
Received February 21, 2018, accepted March 25, 2018, date of publication April 10, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2825295

IoT-DDL—Device Description Language
for the ‘‘T’’ in IoT
AHMED E. KHALED 1, ABDELSALAM HELAL2, (Fellow, IEEE),
WYATT LINDQUIST 2, AND CHOONHWA LEE 3
1Computer and Information Science and Engineering Department, University of Florida, Gainesville, FL 32611, USA
2School of Computing and Communication, Lancaster University, Lancaster LA1 4WA, U.K.
3Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, South Korea

Corresponding author: Ahmed E. Khaled (aeeldin@ufl.edu)

This work was supported in part by the Philips, in part by the Basic Science Research Program through the National Research Foundation
of Korea funded by the Ministry of Science, and in part by ICT under Grant 2017R1A2B4010395.

ABSTRACT We argue that the success of the Internet of Things (IoT) vision will greatly depend on how
its main ingredient—the ‘‘thing’’—is architected and prepared to engage. The IoT’s fragmented and wide-
varying nature introduces the need for additional effort to homogenize these things so they may blend
together with the surrounding space to create opportunities for powerful and unprecedented IoT applications.
We introduce the IoT Device Description Language (IoT-DDL), a machine- and human-readable descriptive
language for things, seeking to achieve such integration and homogenization. IoT-DDL explicitly tools things
to self-discover and securely share their own capabilities, entities, and services, including the various cloud-
based accessories that may be attached to them. We also present the Atlas thing architecture—a lightweight
architecture for things that fully exploits IoT-DDL and its specifications. Our architecture provides new
OS layers, services, and capabilities we believe a thing must have in order to be prepared to engage
in IoT scenarios and applications. The architecture and IoT-DDL enable things to generate their offered
services and self-formulate APIs for such services, on the fly, at power-on or whenever a thing description
changes. The architecture takes advantage of widely used device management, micro-services, security, and
communication standards and protocols. We present details of IoT-DDL and corresponding parts of the
thing architecture. We demonstrate some features of IoT-DDL and the architecture through proof-of-concept
implementations. Finally, we present a benchmarking study to measure and assess time performance and
energy consumption characteristics of our architecture and IoT-DDL on real hardware platforms.

INDEX TERMS Internet of Things architecture, thing description, microservices, OMA, IPSO, CoAP,
MQTT.

I. INTRODUCTION
The spaces around us are getting full of things! Things are
the basic building blocks and the main ingredient of the
emerging and revolutionary Internet of Things (IoT) tech-
nology [1], [2]. IoT actively brings more informative and
interactive flavors to our lives, enabled by the evolution of
low-power wireless technologies and embedded computing
and intelligence. Empowered by the fact that now almost all
devices are Internet-connected [3], [4], IoT is transforming
the standard view of the Web as a set of digital documents
and links into a fully integrated Internet that includes physical
devices as well as cyber elements. This new Web, combin-
ing the cyber and physical worlds, creates a new ecosystem
with new programmability opportunities through the various

interactions and interconnections of the two realms [5], [6].
While the IoT is perceived as a generic and a generalized
concept, in practice, it is not. Its various specializations and
full taxonomy are yet to shape up and be fully learnt. A simple
categorization of the IoT that captures its scale and applicable
domains de jour is illustrated in Fig. 1.

According to the scale and place of deployment we classify
IoT into personal IoT (e.g., in smart homes or connected
cars), industrial IoT (e.g., a smart factory floor or a physi-
cal plant), and at-scale IoT (e.g., a smart city deployment).
Classifying IoT in this simple manner at this stage in the
evolution of IoT is surely missing many important param-
eters. However, the classification helps us state the focus
and applicability of our work in this paper, which is on the

24048
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5352-7736
https://orcid.org/0000-0002-8294-8115
https://orcid.org/0000-0002-6564-2392


A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 1. A simple IoT domain classification.

personal IoT, where the set of things is located in a bounded
personal space.

The highly fragmented nature of IoT and the wide het-
erogeneity in types, capabilities, and technologies raise thing
integration as a significant challenge. Integrating such a wide
spectrum of things in the ecosystem requires considerable
effort and limits programming opportunities for smart spaces.
Such challenges introduce further questions: How can space
users (e.g., developer, vendor, and space owner) manage
and configure such wide heterogeneity? How can such frag-
mented things securely interoperate and interact not only
with cloud platforms and space users but also with other
things in the space? These challenges introduce, as a first
step, a requirement for a uniform way of describing things
in smart spaces in terms of what a particular thing is (e.g., its
components), what it does (e.g., its offered services) and how
it communicates (e.g., what it can speak or which protocols
it understands). Such a description paves the way to solve
thing integration, configuration, andmanagement challenges,
while also enabling interactions. Such an approach requires
an architecture for things in IoT, as a second step, that fully
exploits thing description specifications (the first step) and
supports the promising vision of IoT.

Different approaches in the literature target these chal-
lenges by describing things in a space in terms of meta-
data, resources, and access methods. These approaches link
the access of things to a central point (e.g., cloud plat-
form, or edge), through which space users can access
resources and collect data. Such a restricted paradigm ignores
the distributed nature of IoT, which should also allow things
to communicate with one another in a space, forming thing-
to-thing as well as thing-to-cloud or thing-to-edge communi-
cation paradigms. To enable such communication paradigms,
a thing should be fueled by an additional set of attributes
and properties that describe its various aspects as well as
how it can engage in smart spaces. This set of attributes
should not only describe the thing and its components, but
also how it can be managed and configured, the different
communication languages it supports, and eventually the
important IoT semantics of how a thing can be used by other
things or utilized within an IoT application. We argue that
a description language for things that covers these aspects
can enable various secure, meaningful interactions between

things and thing mates. Thing mates include cloud platforms,
edges, space users, and other things.

In this paper, we present the IoT Device Description
Language (IoT-DDL), a machine- and human-readable
XML-based descriptive language for things in smart spaces.
IoT-DDL explicitly tools a thing to self-discover its own
onboard capabilities, resources, entities, and services, as well
as cloud-based thing accessories. A thing’s resources are the
components that describe the basic services it needs to be
part of the IoT ecosystem (e.g., network module or memory
unit). A thing’s entities are the physical devices, software
functions, and hybrid (virtual) devices that can be attached to,
built in, or embedded inside the thing. Each entity provides
a set of services to thing mates through a set of well-defined
interfaces. In addition, external accessories, which are entities
external to the thing that could be added to augment the thing
capabilities over time, can provide a cloud-based expansion
of the thing (e.g., a database, drivers, convertors, or specific
add-on interfaces) through named attachments. Enabling the
thing to self-discover what it is, what it does, and how it com-
municates can empower meaningful interactions and inter-
connections that support the distributed nature of IoT. Such
enablement will be required before any useful programming
models can be defined within the IoT ecosystem. Atlas IoT-
DDL builder is a web service tool that allows a thing’s creator
(e.g., the original equipment manufacturer (OEM)) or owner
to create, update, or upload an IoT-DDL to a thing. The OEM
of a thing could be the source of the IoT-DDL; a developer
who utilizes space things’ services and resources might also
be the source. Such flexibility facilitates further adoption
of IoT-DDL with changes, and supports thing innovation,
in which makers or hobbyists may be assembling new things
not established by an OEM. We developed an initial version
of the web tool [46] that enables space users to develop an
IoT-DDL that reflects the thing’s metadata and attachments,
as well as its inner entities, resources, and services; as will be
discussed later.

The IoT-DDL is proposed within the lightweight Atlas
thing architecture, which fully utilizes the specifications of
IoT-DDL. The Atlas thing architecture takes advantage of
a thing’s OS services to provide new layers and function-
alities that introduce the novel capabilities a thing needs to
engage in ad-hoc interactions and interconnections, as well
as IoT scenarios and applications. The architecture enables a
thing to self-discover its resources, attachments, components,
and services from the uploaded IoT-DDL. The architecture
extends the Apache licensed Micro Services project [51] to
enable the thing to generate the services it wishes to offer to
the smart space. Based on the inputs, outputs, and platform-
agnostic actions specified in the IoT-DDL, the architecture
dynamically generates and manages a bundle (single exe-
cutable microservice) that fulfills a specified thing service at
the runtime of the thing. The thing can then formulate APIs of
the services it offers and enable service-oriented meaningful
interactions to take place between the thing and its thing
mates.

VOLUME 6, 2018 24049



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

This paper focuses on IoT-DDL concepts, requirements,
and specifications. It also focuses on the details of parts of the
Atlas thing architecture that implement and take advantage of
the IoT-DDL. The paper is organized as follows. Section II
highlights related work, followed by a description of a pro-
posed structure of things and the IoT-DDL specifications in
section III. The overall Atlas thing architecture is described
in section IV with focus on the architecture layers that imple-
ment IoT-DDL. In section V we present our implementation
and a proof-of-concept, and in section VI we present a bench-
marking study in which we measure and assess memory foot-
print, latency and energy characteristics of the IoT-DDL and
Atlas thing architecture on real hardware platforms. Finally,
a discussion and a conclusion are presented in section VII.

II. RELATED WORK
Although there is not much in the literature on explicit
architectures for things, quite a bit of work exists on device
descriptions. The Device Description Language (DDL) is a
machine- and human-readable XML-based device descrip-
tion approach developed by the Mobile and Pervasive Com-
puting Lab at the University of Florida [16], [17]. DDL is a
schema for the seamless integration of devices into a smart
space, service registration, and discovery. DDL describes
the metadata of the physical device and how to access the
offered services. DDL was used to develop the Cloud-Edge-
Beneath (CEB) architecture [14], [15], [29]. CEB opens
access links to devices from the cloud through the use of
the Atlas sensor platform and middleware. Atlas middleware,
hosted by the Edge (e.g., standalone server), uses the Open
Services Gateway initiative (OSGi) for service discovery and
configuration of Atlas sensor platforms. The middleware,
when contacted by an Atlas sensor platform, retrieves infor-
mation from the DDL descriptor and creates a Java bundle for
that sensor. Sensors are abstracted into sensor service inter-
faces in the cloud through interlayer collaboration between
the Atlas middleware bundles at the Cloud, the Edge, and
beneath.

To enable thing-to-thing, thing-to-cloud and thing-to-edge
communication paradigms, IoT-DDL extends the descriptive
power of Atlas DDL to address a thing’s self-discovery.
IoT-DDL, as a self-description tool uploaded to a thing,
explicitly powers the thing to discover its inner resources,
characteristics, services, communication languages, and
cloud-based attachments. IoT-DDL and the Atlas thing archi-
tecture enable the thing to identify itself to thing mates
and formulate APIs for the offered services. The IoT-DDL
enables the seamless integration of things into the ecosystem,
and equips the thing with a set of attributes that enable
thing management and configuration with minimal human
intervention.

The Web of Things (WoT) framework by the World Wide
Web Consortium (W3C) [32], [33] is an active research field
that explores access to and handling of things’ digital rep-
resentations through a set of web services. These services
are based on event-condition-action rules that involve these

virtual representations as proxies for physical entities. Such
objects are modeled in terms of metadata, events, and actions,
alongwith the RESTful protocol. Servers provide an interface
for instantiating and registering such proxies for the things
along with their descriptions. A client script interacts with
these proxies exported by the server, where applications can
register callbacks for events. Käbisch and Anicic [49] utilize
Thing Description (TD) to describe the different things in
the WoT, in terms of their metadata, how to access them,
and their different events and corresponding actions. The TD
relies on the Resource Description Framework (RDF) [50]
as an underlying data model that can be extended to involve
domain specific information.

The Constrained RESTful Environments (CoRE) [47] real-
izes the Representational State Transfer (REST) architec-
ture for the discovery of resources hosted by constrained
nodes to build M2M applications. CoRE extends the uni-
versal resource identifiers (URI) for such resources with a
set of attributes and descriptions of relations between such
resources. A client, for his application, utilizes such resource
discovery architecture with the appropriate resource descrip-
tion, along with possible application-specific attributes.
Datta and Bonnet [8] and Datta et al. [48] highlights an evo-
lution in Thing Description (TD) from the CoRE Link Format
to describe physical things in the IoT. TD represents the
different sensors and actuators in terms of events and actions.
The authors proposed a thing management framework that
resides in an M2M gateway.

Google’s Weave [18], [19] is a communication platform
that allows smartphones and cloud services to interact with
things through mobile devices and the Web. Weave supports
cloud services such as device discovery, provisioning, state
subscription, remote access, and push notifications. Weave
introduces two main ideas of device description schema:
1) trait, which describes device functions, commands, and
state definitions, and 2) component, which describes the rela-
tionships between traits. Weave is provided in conjunction
with Brillo, Google’s new Android-based OS for embedded
development. Brillo offers device management, a hardware
abstraction layer, and a development kit. Several Brillo-
compatible boards can be accessed and managed through a
Linux developer machine. IoT applications can be developed
directly over Brillo, with development taking place on the
developer machine and the resulting image is flashed on the
target hardware.

A related approach to IoT-DDL is Amazon Web Services
IoT (AWS-IoT) [20], [21], a cloud-based platform that pro-
vides bidirectional communication between the AWS cloud
platform and things in a space (sensors, actuators, and embed-
ded devices). AWS’s primary focus is collecting and ana-
lyzing data reported by multiple devices. A thing-registry
module stores and organizes thing-related information and
resources, while users can associate up to three custom
attributes with each thing. On the other side, each thing has a
thing-shadow that stores thing-state and metadata in response
to application requests.

24050 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 2. Thing structure.

The aforementioned approaches link the access of things
to a central point (e.g., cloud platforms or edge) where space
users can access resources and collect data. Such a restricted
paradigm ignores the distributed nature of IoT, which requires
things to communicate with other things as well as with cloud
platforms and edge. To enable secure ad-hoc interactions
between a thing and its thing mates in a space, a thing should
be fueled by an additional set of attributes and properties.
In the absence of a device description language that supports
basic thing requirements for a smart space, significant effort
is required to interact with and manage the wide hetero-
geneity of things. At the same time, the thing description
should be part of the thing itself to facilitate a thing’s smooth
migration from one space to another. In the next section, as a
first step toward describing a thing, we define the essential
requirements that must be met for a thing to be part of the
IoT ecosystem. We also introduce a structural definition for
things.

III. IoT-DDL SPECIFICATIONS
The first step in describing a thing in a smart space is identify-
ing the different parts that make up its structure. The thing, as
illustrated in Fig. 2, is composed of a set of resources, entities,
and attachments and engages with thing mates through some
interactions. Resources are the components that shape the OS
services a thing needs to be part of the IoT (e.g., network
module, memory unit, etc). Each resource is shaped through
a set of properties that configures such operating services.
Moreover, thing entities are the physical devices, software
functions, and hybrid devices that can be attached to, built
in, or embedded inside the thing. Each entity provides a set
of services to the smart space through a set of well-defined
interfaces (APIs). Furthermore, a thing can have one or more
external accessories or attachments. Thing attachment is a
cloud-based expansion of the thing that provides further
representations (e.g., thing virtualization) and services (e.g.,
log server, database, or dashboard) that are considered too

heavyweight to be hosted on the thing or require additional
resources that are not available on such constrained devices.
Thing mates include cloud platforms, edges, humans (e.g.,
space users or developers), and other things.

A thing in a smart space engages with thing mates in
the IoT ecosystem through a set of information- and action-
based interactions. Information-based interactions (referred
to in this paper as tweets) enable a thing to announce its
identity, capabilities, and APIs to thing mates. A thing uses a
tweet to describe what it is, what it does, and what it knows
to the other thing mates. Action-based interactions include
management commands, lifetime updates, and configurations
from authorized parties as well as the applications that target
the thing’s capabilities and services.

Consider a smartphone as an example of a thing in smart
space. To be part of the smart space, a smartphone must
be equipped with an internal memory and Wi-Fi network
module. It also contains a set of sensors (e.g., proximity,
accelerometer) as embedded entities that can offer services
to the smart space. The phone can also be connected to a
cloud attachment for lifetime OS updates provided by the
vendor. The three requirements and the proposed structure
for the thing shape the specifications required to describe
things in smart spaces and highlight the design aspects of the
architecture that can fully utilize such specifications.

Based on the thing structure outlined above, we now
present our IoT-DDL specifications that describe the different
parts and accessories of a thing through a set of attributes,
parameters, and properties. IoT-DDL is based on Atlas
DDL [16], which uses an XML-based schema to describe
devices to facilitate their integration in a smart space. It has
been used to develop the Atlas Cloud-Edge-Beneath (Atlas-
CEB) architecture [14], which uses DLL to generate Java
bundles that represent the devices and that can be deployed
on an edge and/or cloud to connect back and interact with
the devices the DDL describes. DDL is used to describe a
single device (sensor, actuator, or hybrid) through the device’s
metadata, functions, and operations. Atlas IoT-DDL extends
Atlas DDL to address additional thing requirements and to
match the thing structure outlined above. The IoT-DDL struc-
ture is divided into the Atlas thing, thing entities, and thing
attachments sections, as illustrated in Fig. 3. These three main
sections are described below.

A. ATLAS THING SECTION
The Atlas thing section of IoT-DDL characterizes the thing
as a whole, describing the different resources and compo-
nents on board. It is further structured into the following
subsections:

1) The descriptive metadata section holds the thing’s
identification, including its name, model, short descrip-
tion, type (e.g., software, hardware, hybrid), vendor,
and owner.

2) The structural metadata section highlights the structure
of IoT-DDL file as a short description of the thing’s
resources, entities, and attachments.

VOLUME 6, 2018 24051



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 3. IoT-DDL specifications.

3) The resources section holds the attributes and proper-
ties of the underlying OS services the thing needs to be
part of the IoT. The Atlas thing section holds a separate
section for each resource. In this paper, we support
both network module and memory unit as the two main
resources a thing needs to engage with a smart space.

• The network properties subsection describes the
network connection capabilities of a thing in terms
of the mounted network module (e.g., Wi-Fi, Blue-
tooth), network access information, and prefer-
ences. The subsection covers the attributes and
properties of the supported communication proto-
cols (e.g., MQTT, CoAP).

• The memory properties subsection highlights the
various memory units available to process applica-
tions, generate APIs, and archive information in a
specific format.

B. THING ENTITIES SECTION
The thing entities section describes the different types of
entities (hardware, software, or hybrid) that can be embedded,
built in, or connected to the thing. Each entity is detailed in
terms of its descriptive information, the services and func-
tions it offers, and the different types of interactions it can
engage in. Each entity is further divided into components as
follows:

FIGURE 4. Beaglebone Atlas thing section.

1) The descriptivemetadata section holds an entity’s iden-
tification, including name, model, short description,
type (e.g., software, hardware, hybrid), category (built-
in, embedded, attached), vendor, and owner.

2) The service section holds descriptive information about
the different services offered by the entity in terms
of functional descriptions, inputs, and outputs. Each
service input or output is characterized in terms of a
short description, data types, units, and the acceptable
range of values.

C. THING ATTACHMENTS SECTION
The thing attachments section describes the different cloud-
based expansions of the thing. Each attachment is described
in terms of the type (e.g., data-log server, repository, device
management server), the access information (e.g., URI, key),
and the protocols used (e.g., REST).

D. EXAMPLE IoT-DDL
To illustrate IoT-DDL, we use the example of a coffee maker,
which is part of the proof of concept presented in the imple-
mentation section (Section V). In this example, a coffee
maker entity and a web-logging attachment are part of a
Beaglebone Black Atlas thing. The overall IoT-DDL in this
example consists of three parts: The Beaglebone Black Atlas
thing description, the coffee maker description, and the web-
logging attachment description, just as outlined in Fig. 3.

The Beaglebone Black Atlas thing section is shown
in Fig. 4. The descriptive metadata section describes the thing

24052 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 5. Coffee maker entity section.

in terms of the owner, name, and operating system. The struc-
tural metadata section summarizes information about thing’s
resources, entities and attachments. The resources section
shows the overall properties of both network and memory
resources of the underlying operating system. The Beagle-
bone Black thing utilizes theMQTT protocol to communicate
with thing mates and to set up a TCP connection with an
online MQTT broker as will be shown in section V. The
broker domain name and port number are part of the Network
Properties sub-section that describes the Beaglebone Black
Atlas thing.

The coffee maker entity section is illustrated in Fig. 5. The
coffee maker is described in the descriptive metadata section
as a hardware device attached to theAtlas thing and offers two
services: to turn the coffee maker on for a maximum amount
of time, and to turn the maker off. Each of these services is
described in a separate service section within the Services
section of the entity in terms of function description, inputs
and outputs. The Web-log service attachment section—as
Fig. 6 shows—is a NodeJS-based server that allows the Atlas
thing to send status updates to the server periodically (every
two minutes in this example) through an HTTP ‘‘PUT’’
method.

As noted earlier, the IoT-DDL is proposed within the Atlas
thing architecture, which takes advantage of a thing’s OS ser-
vices to provide new layers and functionalities that introduce
novel and necessary capabilities. The Atlas architecture is
briefly discussed in the next section. We do not attempt to

FIGURE 6. Web-Log server thing attachments section.

fully present the details of the architecture, and keep our focus
on device descriptive layers that reflect IoT-DDL specifica-
tions.

The difference between the original DDL [16], [17] and
the proposed IoT-DDL can be summarized as follows: 1) The
focus of the DDL is to generate a run-time representation
of the thing’s service on the edge or the cloud for service
discovery, whereas the focus of the IoT-DDL is to generate
a run-time representation of the thing on the thing itself to
enable ad-hoc interactions and interconnections. 2) The DDL
focuses on describing the services offered by the thing, while
the IoT-DDL focuses on additional attributes to describe the
thing in the smart space by the thing’s entities, resources,
services, attachments, and device management and commu-
nication protocols. 3) The focus of the DDL is to enable the
thing-to-cloud communication paradigm, whereas the focus
of the IoT-DDL is to enable both thing-to-thing and thing-to-
cloud communication paradigms for the seamless building of
IoT scenarios that involve different things.

IV. OVERVIEW OF THE ATLAS THING ARCHITECTURE
In this section, we present a brief overview of the Atlas
thing architecture, which fully exploits the specifications
and design principles of IoT-DDL. The Atlas thing archi-
tecture is designed to meet the requirements for a thing
to be part of the IoT ecosystem. Its goals are to make
the thing capable of 1) self-discovering its characteris-
tics, resources, and entities through the uploaded IoT-DDL,
and generating APIs for the available services; 2) open-
ing a channel with a device management server for pro-
visioning, management, and configuration purposes, and
3) enabling secure interactions with thing mates, The archi-
tecture also takes advantage of lightweight device manage-
ment standard OMA-LwM2M [9]–[11], [13], object model-
ing standard IPSO [7], [12], IoT communication standards
CoAP [34], [35] and MQTT [28], [30], and the AES [39]
security standard to enable thing management and config-
uration with minimal human intervention, and to empower
secure ad-hoc interactions between things and thing mates.

VOLUME 6, 2018 24053



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 7. Atlas thing architecture.

The architecture can be developed into a set of software
layers or firmware that can be flashed into the thing using
the vendor’s provided IDE or OS (e.g., C/C++ for Linux
OS-based platforms such as Beaglebone and Raspberry Pi,
Java/C++ for Android smartphones, or Arduino IDE for
Arduino Things). The Atlas thing architecture, as illustrated
in Fig. 7, consists of three main layers: Atlas IoT platform,
host interface, and IoT OS services. IoT OS services are the
basic functionalities provided by the thing’s operating engine
and represent a thing’s resources according to the proposed
thing structure. Such services enable the thing to be part of the
IoT through its network module, memory units, I/O ports and
interfaces (e.g., I/O, ADC, etc.), and its process manager. Ser-
vices may also include hardware-based security if available,
such as embedded secure elements [42], [43]. The process
manager is responsible for offering services for command
execution and threading for concurrency if supported by the
IoT OS services.

The Atlas IoT platform represents the logical layer of the
architecture that runs on heterogeneous things to provide new
needed services not currently provided by embedded OS’s.
Such new services focus on descriptive and semantic aspects
of things to better enable thing engagement, interaction, and
programmability into an IoT. The host interface layer shields
the platform and gives it the portability and interoperability
features it needs. This layer also maintains the platform’s
lightweight nature by maximally relying on lower-level

services provided by the underlying IoT OS. The host inter-
face layer manages the internal interactions between the Atlas
IoT platform and the set of services provided by the underly-
ing OS. However, the host layer assumes the responsibility
of providing any services that the underlying OS does not
provide. An extreme case is when there is no underlying OS
in a given platform (e.g., Arduino sensor platform); in this
case, the host layer must implement all required services.

Next, we present the details of the DDL sublayer within the
Atlas IoT Platform layer of the architecture that is responsi-
ble for mapping and managing the IoT-DDL specifications.
We also briefly summarize the other sublayers of the archi-
tecture.

A. DDL SUBLAYER
The DDL sublayer allows a thing to discover its own
resources, entities, and capabilities through the uploaded
IoT-DDL configuration file. It is composed of the following
modules:

• The IoT-DDL manager opens a gate to access the
uploaded IoT-DDL configuration file, parses the various
sections and subsections, and regulates access to the IoT-
DDL from the other modules.

• The identity parser models the identification and
descriptive information of the thing and its entities. This
module interacts with the IoT-DDL manager to parse

24054 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 8. API engine structure.

a thing’s metadata for how uniquely the thing can be
viewed through the smart space.

• The attachment manager parses the information that
models the thing’s cloud-based attachments and its
entities and builds the required interactions with these
attachments.

• The device manager opens a communication channel
with a device management server that either resides on
the edge or cloud. This module interacts with the IoT-
DDL manager module to access information about the
management server (e.g., server IP address and access
parameters). The Atlas thing then registers itself as a
client at the server side for provisioning, managing,
and configuring different attributes during the thing’s
lifetime as well as authorized management commands.

• The API engine formulates descriptive interfaces for the
services offered by the thing’s entities. As Fig. 8 shows,
the API engine consists of four sub-modules: 1) the
Bundle & API generator interacts with the IoT-DDL
manager to parse services’ information (inputs, outputs,
types, ranges, descriptions, and functionality) stored in
the IoT-DDL and builds a descriptive API for each
service, after generating a bundle that fulfills the spec-
ifications of the service; 2) service execution oversees
packaging the relevant input values, sending them to the
running bundle, and retrieving the result values before
handing them off; 3) the API parser and validator parses
the received applications (API calls) from thing mates,
checks their validity, and hands them to the bundle
repository; 4) the bundle repository stores and manages
the generated bundles and handles bundle execution
through the service execution sub-module. Each API,
as Fig. 9 illustrates, has three parts: 1) the function name
as a short description of the offered service; 2) a list of
inputs to the service, where each input is represented in
a tuple that holds an input description, data type, and
value range; and 3) the expected output of executing the
service, where the output is represented in a tuple that

FIGURE 9. API structure.

also holds the description, data type, and value range.
The generated API is announced to the thing mates
through tweets. On the other hand, an application (API
call) is captured and parsed in the architecture’s tweeting
sublayer. This API call holds the function name followed
by a list of values representing the corresponding inputs
to the service.

B. SUMMARY OF OTHER SUBLAYERS
The tweeting sublayer tools the thing with an explicit capabil-
ity to uniquely define itself in the smart space, in addition to
discovering thing mates and securely interacting with them.
The tweeting sublayer represents the gateway that regulates
the communication and queries between the interface and
DDL sublayers, and is further composed of the following
modules:
• The interactions and tweeting engine models a thing’s
descriptive information about its identity and generated
APIs into sets of identity and API tweets, respectively.
Identity tweets hold metadata about a thing’s identity,
description, entities, and capabilities. API tweets hold
metadata about the generated APIs and the correspond-
ing APIs. Such tweets are forwarded to the interface
sublayer to be announced to thing mates. At the same
time, the engine parses the received tweets (information-
based interactions) as well as action-based interactions
(e.g., applications, management commands, and config-
urations) from thing mates. The engine then forwards
the interaction to the DDL sublayer modules according
to the parsed content.

• The security engine and application runtime decodes
received interactions from thing mates to ensure autho-
rization and authentication, and encodes interactions
from the thing to its thing mates. The security engine
and application runtime interacts with the interactions
and tweeting engine to build certified interactions from
one side, and with the architecture’s host interface layer
from the other side.

The interface sublayer holds the different communication
protocols (e.g., MQTT, CoAP, etc) that allow the thing to
engage with its thing mates. The sublayer announces the
built tweets to the smart space and captures others’ tweets

VOLUME 6, 2018 24055



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

and action-based interactions to be forwarded to the tweeting
sublayer for processing.

V. IMPLEMENTATION
In this section, we describe the implementation details of the
parts of the Atlas thing architecture that address the vari-
ous aspects of IoT-DDL and thing requirements. The Atlas
thing architecture takes advantage of: 1) OMA-LwM2M,
which is lightweight device management standard that targets
low-power and constrained devices with the low-overhead
REST data model and point-to-point communication in a
client-server fashion, 2) IP Smart Object (IPSO) that pro-
vides a common design pattern and semantic interoperability
across IoT devices that support LwM2M for a more reusable
design to composite modular objects, 3) CoAP, which is a
client/server protocol that provides a request/report paradigm
model over UDP and interoperates with HTTP and the REST-
ful Web through simple proxies, 4) MQTT, which is one of
the most widely-used communications protocols that uses a
publish/subscribe architecture on top of the TCP/IP protocol.

The implementation demonstrates the feasibility of the
architecture’s deployment on a variety of real platforms.
Finally, we provide a proof-of-concept implementation of an
IoT application using the architecture implementation and
IoT-DDL to show the interaction between things on the one
hand, and between the thing and the device management
server and log server attachments on the other hand. As men-
tioned earlier, our focus in this paper is the device descriptive
layers that reflect the different parts of IoT-DDL.

A. THING PROVISIONING AND MANAGEMENT
The first requirement for a thing to be part of the IoT
ecosystem is that it must be seamlessly integrated into the
ecosystem, so it can bemanaged and configuredwithminimal
human intervention. In this section, we target this essen-
tial requirement using two widely used standards for device
management and object modeling: the Open Mobile Alliance
Lightweight M2M (OMA-LwM2M) and the IP Smart Object
(IPSO) Alliance, respectively.

Liblwm2m is an open source implementation for
OMA-LwM2M developed by the Wakaama project in
Eclipse [22], [23]. The Atlas architecture extends Liblwm2m
to allow device management [24], [25] not only for OMA
standard objects but also for the different aspects of IoT-
DDL. The architecture translates the different sections and
subsections of IoT-DDL into a set of dynamic objects, called
Atlas objects. Atlas objects, as shown in Fig. 10, represent
the different entities, services, resources, and attachments of
an Atlas thing. Atlas objects are based on the object resource
data representation model proposed by OMA-LwM2M and
utilize the IPSO idea of composite objects for higher modular
object design. Extending the broad standard for OMA with
Atlas objects allows seamless engagement of Atlas things
with OMA-LwM2M/IPSO-powered entities in a smart space.

The device manager module of the DDL sublayer in
the architecture communicates with the IoT-DDL manager

FIGURE 10. Atlas objects’ tree.

FIGURE 11. Device manager and OMA objects.

module to access information about the OMA management
server (e.g., server IP address and access parameters). The
Atlas thing registers itself with the server as an OMA client,
where the registration process requires a thing to register a
tree of its programmed objects at the server side. Such a tree
is a hierarchal structure of both OMA-standard objects and
Atlas objects generated by the thing. The device manager
module, as shown in Fig. 11, creates and manages both OMA
standard objects and Atlas objects through an object engine.
Atlas object creation and management occur on demand
when IoT-DDL is uploaded to the thing during lifetime
updates. At the same time, authorized lifetime management
and updates from the management server trigger the device
manager’s object engine module to maintain the correspond-
ing objects and enables authorized dynamic updates to the
IoT-DDL parameters and attributes during the lifetime of the
thing.

B. ATLAS THING COMMUNICATION
To enable thing-to-thing and thing-to-edge or thing-
to-cloud information- and action-based interactions, the

24056 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

TABLE 1. Atlas topics for the MQTT protocol.

architecture exploits widely used communication protocols
for IoT and constrained environments: Message Queuing
Telemetry Transport (MQTT) and the Constrained Applica-
tion Protocol (CoAP). In this section, we give an overview of
the protocols and describe how their implementation within
the Atlas thing architecture goes beyond just enabling com-
munication to support other thing requirements and IoT-DDL
design choices. The interface and communication engine of
the Atlas thing architecture adopts the open-source C/C++
implementation of MQTT developed by the Paho project
in Eclipse [30]. The implementation allows Atlas things to
connect to an MQTT broker, subscribe, and publish with
respect to a predefined set of topics. As a proof of concept,
the architecture utilizes a connection with the cloud-based
MQTT broker HiveMQ dashboard [31] to publish and sub-
scribe to the different topics.

As discussed earlier, an Atlas thing tweets identity infor-
mation about itself, thing entities, and generated APIs to
its thing mates, and similarly receives other things’ tweets.
Things can also interact (e.g., through issuing an API call)
with each other. The network manager subsection of the
administrative thing metadata of the IoT-DDL specification
lists the required configuration of MQTT. The configuration
includes the URL to the MQTT broker, the listening port,
and a list of topics to subscribe to and publish accordingly.
Table 1 lists the different topics the Atlas thing publishes and
subscribes to in order to announce its own and receive others’
tweets, respectively. Furthermore, Atlas things interact using
another set of topics that include the things’ IDs. For an Atlas
thing to receive interactions, it must subscribe to an interac-
tion topic that holds its own ID. To forward an interaction to
another thing mate, it must publish a topic that includes the
thing mate’s ID.

The interface and communication engine of the Atlas thing
architecture adopts the open-source C++ implementation of
CoAP developed by Noisy Atom [40]. This implementation
allows Atlas things to tweet and interact with respect to a
predefined set of resources. TheAtlas architecture uses CoAP
protocol support for multicasting, which allows the thing
to broadcast tweets to all listening things. We extend the
imported library with Unix multicast sockets to enable the
CoAP multicast feature.

The network manager subsection of the thing Resources
metadata of the IoT-DDL specification lists the required con-
figuration of CoAP. The configuration includes the listen-
ing port, a list of RESTful methods, and the corresponding

TABLE 2. Atlas resources for the CoAP protocol.

resources. Table 2 lists the resources an Atlas thing uses to
announce its own tweets and ask for others’ tweets. At the
same time, Atlas things interact using another set of resources
that include the thing mates’ IDs.

We are currently working on enabling Atlas thing commu-
nication between thing mates that speak different protocols
(currently limited to REST, CoAP and MQTT). By develop-
ing protocol adaptors as thing attachments, two things will be
able to communicate despite their protocol differences.

C. ATLAS THING BUNDLES
To best facilitate the creation and modification of arbitrary
thing services, the architecture adopts the Apache licensed
C++ Mircro Services project [51] for dynamic service-
oriented API functionality. Each thing service is represented
as an independent microservice, and can be executed through
a single call to the corresponding API taking inputs and
returning outputs as specified by the IoT-DDL. In this section,
we describe the steps taken to convert the textual service
description of the IoT-DDL into a compiled microservice
capable of running on an Atlas thing and discuss how the
architecture is expanded to allow for generation of services
on the fly.

The C++ Micro Services project aims to allow for the
creation of service-based applications based on the dynamic
module system of OSGi [52]. Each microservice, called a
bundle, is a specially packaged shared library object that runs
in its own context within the microservices framework. The
state of these bundles can bemanaged dynamically during the
lifetime of the Atlas thing. The Atlas architecture uses C++
Micro Services to allow loading, running, and destroying
its service bundles throughout execution, and to access the
running bundles’ functionalities through a generic interface.
Before a thing’s services can be ran, their bundles are dynami-
cally generated by the API Engine of the architecture from the
specification of the uploaded IoT-DDL. Once the architecture
has parsed the IoT-DDL, the inputs and outputs are mapped
to their corresponding native types and the generic actions are
mapped to platform-specific function calls. The API Engine
handles the execution of the bundle upon receiving the corre-
sponding API call from other things in the smart space.

D. ATLAS THING SECURITY
As mentioned earlier, the third essential requirement for
things to be part of the ecosystem is the capability to

VOLUME 6, 2018 24057



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

interact with thing mates in a secure way that enables both the
authorization and authentication aspects of communication.
The architecture exploits the lightweight symmetric key [38]
encryption of AES to create secure dynamic communication
channels between things and thing mates.

AES is a widely used symmetric lightweight block cipher
security protocol [36], [37], [39]. For AES, the default block
size is 128 bits or 16 bytes. A mode of operation describes
how to repeatedly apply a cipher’s single block operation to
securely transform amounts of data larger than a block. Each
mode requires an initialization vector (IV) to ensure distinct
ciphertexts are produced even when the same plaintext is
independently encrypted multiple times with the same key.
In the cipher block-chaining (CBC) mode of operation, each
block of plaintext is XORed with the previous ciphertext
block before it is encrypted. This way, each ciphertext block
depends on all plaintext blocks processed up to that point.
CBC is the most commonly used mode of operation.

The Atlas thing architecture utilizes AES with CBC as
the mode of operation using the Crypto++ library [41]. The
security engine of the tweeting sublayer assumes a master
secret key and IV, and encryption/decryption methods are
securely stored within the device secure elements of the OS
services. These security elements are unique to Atlas things in
smart spaces, where the space owner can generate a newmas-
ter key and IV to be securely deployed to the things through
the device management server. The security engine generates
dynamic session keys from the symmetric predefined master
key. Atlas thing A and Atlas thing B can establish a session
key as follows:

1. Thing A generates a random number (R1) and encrypts
a message holding its own ID and R1 using the master
key.

2. Thing B decrypts the message using the predefined
master key, saves R1, and generates a new random
number (R2).

3. Thing B encrypts a message holding its own ID and
R2 using the master key.

4. Thing A and thing B each encrypt a concatenated value
of R1 and R2 using the master key and generate a
session key.

E. ATLAS THING ARCHITECTURE AND IoT-DDL
PROOF-OF-CONCEPT
Our proof of concept utilizes two things in a smart space,
a Raspberry Pi model B sensor platform running Raspbian
OS, and a Beaglebone Black sensor platform running
Angstrom OS. The Beaglebone Black thing is connected to
the on/off circuit of a coffee maker as an attached hardware
entity, while the Raspberry Pi thing offers an alarm clock
service as a built-in software entity, as shown in Fig. 12. The
IoT-DDL configuration files are developed and uploaded on
both things. These files indicate the identity of each thing,
including their inner entities, resources, and services. The
Beaglebone Black thing offers two services, one to start

FIGURE 12. Proof-of-concept implementation.

brewing coffee and remain on for a specific time duration, and
the other for switching off the coffee maker. The Raspberry
Pi thing, on the other hand, offers two services to set and
clear the software alarm clock entity. When both things are
powered, the proof-of-concept implementation of the Atlas
thing architecture in starts parsing the different sections and
subsections of the uploaded IoT-DDL. Each thing now identi-
fies itself, discovers the different services and functions it can
offer to the smart space it is located in, and starts generating
its own APIs. Each thing starts looking for thing mates by
broadcasting thing identity tweets, entity identity tweets, and
generated API advertisement tweets.

The prototype starts by assuming that an IoT application
in the Beaglebone Black thing requires turning on the coffee
maker when the alarm triggers. At the same time, both things
register themselves as OMA clients that can connect to the
OMA server and register their OMA standard objects and
Atlas objects. On the server side, an authorized user can
browse the different connected clients, view the list of reg-
istered objects, and update their attributes. We also provide a
NodeJS-based HTTP-log server that resides on an edge in the
smart space as an example of a thing attachment. The attach-
ment manager module of the DDL sublayer parses the attach-
ment settings (e.g., server URL, port, access information,
and update interval) through the IoT-DDL manager module.
The Raspberry Pi creates a communication channel to PUT
the current status of the thing (e.g., tweeting, executing an
application,management phase) when the status changes or at
every update interval if there are no changes.

Full details about the IoT-DDL configuration files for both
the Beaglebone and Raspberry Pi things, as well as a short
video of the coffee maker demo are available online as sup-
plemental materials [45].

VI. BENCHMARKING
In this section, we provide a benchmarking study to measure
time and energy consumption of the different Atlas thing

24058 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

TABLE 3. Sensor platform specifications.

architecture aspects developed on three heterogeneous things.
The study aims to show the feasibility of deploying the archi-
tecture on real platforms. The aspects benchmarked are the
thing’s capability to generate tweets, to encrypt and decrypt
action-based interactions, to be configured and managed,
and to interact using widely accepted communication proto-
cols. The things used in this study are the Raspberry Pi Model
B, Qualcomm Dragon Board 410C, and Beaglebone Black
sensor platforms with the specifications listed in Table 3.

For a unified measurement, we uploaded the same
IoT-DDL configuration file (which was shown earlier in
Section III) to the three things. The uploaded IoT-DDL shows
that the thing contains an attached coffee maker as a hard-
ware entity that provides two services (turn on for a certain
duration and turn off). The code footprint of the IoT-DDL in
addition to the current version of Atlas thing architecture that
imports the OMA-LwM2M standard and AES protocol and
supports both CoAP and MQTT communication standards is
13 megabytes approximately. The code footprint—the actual
machine instructions that resides the flash memory—shows
the proposed framework is lightweight enough to fit on con-
strained devices. Such small code footprint also reflects that
the actual running code does not require too much RAM to
execute.

Time is measured using the Unix-Chrono library for a
high-resolution clock cast tomicroseconds. Energy consump-
tion is measured using a PowerJive USB-based device that
calculates voltage and capacity [44]. To avoid data outliers,
the time measurement of a single operation is averaged over
five measurements. The energy consumption of a single oper-
ation is the average value obtained from running the operation
a large number of times in a 10-minute period. The energy
consumption of the processes running in the background of
the thing’s OS is also calculated and is subtracted from the
calculated energy consumption of the operation.

In the first subsection, we provide a benchmarking study
that focuses on the functionalities of both tweeting and DDL

TABLE 4. Benchmark time (in microseconds) and energy consumption (in
watt seconds).

FIGURE 13. Time comparison for device manager functionalities.

TABLE 5. Energy consumption (in watt seconds) measurements for OMA
device manager functionalities.

sublayers of the architecture, where we measure—in terms of
the time performance and energy consumed (Table 4)—the
Atlas thing’s capability to generate tweets and to encrypt and
decrypt action-based ad-hoc interactions. In the second sub-
section, we provide a set of experiments to benchmark both
time performance (Fig. 13) and energy consumption (Table 5)
of the different device management capabilities supported
by the architecture. The device management capabilities
include the ability of the thing to generate the different Atlas
objects, connect to the OMA server, and register the objects.
The second subsection also provides a set of experiments to
benchmark both time performance and energy consumption
for adopting the widely accepted IoT communication proto-
cols MQTT (Fig. 14 and Table 6) and CoAP (Fig. 15 and
Table 7). The communication capabilities include the dif-
ferent functionalities required by the thing to send tweets

VOLUME 6, 2018 24059



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 14. Time comparison for the different aspects of MQTT protocols.

TABLE 6. Energy consumption (in watt seconds) measurements for the
different aspects of MQTT protocol.

and listen to tweets from thing mates in the smart space.
The third subsection provides analysis and discussion on the
provided benchmarking study for the different functionalities
and capabilities of the Atlas thing architecture required by the
thing to engage in wide range of interactions and interconnec-
tions with other things in the smart space during the thing’s
lifetime.

A. BENCHMARKING TWEET GENERATION AND
SECURE INTERACTIONS
The first set of measurements focuses on the functionalities
of both tweeting and DDL sublayers of the architecture.
These functionalities are in terms of the thing’s capability
to generate tweets and to encrypt and decrypt action-based
interactions. The generated tweets are about thing identity
(64 bytes), thing entity (64 bytes), and the generated API
for each of the two services (60 bytes each). The size of the
generated tweets and APIs depends on the developed IoT-
DDL for the Atlas thing. However, we limited the sizes to
64 and 60 bytes for unified measurements on time and energy
on the different sensor platforms. The secure action-based
interaction (API call forwarded by the thing or received from
a thing mate) applies the AES-CBC mode of operation. AES
uses a key and IV, each at 16 bytes, to encrypt and decrypt
a 60-byte interaction. Table 4 shows the measurements of
both time (microseconds) and energy consumption (watt-
seconds) on the different hardware platforms. Analysis of
these measurements is presented in Section C.

FIGURE 15. Time comparison for the different aspects of CoAP protocols.

TABLE 7. Energy consumption (in watt seconds) measurements for the
different aspects of CoAP protocol.

B. BENCHMARKING OMA DEVICE MANAGEMENT AND
COMMUNICATION PROTOCOLS
The second set of experiments focuses on the architecture’s
management and communication functionalities. These func-
tionalities are in terms of OMA device management aspects
as well as the different communication protocols supported
by the architecture.

After the IoT-DDL is uploaded to the thing, the thing starts
generating Atlas objects for the corresponding IoT-DDL sec-
tions. The device manager module communicates with the
IoT-DDL manager module to access information about the
OMA management server (e.g., server IP address and access
parameters). The Atlas thing then registers itself as an OMA
client at the server, where the registration process requires
the thing to register a tree of its programmed objects (both
Atlas objects and standard OMA objects) at the server side.
For sake of simplicity, we limit Atlas object generation to the
descriptive metadata of the thing, the entity, and the attach-
ments. Fig. 13 compares the three sensor platform things we
used in terms of the time required to create Atlas objects on
the one hand, and connecting to the OMA server on the local
network and registering the objects’ tree on the other hand.
Table 5 illustrates energy consumption rate in terms of the
consumed watts per second of these functionalities on the
different sensor platforms.

Furthermore, the Atlas thing architecture supports the
widely accepted IoT communication protocol, MQTT, and
utilizes a connection with the cloud-based MQTT broker

24060 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

FIGURE 16. Atlas thing initialization phase and duty cycle.

HiveMQ dashboard [31] to publish and subscribe to the dif-
ferent topics. Fig. 14 compares the three sensor platforms
in terms of the time (in microseconds) required to connect
to the MQTT broker, publish a 64-byte tweet, subscribe to
a topic, and then get a 64-byte tweet from a thing mate.
Table 6 illustrates energy consumption in terms of the con-
sumed watts per second of the different supported MQTT
functionalities on the different sensor platforms. Fig. 15 com-
pares the three sensor platforms in terms of the time (in
microseconds) required to create a CoAP server at the thing
and wait for a tweet from a thing mate from one side, and
to create a client side that connects to the CoAP server of
a thing mate, then sends a 64-byte tweet from the other side.
Table 7 illustrates the energy consumption in terms of the con-
sumed watts per second of the different functionalities on the
different sensor platforms. It should be noted that this set of
experiments depends mainly on the network connection and
network module used. Analysis of the results of this second
set of measurements is presented in Section C.

C. ANALYSIS OF THE BENCHMARKING STUDY
We analyze the results of our benchmarking study in terms
of time performance and energy consumption. We start first
with the energy analysis. Understanding an Atlas thing duty
cycle, which is based on the Atlas thing architecture, helps
in analyzing the measured energy data. As Fig. 16 illustrates,
an Atlas thing goes through an initialization phase, followed
by one or more Atlas thing duty cycles until thing termination
(e.g., battery depletion). The initialization phase starts with
powering up the Atlas thing until it is ready to engage with
its thing mates and the device management server. In this
phase, the Atlas thing initializes the architecture and verifies
that the IoT-DDL is uploaded. The Atlas thing generates
Atlas objects, registers itself to the OMA server specified in
the IoT-DDL, and then generates tweets and APIs for the
offered services. Directly after the initialization phase, the
Atlas thing starts engaging with thing mates through tweets
and actionable interactions through theAtlas thing duty cycle.

The duty cycle starts running concurrent (threaded) server
and client processes to receive and send interactions, respec-
tively. Receipt of a management command triggers updates
of Atlas and OMA objects, as well as tweets and APIs, while
receipt of an interaction requires decrypting the interaction,
and mapping then executing the corresponding API.

We can calculate battery lifetime in terms of hours to run
an Atlas thing continuously using (1).

Battery lifetime
∼= Time of Duty Cycle

× (
Battery Capacity× Battery voltage
Energy consumed per Duty Cycle

) (1)

where battery lifetime is calculated in hours, battery capac-
ity is in milliamp hours (mAh), and battery voltage is the
battery’s initial voltage. The main assumption is that the
battery is capable of maintaining a voltage level over time to
operate the thing. Duty cycle includes the Atlas thing duty
cycle in addition to the background running processes of
the thing’s underlying OS. As an example, Rayovac 4AA
alkaline batteries with six volts and 2400 mAh capacity can
run (according to (1)) a Beaglebone Atlas thing for 28 hours,
a Dragon Board Atlas thing for 12 hours, and a Raspberry
Pi Atlas thing for 7.5 hours. Such large differences are due to
the processes running in the background of the thing’s OS and
the high capabilities of the Dragon Board and the Raspberry
Pi (e.g., keyboard, mouse) compared to Beaglebone Black.
To demonstrate the accuracy of the proposed equation for bat-
tery lifetime, Rayovac 4AA batteries were able to run Rasp-
berry Pi (which requires a minimum of 2000 mAh and five
volts to operate with full peripherals) for approximately six
hours. The difference between the expected and the real value
for the battery lifetime is due to the drop of the battery voltage
below five volts. Such a drop forces the Raspberry Pi to shut
down connected peripherals (e.g., Wi-Fi module). However,
most of real life examples of things that exist in smart spaces
either have their own continuous source of power (e.g., smart
home appliances) or efficient power management modules
(e.g., smartphones).

We next discuss time performance. The differences in
the measured time for the features and functionalities of
the Atlas thing architecture depend on the specifications of
each platform as mentioned in Table 3. For the first set of
measurements, the time to complete the operation mainly
depends on the clock frequency of the processor as well as
the available RAM to keep track of the different internal
operations and the results. ADragonBoard 410Cwith 1GBof
ARM and 1.2GHz quad-core performs faster compared to the
other platforms on the same set of operations. For the second
set of measurements, the time to complete the operation
mainly depends on the network connectivity and the current
traffic as well as the properties of the different Wi-Fi modules
mounted on each platform. It is worth noting that the Dragon
Board 410C with integrated 2.4GHz Wi-Fi module on board
performs better compared to the other platforms that are using
external USB Wi-Fi modules.

VOLUME 6, 2018 24061



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

VII. CONCLUSION
In this paper, we argue that the promise and transformative
success of the IoT vision will greatly depend on how its
main ingredient—the thing—is prepared, aligned, and made
able to engage in such a mission. The fragmented nature of
IoT things requires significant efforts to integrate, manage,
and configure such a wide heterogeneity of things. We pro-
pose IoT-DDL, a machine- and human-readable descriptive
language that tools a thing to self-discover and share its
own capabilities, entities, and services, including the various
cloud-based resources that could be attached to it to extend it
over time. Making things describable using IoT-DDL enables
self-discovery so the thing itself becomes self-aware of what
it can offer and what its capabilities are. It also empowers
the seamless integration, configuration, and management of
things with minimal human intervention and enables the
various secure interactions that support the distributed nature
of IoT. We also present the Atlas thing architecture, which
fully exploits the goals of the IoT-DDL and its specifications.
The architecture goes beyond and above standard embedded
OS services to provide new layers and services with novel
capabilities necessary for things to have to be part of the
IoT. In addition, the architecture takes advantage of widely
used device management, security, and IoT communication
standards to enable thing engagement in secure ad hoc inter-
actions with thing mates and space users. We prove the
feasibility of deploying the Atlas architecture and the IoT-
DDL on real hardware platforms through a proof-of-concept
implementation as well as a benchmarking study to validate
the feasibility of our approach. The study measures both
time performance and energy consumption rate. We believe
that our work in thing architectures will go far beyond just
enabling interactions and automatic generation of service
bundles and APIs, to pave the way for powerful programming
models that are currently missing. We are currently working
on refining our Atlas thing architecture with an ultimate aim
to formulate new IoT programming models and tools.

REFERENCES
[1] R. Want and S. Dustdar, ‘‘Activating the Internet of Things [Guest

editors’ introduction],’’ Computer, vol. 48, no. 9, pp. 16–20,
Sep. 2015.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things
(IoT): A vision, architectural elements, and future directions,’’ Future
Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[3] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of
Things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, 2012.

[4] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[5] L. Coetzee and J. Eksteen, ‘‘The Internet of Things—Promise for the
future? An introduction,’’ in Proc. IEEE IST-Africa Conf., May 2011,
pp. 1–9.

[6] L. Tan and N. Wang, ‘‘Future Internet: The Internet of Things,’’ in Proc.
3rd Int. Conf. Adv. Comput. Theory Eng. (ICACTE), vol. 5. Aug. 2010,
pp. V5-376–V5-380.

[7] J. Jimenez, M. Koster, and H. Tschofenig, ‘‘IPSO smart objects,’’ in Proc.
Position Paper IoT Semantic Interoperability Workshop, 2016, pp. 1–7.

[8] S. K. Datta and C. Bonnet, ‘‘A lightweight framework for efficient M2M
device management in oneM2M architecture,’’ in Proc. Int. Conf. Recent
Adv. Internet Things (RIoT), Apr. 2015, pp. 1–6.

[9] M. I. Robles and P. Jokela, ‘‘Design of a performance measurements
platform in lightweight M2M for Internet of Things,’’ in Proc. IRTF ISOC
Workshop Res. Appl. Internet Meas. (RAIM), 2015, pp. 1–4.

[10] M. Robles, D. D’Ambrosio, J. J. Bolonio, and M. Komu, ‘‘Device group
management in constrained networks,’’ in Proc. 13th IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom Workshops), Mar. 2016, pp. 1–6.

[11] C. A. L. Putera and F. J. Lin, ‘‘Incorporating OMA lightweight M2M
protocol in IoT/M2M standard architecture,’’ in Proc. IEEE 2nd World
Forum Internet Things (WF-IoT), Dec. 2015, pp. 559–564.

[12] S. Rao, D. Chendanda, C. Deshpande, and V. Lakkundi, ‘‘Implementing
LwM2M in constrained IoT devices,’’ in Proc. IEEE Conf. Wireless Sen-
sors (ICWiSe), Aug. 2015, pp. 52–57.

[13] G. Klas, F. Rodermund, Z. Shelby, S. Akhouri, and J. Höller, ‘‘‘Lightweight
M2M’: Enabling device management and applications for the Internet of
Things,’’ Vodafone, ARM, Ericsson, White Paper, Feb. 2014.

[14] Y. Xu and A. Helal, ‘‘Scalable cloud–sensor architecture for the Internet
of Things,’’ IEEE Internet Things J., vol. 3, no. 3, pp. 285–298, Jun. 2016.

[15] S. Helal and Y. Xu, ‘‘Scalable and energy-efficient cloud-sensor architec-
ture for cyber physical systems,’’ in Proc. NSF Workshop Big Data Anal.
CPS, EnablingMove IoT Real-TimeControl, Seattle,WA,USA,Apr. 2015.

[16] C. Chen and A. Helal, ‘‘Device integration in SODA using the device
description Language,’’ in Proc. IEEE 9th Annu. Int. Symp. Appl. Internet,
Jul. 2009, pp. 100–106.

[17] Device Description Language Specification (Version 1.2), Mobile Per-
vasive Comput. Lab., Univ. Florida, Gainesville, FL, USA, Nov. 2008.
[Online]. Available: https://www.cise.ufl.edu/~helal/atlas/ddl/DDL-Spec-
1.2.2.pdf

[18] (2016). Google Weave. [Online]. Available: http://developers.google.
com/weave/

[19] (2016). Google Brillo. [Online]. Available: http://developers.google.
com/brillo/

[20] (2016). Amazon AWS IoT. [Online]. Available: http://www.
aws.amazon.com/iot/

[21] (2016). Amazon AWS IoT. [Online]. Available: http://docs.aws.
amazon.com/iot/latest/developerguide/what-is-aws-iot.html

[22] (2017). Eclipse Wakaama. [Online]. Available: https://projects.eclipse.
org/projects/technology.wakaama

[23] (2017). Wakaama Implementation of the Open Mobile Alliance’s
Lightweight M2M. [Online]. Available: https://github.com/eclipse/
wakaama

[24] LightweightM2M Editor for OMA Objects and Resources. [Online]. Avail-
able: http://devtoolkit.openmobilealliance.org/OEditor

[25] (2017). LwM2M XML Schema From Editor Schema. [Online].
Available: http://technical.openmobilealliance.org/tech/profiles/LWM2M.
xsd

[26] C. Chen and A. Helal, ‘‘A device-centric approach to a safer Internet
of Things,’’ in Proc. Int. Workshop Netw. Object Memories Internet
Things (NOMe-IoT), Beijing, China, Sep. 2011, pp. 1–6.

[27] C. Chen and S. Helal, ‘‘Sifting through the jungle of sensor standards,’’
IEEE Pervasive Comput., vol. 7, no. 4, pp. 84–88, Oct./Dec. 2008.

[28] (2014).MQTT is a Machine-to-Machine (M2M) ‘Internet of Things’ Con-
nectivity Protocol. [Online]. Available: http://Mqtt.org

[29] J. King, R. Bose, H.-I. Yang, S. Pickles, and A. Helal, ‘‘Atlas: A service-
oriented sensor platform: Hardware and middleware to enable pro-
grammable pervasive spaces,’’ in Proc. IEEE Conf. Local Comput. Netw.,
Nov. 2006, pp. 630–638.

[30] Eclipse Paho Open-Source Implementation of MQTT Project. [Online].
Available: https://eclipse.org/paho/

[31] (2017). HiveMQ MQTT Dashboard. [Online]. Available: https://mqtt-
dashboard.com/

[32] (2017). Web of Things at W3C. [Online]. Available: https://w3.org/WoT/
[33] (2016). Experimental Implementation of the Web of Things Framework.

[Online]. Available: https://github.com/w3c/web-of-things-framework
[34] (2016). The Constrained Application Protocol (CoAP). [Online]. Avail-

able: http://coap.technology/
[35] The Constrained Application Protocol (CoAP), document RFC 7252,

2014. [Online]. Available: https://www.tools.ietf.org/html/rfc7252
[36] M. Katagi and S. Moriai, ‘‘Lightweight cryptography for the Internet of

Things,’’ Sony Corp., Tokyo, Japan, Tech. Rep., 2008, pp. 7–10.
[37] K. Gaurav, P. Goyal, V. Agrawal, and S. L. Rao, ‘‘IoT transaction security,’’

in Proc. 8th Int. Conf. Internet Things (IoT), 2015, pp. 5–6.
[38] M. Ebrahim, S. Khan, and U. B. Khalid. (May 2014). ‘‘Symmetric algo-

rithm survey: A comparative analysis.’’ [Online]. Available: https://arxiv.
org/abs/1405.0398

24062 VOLUME 6, 2018



A. E. Khaled et al.: IoT-DDL—Device Description Language for the ‘‘T’’ in IoT

[39] J. Thakur and N. Kumar, ‘‘DES, AES and Blowfish: Symmetric key
cryptography algorithms simulation based performance analysis,’’ Int.
J. Emerg. Technol. Adv. Eng., vol. 1, no. 2, pp. 6–12, 2011.

[40] CoAP Implementation by Noisy Atom. [Online]. Available: http://www.
noisyatom

[41] (2014). Crypto Library of Cryptographic Schemes. [Online]. Available:
https://www.cryptopp.com

[42] (2013). NXP A700X_Family for Secure Authentication Microcontroller.
[Online]. Available: https://www.mouser.com/ds/2/302/A700X_FAM_
SDS-119904.pdf

[43] (2017). Samsung ARTIK Modules. [Online]. Available:
https://www.artik.io/modules/

[44] (2017). PowerJive USB Voltage/Amps Power Meter. [Online]. Available:
http://www.measuringsupply.com/artifact/1402679/

[45] (2017). Coffee Maker Demo Video and Things IoT-DDL Files
as Additional Online Materials on GitHub. [Online]. Available:
https://www.github.com/AEEldin/IoTDDL_CoffeeMakerDemo

[46] (2017). Atlas IoT-DDL Builder Web Tool. Accessed: 2017. [Online]. Avail-
able: https://www.cise.ufl.edu/~aekhaled/AtlasIoTDDL_Builder.html

[47] (2012).Constrained RESTful Environments (CoRE) Link Format. [Online].
Available: https://www.tools.ietf.org/html/rfc6690

[48] S. K. Datta and C. Bonnet, ‘‘Describing things in the Internet of Things:
From CoRE link format to semantic based descriptions,’’ in Proc. IEEE
Int. Conf. Consum. Electron.-Taiwan (ICCE-TW), May 2016, pp. 1–2.

[49] S. Käbisch and D. Anicic, ‘‘Thing description as enabler of semantic inter-
operability on the Web of Things,’’ in Proc. IoT Semantic Interoperability
Workshop, 2016, pp. 1–3.

[50] H.Hasemann, A. Kröller, andM. Pagel, ‘‘RDF provisioning for the Internet
of Things,’’ in Proc. 3rd IEEE Int. Conf. Internet Things, Wuxi, China,
Oct. 2012, pp. 143–150.

[51] C++ Micro Services. [Online]. Available: http://cppmicroservices.org/
[52] Open Services Gateway Initiative Alliance. [Online]. Available:

https://osgi.org/

AHMED E. KHALED received the B.Sc. and
M.Sc. degrees in computer engineering fromCairo
University, Egypt, in 2011 and 2013, respectively.
He is currently pursuing the Ph.D. degree in
computer engineering, with the Department of
Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL, USA.
His current research interests include Internet of
Things, smart spaces, and ubiquitous computing.

ABDELSALAM (SUMI) HELAL (F’15) received
the Ph.D. degree in computer sciences from Pur-
due University, West Lafayette, IN, USA. He is
currently a Professor and the Chair in digital health
with the School of Computing and Communica-
tions, and with the Division of Health Research,
Lancaster University, U.K. Before joining Lan-
caster University, he was a Professor with the
Department of Computer and Information Sci-
ence and Engineering, University of Florida, USA,

where he directed the Mobile and Pervasive Computing Laboratory and the
Gator Tech Smart House. His research interests include pervasive systems,
the Internet of Things, smart spaces, with applications to digital health and
assistive technologies for successful aging and independence.

WYATT LINDQUIST received the B.Sc. degree
in computer engineering from the University of
Florida, Gainesville, FL, USA, in 2017. He is
currently pursuing the Ph.D. degree in com-
puter science with the School of Computing and
Communications, University of Lancaster, U.K.
His current research interests include Internet of
Things, operating systems, and embedded sys-
tems, with applications to digital health.

CHOONHWA LEE received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, in 1990
and 1992, respectively, and the Ph.D. degree
in computer engineering from the University of
Florida, Gainesville, FL, USA, in 2003. He is
currently a Professor with the Division of Com-
puter Science and Engineering, Hanyang Univer-
sity, Seoul. His research interests include cloud
computing, peer-to-peer and mobile networking

and computing, and services computing technology.

VOLUME 6, 2018 24063


	INTRODUCTION
	RELATED WORK
	IoT-DDL SPECIFICATIONS
	ATLAS THING SECTION
	THING ENTITIES SECTION
	THING ATTACHMENTS SECTION
	EXAMPLE IoT-DDL

	OVERVIEW OF THE ATLAS THING ARCHITECTURE
	DDL SUBLAYER
	SUMMARY OF OTHER SUBLAYERS

	IMPLEMENTATION
	THING PROVISIONING AND MANAGEMENT
	ATLAS THING COMMUNICATION
	ATLAS THING BUNDLES
	ATLAS THING SECURITY
	ATLAS THING ARCHITECTURE AND IoT-DDL PROOF-OF-CONCEPT

	BENCHMARKING
	BENCHMARKING TWEET GENERATION AND SECURE INTERACTIONS
	BENCHMARKING OMA DEVICE MANAGEMENT AND COMMUNICATION PROTOCOLS
	ANALYSIS OF THE BENCHMARKING STUDY

	CONCLUSION
	REFERENCES
	Biographies
	AHMED E. KHALED
	ABDELSALAM (SUMI) HELAL
	WYATT LINDQUIST
	CHOONHWA LEE


