
monitor the access to amemory locationwithout any runtime
overhead [24]. However, there are a restricted number of
watchpoint registers available in a processor. In the ARM
Cortex-A15 processor used in this research work, there are
four hardware watchpoints available, which implies that we
can track only four memory locations during replay analysis.
In order to make use of the available number of watchpoint
registers, we use a cyclic approach. We replay the recorded
failed execution of the target program in a cyclic manner,
and during each iteration, we trace the memory access of
four global variables out of the entire list obtained from the
static analysis phase. The replay process is repeated for four
new variables until all the desired variables have been traced.
Typically, there are hundreds of shared memory locations in
a medium-sized program. By limiting the scope of the global
variables to the failure site, a function, this number is typically
reduced to a few tens. Hence, the overhead of repeating the
replay cycle is comparable to the instrumentation slowdown,

which can be as much as 20x for basic-block instrumentation
without optimization [22].

To trace a given memory address, we program a watch-
point value (DBGWVR) and control (DBGWCR) register
pair using Linux ptrace ability to read from/write to pro-
cessor’s registers. The DBGWVR holds the data address
value used for watchpoint matching. The load/store access
control field in DBGWCR enables the watchpoint matching
conditional on the type of access being made [25]. Since
we need to track every load and store operation to a given
global variable, we set the watchpoint to be enabled for
both types of access. When a watchpoint is hit, we log
the memory access operation (read/write) on the variable
performed by the current instruction, the updated value of
the memory address, and the current program counter. The
program counter is mapped to the statement that accesses the
memory location using the symbolic debug information.This
information is necessary to find out if the current memory
access is performed by an event-handler or the main code.

The entire process of dynamic tracing is automatic and
can be described by Algorithm 1.

3.3. Delta Analysis. When a failure is encountered in a pro-
duction run or during testing, the first step usually performed
by the developers is to determine whether the root cause is
simple re-execution. If the failure in the initial run is caused
by a concurrency bug, then it is most likely to disappear when
the test case is repeated. Thus, in the case of a concurrency
bug, the developers have at least one passing execution of the
same program with the same set of inputs.

In the domain of sequential errors, delta analysis is often
used to compare the execution paths and variable values in
two executions of a program to isolate faulty code regions and
incorrect variable values. In the case of a concurrency bug,
the failure is caused by conflicting memory access.Therefore,
we can reach the root cause of the failure by comparing the
memory access patterns of the global variables in failing and
successful executions.

Two types of concurrency bugs are common in Linux
programs considered in this research work: data races and
atomicity violations. A data race occurs when a global
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variable is accessed by an event-handler and the main code
in an unsynchronized way, and at least one of those access
operations is a memory write operation. An atomicity viola-
tion is said to occur when the desired serializability among
consecutive accesses of a shared memory location in the
main code is violated by access to the same memory location
in an asynchronously invoked event-handler. These bugs
can be detected through special combinations of memory
access operations that signify a data race or an atomicity
violation. Specifically, we consider the standard data race
patterns, that is, RW, WR, WW, and atomicity violation
patterns, that is, RWR, RWW, WWR, and WRW found
in multithreaded programs as conflicting memory access
patterns for other types of programs that use event-handlers.
Many such patterns may appear during the entire execution
of a program and are not harmful to it; for example, it
has been shown that only about 10% of real data races can
result in software failures [26]. Reporting such data races
usually just raises false alarms. Therefore, to identify the root
cause of a given failure, we search the patterns mentioned
above in the memory access logs of the failing run and
match them to similar patterns in the successful run. Any
conflicting memory access pattern that is present exclusively
in the failing execution log is, therefore, the cause of a given
failure.

3.4. Debug Case Studies. Concurrency bugs have been well-
studied in the domain of thread-based programs, and there-
fore a number of bug databases are available to validate new
algorithms. Unfortunately, no such bug database is available
for sequential or event-based programs. We evaluated our
proposed model of diagnosing concurrency bugs on a few
real bugs caused by data races in concurrent signal-handlers
reported in [14, 27] as well as some other programs. Here,
we discuss only three case studies, but we believe that these
results are representative for the large domain of concurrency
bugs in Linux programs.

Bash 3.0. In Bash 3.0 when the terminal is closed, an
event-handler is invoked to save the Bash history to a
file. However, if the terminal is closed as soon as only
one command is added to the history, it may not be
saved into the file. The function used to save history is
maybe append history(). A static analysis of this func-
tion reveals three shared global variables. These variables
were traced during the replay of a failed and successful
execution, and we found an atomicity violation pattern
RRW in the variable history lines this session in the
failing execution. The situation arises when the first line
from a new Bash session is added to the history, and the
variable history lines this session is used to keep the
number of lines that Bash added to the current history
session incremented from 0 to 1. This increment operation
is assumed to be atomic, but it is actually not, and the
event-handler interrupts this operation. Since the value of
the variable is still zero, the event-handler assumes that there
is nothing to be saved and does not write to the history
file.

Lynx 2.8.7.2. In Lynx, the web link occasionally is not
highlighted correctly in the text browser window. We stati-
cally analyzed the LYhighlight() function which returned
addresses to 14 shared global variables. When tracing mem-
ory access to these variables during the replay of failing
execution, an RWR atomicity violation pattern was found in
the memory access log of the “LYcols” variable. The event-
handler responsible was size change(). We had to iterate
the replay cycle four times to trace all the 14 shared memory
variables, so the overhead of the replay cycle was 4x.

Ed 1.5. In Ed, when displaying a range of lines, the number
of columns printed per line can be erroneous. The static
analysis phase revealed three global variables accessed within
the failure site display lines(). Tracing these variables
during the replay of the failed execution revealed an RW data
race pattern in the “window columns ” variable.

Bouncer 1.0. Bouncer is a small event-driven game [28]
which uses two event-handlers, one to handle asynchronous
user inputs from the terminal and the other to pro-
cess a timer interrupt to control the speed of the ani-
mation. The program exhibits an assertion failure in the
function update from input() if the number of speed
increase/decrease requests from the user is not equal to
the total timer adjustments performed. We recorded failing
execution and traced the global variables accessed by the said
function during the replay phase. We found that the failure
was triggered because of an atomicity violation pattern RWR
on the variable, is changed shared between the timer event-
handler and the function update from input().

Concurrency bug failures are hard to reproduce and
debug. In practice, the process of debugging such failures
cannot be fully automated, and the involvement of developers
remains essential in digging out the root cause. The case
studies presented above support the same fact. If the program
execution deviates from its intended behavior, we require the
developers to identify that deviation and relate it to a specific
code section that failed to meet the intended behavior. The
rest of the process can be handled automatically and more
efficiently by eliminating the debug effort which is redundant
to a given failure scope.

We also observed that in the majority of the concurrency
bugs, the failure occurs in the same function in which a
memory access violation has taken place and hence it is
possible to find the suspicious variable in the same function.
For the remaining, we can find the suspicious variable by
going upwards to the next level in the function call tree.

4. Related Work

4.1. Record/Replay Systems. Record/replay systems are imple-
mented at different abstract levels of a computer system
[29], for example, library-level, OS-level, virtual machine
(VM) level, and architecture level. Library-level methods
[5, 6] generate low-recording overheads, but they are not
able to handle low-level asynchronous events correctly and
also lack transparency. VM level methods such as [30]
record and replay low-level events of a VM, but they incur
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huge overheads. Architecture level approaches [31, 32] also
guarantee determinism at a low-level, but the implementation
cost regarding design and verification is very high.

In the current work, we implemented record and replay
at the OS-level. In doing so, we can faithfully reproduce the
events at low-level while providing transparency to user-level
programs. Although the recording overhead can be larger
as compared to higher abstract level methods, it can be
considered negligible as long as it does not perturb the natural
execution of the application in the production system.

Flashback [33] also adopts an OS-level approach that
records the target process through checkpoints. The check-
points capture the in-memory execution state of a target
process at a certain time using a shadow process. To enable
debugging during the replay of an application, Flashback
requires implementation of the checkpoint discard and replay
primitives in a debugger such asGDB.Contrary to this, in our
case, a standard debugger can be attached to an application
being replayed without any modification to the application
or debugger.

Scribe [13] also provides an execution replay mechanism
at the OS-level. Our process of recording and replaying sys-
tem calls is somewhat similar to the Scribe; however, during
replay, Scribe re-executes the system calls. The purpose is
to keep the application live during replay. This is helpful
for fault-tolerant applications, where failing execution can
be replaced by its replayed replica to continue the execu-
tion. Another critical difference is handling of asynchronous
events like signals. In Scribe, the delivery of a signal to a
process being recorded is deferred until a sync point so that
its timing is deterministic. This approach can theoretically
affect the program’s correctness. For many interactive and
time-sensitive programs, we cannot afford any perturbation
of signal semantics during recording. We record the exact
timing of signals through the instruction address in the pro-
gram counter and the number of instructions accumulated in
a PMU counter and inject it at the exact same instruction in
the process during replay.

4.2. Diagnosing Concurrency Bugs. According to a study on
the characteristics of bugs by Sahoo et al. [34], a large
percentage of bugs found in software are of a deterministic
nature (82%), occurring mostly because of incorrect inputs.
The remaining bugs, which constitute a relatively small
fraction, are nondeterministic such as concurrency bugs
and are difficult to debug. Concurrency bugs are generally
associated with multithreaded programs, and researchers
have developed a variety of techniques to detect and diagnose
such bugs for multithreaded programs. However, such bugs
also exist in sequential, interrupt-driven, and event-based
programs.

In [35], Regehr suggested random testing of interrupt-
driven applications for exposing data races and other bugs
in such programs. To randomly test an interrupt-driven
application, a sequence of interrupts firing at specified times
is generated. Next, the application is executed with interrupts
arriving according to the sequence and observed for signs of
malfunction.

Ronsse et al. [14] presented a method for detecting data
races in sequential programs by adapting their existing data
race detector for multithreaded programs. They use their
dynamic instrumentation framework DIOTA to instrument
and record all memory operations during runtime and to
perform race detection during replayed execution. Their
existing framework does not support recording of inputs
from outside a process, and it is assumed that these inputs
will be fixed. In comparison, our proposed record and replay
system can provide feedback for all the inputs during the
replayed execution which were intercepted through system
calls and therefore guarantees the faithful re-execution of a
program.

In [16], researchers present a dynamic race detection
algorithm to be used with the causality model of event-
driven web applications. On the other hand, Safi et al. [36]
propose a static analysis method to detect race conditions in
event-based systems to guarantee more code coverage and
completeness. In the current work, we take advantage of both
static analysis and dynamic analysis methods to carefully
isolate the root cause of a concurrency failure in a specific
execution.

5. Discussion

In this section, we discuss some implications and limitations
of our work, along with some remaining open questions.

Applicability to Other Platforms. Our OS-based replay
approach is based on the hypothesis that a computer pro-
gram’s nondeterministic behavior can be fully captured at
the operating system level and reproduced with instruction-
accurate fidelity by using some hardware support available
on modern processors. To evaluate this hypothesis, we
implemented a prototype in a commodity operating system,
Linux, for an ARM platform. However, we expect that most
of the features of our prototype can be easily ported to
other commodity operating systems running on commodity
hardware. For example, our approach of signal replay can also
be achieved through the breakpoint registers (DR0–DR3) and
the predefined performance event, “Instructions Retired,” in
the x86 architecture [37].

Implications of Memory Consistency Model. Consideration
of memory consistency model is important for any multi-
processor deterministic replay system. ARMv7 has a weakly
ordered memory model, meaning that the order of memory
access operations performed by a CPU can be different from
the order specified by the program. Our current prototype
is uniprocessor, and we assume that the single CPU is
aware of its own ordering and therefore can ensure that
the data dependence is respected [38]. However, memory
ordering will be another source of nondeterminism when
extending our implementation to amulticore/multiprocessor
environment. To handle this, we also need to record the order
of shared memory operations among different cores.

Dynamically Allocated Variables. In the current concurrency
bug diagnosis framework, the use of hardware watchpoints
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limits the system to track data races in globally defined vari-
ables only. However, data races are also possible on dynam-
ically allocated variables, such as those defined on heap. In
practice, it is not possible to trace the dynamically allocated
variables without runtime instrumentation. Concerning this,
the authors in [39] present an interesting approach in which
an entire heap can be watched using software watchpoints
inserted through dynamic instrumentation. This approach
can be integrated with our replay analysis framework to
increase the scope of target bugs.

Multivariable Access Violations. According to a study [40],
single-variable concurrency bugs constitute two-thirds of the
overall non-deadlock concurrency bugs. To target this large
fraction,we therefore followed a rather simplistic but effective
approach that considers only single-variable data race and
atomicity violations.However,multivariable access violations
also exist. For detecting such violations, we must be able to
infer the relationships between multiple variables to comple-
ment their dynamic tracing. We leave this improvement for
our future work.

6. Conclusion

Reproducing a nondeterministic failure for bug diagnosis is a
key challenge. To address this challenge, we have presented
a light-weight and transparent OS-level record and replay
system, which can be deployed to production systems. It
can faithfully reproduce both synchronous and asynchronous
events occurring in programs such as system calls, message
passing, nonblocking I/O, and signals. During the replay of a
program, a standard debugger can be attached to it to enable
cyclic debugging without any modifications to the program
or debugger.

We also presented a method for diagnosing concurrency
bug failures which is based on the proposed record and replay
system. Given a failure to track down bugs, developers can
collect memory access logs for a set of global variables during
the replay of failing and passing execution and then compare
them to identify any memory access violations causing the
failure. Our experience with some real programs shows that
this usage model can be very beneficial in locating the root
causes of failures related to concurrency bugs.

Our current work is so far limited to debugging of
sequential and event-based programs. In the future, we aim to
extend it for multithreaded programs so that we can capture
and reproduce the exact thread interleaving order in a failing
execution and then identify the conflicting memory access
operations that lead to program failure.
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