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Towards a generalized toxicity 
prediction model for oxide 
nanomaterials using integrated 
data from different sources
Jang-Sik Choi1, My Kieu Ha2, Tung Xuan Trinh2, Tae Hyun Yoon 2 & Hyung-Gi Byun   1

A generalized toxicity classification model for 7 different oxide nanomaterials is presented in this study. 
A data set extracted from multiple literature sources and screened by physicochemical property based 
quality scores were used for model development. Moreover, a few more preprocessing techniques, 
such as synthetic minority over-sampling technique, were applied to address the imbalanced class 
problem in the data set. Then, classification models using four different algorithms, such as generalized 
linear model, support vector machine, random forest, and neural network, were developed and their 
performances were compared to find the best performing preprocessing methods as well as algorithms. 
The neural network model built using the balanced data set was identified as the model with best 
predictive performance, while applicability domain was defined using k-nearest neighbours algorithm. 
The analysis of relative attribute importance for the built neural network model identified dose, 
formation enthalpy, exposure time, and hydrodynamic size as the four most important attributes. 
As the presented model can predict the toxicity of the nanomaterials in consideration of various 
experimental conditions, it has the advantage of having a broader and more general applicability 
domain than the existing quantitative structure-activity relationship model.

Quantitative structure-activity relationship (QSAR) model, which was developed by Corwin Hansch1, represents 
a technology aimed at providing estimates of many laboratory test results before the tests are conducted. The 
classic QSAR predicts biological activity related to various substances, based on a molecular structure which is 
represented as a vector of descriptors such as molecular graphs2, Simplified Molecular Input Line Entry Systems 
(SMILES)3, and International Chemical Identifiers (InChI)4.

During the last decade, various nanomaterials have been developed and extensively exploited in a vari-
ety of manufacturing processes for products and healthcare, including paints, filters, insulation, semicon-
ductors, cosmetics, and biomedical devices5. In the case of nanomaterials, their physicochemical property, 
quantum-mechanical property, and different biological profile determine their interaction with living organ-
isms6–8. It has been found that the inhalation, dermal contact and oral ingestion of nanomaterials could pose a 
risk to humans and environments9,10. Uptake of nanomaterials has been demonstrated to occur from epithelial 
and endothelial cells11. Therefore, the risk assessment for the nanomaterials has been considered as the important 
task in the nanotechnology field.

For nanomaterials, as most QSAR modelling activities are based on in vivo or in vitro data from particular 
experimental conditions (or obtained with different protocols)12–17, the applicability domain of the QSAR model 
is becoming narrower and more limited. Under this circumstance, the nanotechnologists have to always manually 
find specific QSAR models applicable to particular nanomaterials to screen their toxicity. Therefore, developing 
QSAR models having wider applicability domain is required so that the user such as nanotechnologists, nano-
material manufacturers, and researcher easily use the models. In addition, the toxicity of nanomaterials varies 
according to the biological conditions such as assay method, cell type, cell line, cell origin, and cell species. This 
has driven our research toward developing a generalized toxicity prediction model.
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Developing the generalized toxicity prediction model requires a standardized database containing compre-
hensive toxicity data of nanomaterials obtained using international protocols and good laboratory practice (GLP). 
In addtion, the quality and completeness of the toxicity data must be assessed and validated18–21.

Under such circumstances, Safe and Sustainable Nanotechnology (S2NANO), a research group in the Republic 
of Korea, built a S2NANO database (www.s2nano.org) including various experimental results related to nanoma-
terials obtained from different sources. The quality and completeness of collected data in the S2NANO database 
are assessed and validated using a physicochemical(PChem) score screening and nano-specific data gap filling 
method proposed by S2NANO22. The PChem score screening system evaluates the quality of physicochemical 
data while the nano-specific data gap filling method replaces missing values with manufacturer’s specifications 
and/or estimations.

For development of general models applicable to nanomaterial toxicity prediction, there has been an initial 
sign for developing QSAR models using quasi-SMILEs representing all conditions related to physicochemical 
properties and biological profiles such as toxic assay method, cell line, and so on23–26. The values of the physico-
chemical properties and biological profiles are coded to quasi-SMILES expressed in a simple syntactic sequence 
(i.e., character string). Quasi-QSAR model developed using the quasi-SMILES presented more generalized QSAR 
model than existing one. However, as the quasi-SMILES is made up using limited characters, it’s difficult effi-
ciently to assign characters when the data contains many records and a wide range of data.

The solution is to use the appropriate pre-processing techniques to transform the comprehensive toxicity data 
into a numeric input metric suitable for generalized toxicity prediction models.

The object of this study is to develop a generalized toxicity prediction model for oxide nanomaterials using the 
S2NANO database, which consists of various experimental results for the nanomaterials. The model development 
methodology and results of the model development and validation were presented. In addition, effects of a few 
more preprocessing techniques were described in this paper.

Materials and Methods
Model development workflow.  Figure 1 shows the workflow for the development of generalized QSAR 
models that are able to determine toxicity based on different biological conditions. A data set comprised of 574 
observations was used in developing the models. Various methods were carried out in the preprocessing step and 
univariate analysis was conducted to identify the key differences between the toxic class and nonToxic class. After 
that, the data set was used for model development and validation. In addition, reliability of the developed model 
was validated using toxicity data obtained from the laboratory experiment conducted by S2NANO group. Four 
modelling algorithms, including the generalized linear model (GLM), support vector machine (SVM), random 
forest (RF), and neural network (NNET), were used for building the models, and their performance was evaluated 
via measures based on the confusion matrix. Analysis of relative optimal descriptors (attributes) was conducted. 
Finally, the k-nearest neighbors (kNN)-based applicability domain was defined in order to ensure the reliable 
prediction of the model which showed the best performance.

Experimental Data.  The data set with high PChem scores in the S2NANO database, which consists of var-
ious experimental results related to 7 oxide nanomaterials (ZnO, TiO2, SiO2, Fe3O4, Al2O3, CuO, and Fe2O3), was 
used for building a QSAR model (see S2NANO data for more information).

Figure 1.  Model development workflow.

http://www.s2nano.org
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The PChem score representing data quality level is criteria which revised and expanded from existing evalua-
tion criteria18,19 for assessing the quality of published experimental data on nanomaterials. The existing evaluation 
criteria include assessment as to whether or not toxicological data were obtained using international protocols 
(i.e., EU, EPA, FDA, OECD, etc.). In addition, the criteria evaluation method considers GLP. If data was generated 
in a laboratory that used GLP principles then, the quality of data should be better than that of data from a labora-
tory that was not working according to GLP principles. Using these reference criteria, the PChem scoring method 
evaluates the data quality taking into account the data source (experiment, manufacture, and article) and data 
method (the characterization methods for physicochemical properties: e.g., TEM, DLS, BET, etc.). The detailed 
criteria of PChem score are listed in Supplementary Table S1. High-PChem score means that the toxicity data was 
generated in a laboratory that used GLP principles and the physicochemical prosperities were characterized by 
widely recognized and acknowledged techniques (TEM, DLS, BET, etc. suggested by the OECD). As good quality 
input always result in the accurate prediction of properties, high quality data thoroughly evaluated by PChem 
scoring method was used in this paper.

15 attributes (physicochemical (PChem), quantum-mechanical (QM), and different biological profile (Tox)) 
listed in Table 1 were used as input descriptors.

Cell viability (%) was classified as either the toxic class or nonToxic class: if the cell viability was less than 50%, 
it was classified as the toxic class; otherwise, it was classified as the nonToxic class. The cell viability classified was 
used as an endpoint. As the data was collected from different sources, various assay methods, cell names, cell spe-
cies, cell origins, and cell types were involved as nominal attributes in the data. The values of nominal attributes 
are listed in Supplementary Table S2.

Results and Discussion
Data preprocessing.  Most QSAR models aim to predict endpoints related to nanomaterials under par-
ticular experimental conditions; however, the model which was developed in this paper, using the data extracted 
from S2NANO database, is aimed to predict endpoints for various nanomaterials under diverse experimental 
conditions. It is possible to predict endpoints under different experiment conditions if the value of each attrib-
ute is properly preprocessed according to their data characteristic. The used data consists of numeric attributes 
(PChem and QM) and nominal attributes (Tox); these attributes were normalized and encoded by taking their 
characteristic, data type (numeric or nominal), and model performance.

Normalization for numeric attributes.  As the measurement unit can affect the performance of the 
model, the data should be normalized or standardized27,28. Normalizing data is one step in addressing data that 
does not fit the model assumptions and is also used in coercing different variables to have similar distributions.

The numeric attributes in the used data were normalized via min-max, z-score, and log. The log transforma-
tion is often used for data which have positive skewness29–31. The normalization method, which is suitable for 
the data, was chosen by considering the distribution of each attribute. The skewness for each numeric attrib-
ute, a measure of symmetry in a distribution, is listed in Table 2. As attributes with the exception of hydrody-
namic size, ΔHsf, and Ev have a right (positive) skewed distribution, those attributes were normalized using a 
log transformation.

The data of hydrodynamic size and ΔHsf were standardized via z-score because their skewed value is close to 
zero. As the skewness of Ev and χMeO was not improved after a log transformation, they were normalized by a 
min-max method. Most skewness for numeric attributes got closer to zero with the exception of Ev and χMeO 
after normalization. A zero value of skewness means that the tails on both sides of the mean balance out overall.

Additionally, the performance of the model according to different normalization methods including one con-
sidering the skewness was compared for each method in order to determine the optimal normalization method 
for each modelling algorithm. 10 data subsets divided randomly were normalized using min-max, z-score, log10, 
and combination (min-max, z-score, and log10) methods, and were used for building models. The models built 
were evaluated using 10-fold cross validation and a confusion matrix (the average value of balanced accuracy for 
10 subsets was used). The results confirmed that log transformation is applicable to the GLM and the combination 
normalization method is suitable for the SVM and NNET algorithms as listed in Table 3. In particular, RF showed 
roughly similar performance regardless of the normalization method used.

PChem attributes QM attributes Tox attributes

Core size (nm)
5.9–369

Surface charge (mV)
−47.60–42.8

Formation enthalpy
ΔHsf (eV)
−17.35–−1.61

Assay method (AM)
8 types

Cell type (CT)
(normal/cancer)

Conduction band energy
Ec (eV)
−5.17–−1.51

Cell name (CN)
14 cells

Exposure time
(hours)
3–72

Hydrodynamic size (nm)
74–1843

Specific surface area (m2/g)
7.0–576.23

Valence band energy
Ev (eV)
−11.12–−6.51

Cell species (CS)
3 species (Human, 
Hamster, Mouse)

Cell viability (%)
(toxic or nontoxic)
−3.87–151.11

Electronegativity
χMeO (eV)
5.67–6.19

Cell origin (CO)
8 types

Dose (mg/mL)
0–1440

Table 1.  Attributes used in the model development.



www.nature.com/scientificreports/

4SCIENtIfIC REPOrTS |  (2018) 8:6110  | DOI:10.1038/s41598-018-24483-z

One-Hot encoding for nominal attributes.  The categorical data must be converted to a numerical form 
because most prediction algorithms cannot operate on label data directly32–37; it may be converted using integer 
encoding and one-hot encoding. Integer encoding is used when the categorical attribute has a natural ordered 
relationship between each element, while one-hot encoding is used when the categorical attributes does not have 
an ordinal relationship. As the categorical attributes such as assay method, cell line, and so on do not have an ordi-
nal relationship, they were encoded into dummy variables using the one-hot encoding. This encoding method 
allows the model to classify toxicity by considering various experimental conditions.

Data division.  A data set with a high PChem score was divided into 10 subsets randomly because the dan-
gers of using the same data to both select and fit the model have been known for many years38. As more data 
subsets are used, the model performance converges in accordance with the law of large numbers39. The 10 subsets 
were divided into a training set and test set with a ratio of 60:40 for internal validation and external validation, 
respectively.

Handling class imbalance problem.  The class imbalance problem occurs when one of the classes has 
more samples than the other classes40. Most traditional classification algorithms can be limited in their perfor-
mance on highly unbalanced data41–45. As the sample size of the two classes in the data used is highly imbal-
anced (toxic 16%, nonToxic 84%), SMOTE, which generates synthetic minority examples to over-sample the 
minority class46, was used to address the problem of class imbalance. The models for imbalanced data (ID) and 
balanced data (BD) were developed and compared in order to examine if the class balancing affects the predictive 
performance.

Univariate analysis.  Univariate analysis (Wilcoxon-Mann-Whitney-test (WMW)) was conducted to exam-
ine difference of the distribution between the toxic class and nonToxic class. As the data used are not normally 
distributed, a WMW test was carried out. WMW, which is used to assess not difference of means but the distribu-
tion of two independent groups, is the nonparametric alternative test to the independent sample t-test47. In this 

Attribute Skewness (before) Method Skewness (after)

Core size 3.35 Log10 0.15

Surface charge 1.68 Log10 −0.04

Hydrodynamic size 0.46 Z-score 0.46

Surface area 3.24 Log10 0.34

ΔHsf −0.35 Z-score −0.35

Ec 1.75 Log10 0.09

Ev −2.85 Min–max −2.85

χMeO 2.28 Min–max 2.28

ET 1.39 Log10 −0.60

Dose 11.30 Log10 −0.14

Table 2.  Skewness for each numeric attribute.

Model
Normalization 
method

True 
positive

False 
positive

False 
negative

True 
negative Sensitivity Specificity

Balanced 
accuracy

GLM

Min-Max 39 12 16 278 71% 96% 83%

z-score 39 12 16 278 71% 96% 83%

Log 46 11 9 279 84% 96% 90%

combination 45 8 10 282 82% 97% 90%

SVM

Min-Max 28 6 27 284 51% 98% 74%

z-score 29 7 26 283 53% 98% 75%

Log 40 5 15 285 73% 98% 86%

combination 41 5 14 285 75% 98% 86%

RF

Min-Max 45 5 10 285 82% 98% 90%

z-score 44 5 11 285 80% 98% 89%

Log 45 5 10 285 82% 98% 90%

combination 45 5 10 285 82% 98% 90%

NNET

Min-Max 38 15 17 275 69% 95% 82%

z-score 40 6 15 284 73% 98% 85%

Log 43 8 12 282 78% 97% 88%

combination 48 8 7 282 87% 97% 92%

Table 3.  Model performance for each normalization method.
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analysis, the high p-value indicates that there is a significant distribution difference between the two independent 
groups in a particular attribute. It means that the attribute with the high p-value in the WMW analysis could be 
considered as an important factor for the group discrimination.

The results of WMW are listed in Table 4. The attributes were sorted in descending order by p-value. ΔHsf has 
a significant mean difference between classes. In addition, it was confirmed that all attributes have a meaningful 
mean difference between classes (All p-values < 0.05). The important mean difference was identified in order of 
the QM attribute, Tox attribute, and PChem attribute.

Model development and validation.  Four modelling algorithms, including GLM, SVM, RF, and NNET, 
were used for building the models, while the performance of models was evaluated by measures based on the 
confusion matrix.

GLM is extensions of traditional regression models that allow the mean to depend on the explanatory varia-
bles through a link function, and the response variable to be any member of a set of distributions called the expo-
nential family48. GLM covers widely used statistical models, such as linear regression for normally distributed 
responses, logistic models for binary data, log-linear models for count data, and so on through its very general 
model formulation.

SVM is one of the most popular machine learning algorithms that can be employed for both classification and 
regression purposes49. In particular, SVM is more commonly used in classification problems. It performs classi-
fication by finding the hyperplane that maximizes the margin between the two classes. The vectors (cases) that 
define the hyperplane are the support vectors.

RF is an ensemble learning method, consists of an arbitrary number of simple trees, which are used to deter-
mine the final outcome50. For classification problems, the ensemble of simple trees votes for the most popular 
class.

NNET, usually called neural network, is a mathematical model and commonly used for classification in data 
science51. NNET is typically organized in layers such as input layer, hidden layer, and an output layer. An input 
pattern is applied to the input layer and its effect propagates, layer by layer, through the network until an output 
is produced. NNET is trained using optimization techniques like gradient descent with consideration for error 
between target and the output.

Confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the per-
formance of an algorithm, typically a supervised learning one52. Each row of the matrix represents the instances in 
a predicted class while each column represents the instances in an actual class (or vice versa). Various measures, 
such as accuracy, sensitivity, specificity, and precision, are derived from the confusion matrix. This matrix is often 
used to describe the performance of a classification model.

The models were developed using R caret packages53. Basic measures such as balanced accuracy, sensitivity, 
and specificity from the confusion matrix, where toxic class is a positive instance and nontoxic class is a negative 
instance, were used. Accuracy computed from a confusion matrix is not a reliable measure for the real perfor-
mance of a classifier, because it will yield misleading results if the data set is unbalanced. Therefore, the balanced 
accuracy considering both sensitivity and specificity were used.

The training set and test set were used for the model development, internal validation, and external valida-
tion. The validation results for 10 splits were averaged. In addition, toxicity data generated from an experiment 
conducted by S2NANO research group was used for the reliability validation of a developed model which showed 
the best performance.

Internal validation.  The commonly used k-fold cross validation technique is used for evaluating predictive 
models54,55. 10-fold cross validation is commonly used56. In particular, this validation method is used to avoid 
the overfitting problem and to estimate the general performance of model57,58. 10-fold cross validation was used 
for internal validation of models built using imbalanced and balanced data from the training data (60% of total 
data). The models built using the balanced training data showed better accuracy than the models built using the 
imbalanced training data. The basic measures of the confusion matrix for internal validation are listed in Table 5. 

Attribute

nonToxic Toxic

z p-valueMean rank Sum of rank Mean rank Sum of rank

ΔHsf 263.65 129188.50 426.63 35836.50 −8.93 4.28E-19

χMeO 306.09 149985.50 179.04 15039.50 7.03 2.07E-12

Dose 267.43 131041.50 404.57 33983.50 −7.02 2.23E-12

Surface area 307.31 150582.00 171.94 14443.00 6.92 4.37E-12

Ev 269.86 132233.50 390.38 32791.50 −6.60 4.04E-11

Exposure time 273.44 133986.50 369.51 31038.50 −5.23 1.70E-07

Ec 275.76 135124.50 355.96 29900.50 −4.39 1.11E-05

Core size 275.48 134987.00 357.60 30038.00 −4.21 2.58E-05

Surface charge 277.10 135778.00 348.18 29247.00 −3.64 2.70E-04

Hydrodynamic size 281.45 137910.50 322.79 27114.50 −2.11 3.45E-02

Table 4.  WMW analysis of attributes in data set.
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The best results in terms of the basic measures were obtained from the NNET model built using balanced training 
data. Accuracy was improved on all models developed using the balanced training data.

External validation.  Table 6 lists the results of external validation for the models built using the imbalanced 
and balanced data from the test data (40% of total data). Most models built using the balanced data showed better 
balanced accuracy, with the exception of the GLM model. The best results in terms of the basic measures were 
obtained from the NNET model built using balanced training data, as was the case for internal validation.

There was a trade-off between sensitivity and specificity. In general, as the minority samples (toxic class) rarely 
occur but very important, the classification model should be sensitive to the minority samples than majority 
them.

Reliability validation.  For reliability validation of the developed model, the toxicity data including 144 rows 
generated from an experiment conducted by S2NANO research group was used as the validation set. A549 and 
BEAS-2B cell lines were exposed to four oxide nanoparticles (SiO2, ZnO, TiO2, and Fe3O4) with various physico-
chemical properties with respect to the core size, hydrodynamic size, and surface charge. The exposure time was 
24 hours. The concentration of nanomaterials ranged from 0 to 100 ppm. MTS and CCK-8 assays were used to 
measure the cell viability of the A549 and BEAS-2B cell lines, with the results expressed as a percentage compared 
with control samples. A data row was labeled “toxic” if the viability percent was less than 50%; otherwise, it was 
considered “nonToxic”. After labeling, it was confirmed that the number of the toxic and nontoxic class was 14 
and 130, respectively.

After the preprocessing step for the toxicity data, the data was used for the reliability validation of the devel-
oped NNET model. The validation results are listed in Table 7 (see S2NANO reliability validation data for more 
information).

The model showed good prediction result. It implies that the developed model could be considered as a more 
generalized predictive model, which is capable of predicting the toxicity label for the nanomaterials with consid-
eration for the diverse experimental conditions.

In the developed model, the ZnO nanomaterials with low ΔHsf value were classified to the toxic class as 
its dose was increased. The model was more sensitive to the dose change of ZnO in the A549 cell line than 

Model Training data
True 
positive

False 
positive False negative True negative Sensitivity Specificity

Balanced 
accuracy

GLM
ID 46 11 9 279 84% 96% 90%

BD 255 30 20 245 93% 89% 91%

SVM
ID 41 5 14 285 75% 98% 86%

BD 269 5 6 270 98% 98% 98%

RF
ID 45 5 10 285 82% 98% 90%

BD 268 2 7 273 97% 99% 98%

NNET
ID 48 8 7 282 87% 97% 92%

BD 272 6 3 269 99% 98% 98%

Table 5.  Internal validation result.

Model Training data
True 
positive

False 
positive False negative True negative Sensitivity Specificity

Balanced 
accuracy

GLM
ID 25 6 4 194 86% 97% 92%

BD 26 21 3 179 90% 90% 90%

SVM
ID 22 5 7 195 76% 98% 87%

BD 25 10 4 190 86% 95% 91%

RF
ID 24 3 5 197 83% 99% 91%

BD 25 9 4 191 86% 96% 91%

NNET
ID 23 4 6 196 79% 98% 89%

BD 27 13 2 187 93% 94% 93%

Table 6.  External validation result.

True 
positive

False 
positive

False 
negative

True 
negative Sensitivity Specificity

Balanced 
accuracy

9 8 5 122 64% 93% 79%

Table 7.  Reliability validation result.
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BEAS-2B cell line. In contrast, the other oxide nanomaterials such as SiO2, TiO2, and Fe3O4 with relatively high 
ΔHsf value were classified to nontoxic class.

The range of attributes changes according to PChem score. If data set with the high PChem score is used, the 
range of attributes is reduced. In contrast, the range is extended when dataset with the over medium PChem score 
is used. Because of this characteristic, lesser/bigger range of attributes was not considered in the models.

It may be possible to estimate the toxicity of the lesser size using extrapolation, the process of estimating, 
beyond the original observation range. If the discrimination threshold of the developed QNTR models was well 
adjusted, the extrapolation of the lesser or greater size may be valid.

The toxicity data for the reliability validation of the developed model includes the toxicity results of the lesser 
hydrodynamic size (69.1 nm and 45.6 nm) of Fe3O4 nanomaterials. After the reliability validation with the toxic-
ity data, it confirmed that the developed model correctly classified a toxic class of the toxicity data. However, the 
extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Therefore, the 
applicability domain of the model was defined to avoid such risks.

Important attribute analysis.  Variable (attribute) importance can be relatively measured and quantified 
based on information obtained from the models. The advantage of measuring the importance based on built 
model information is that it is more closely tied to the model performance and it may be able to incorporate the 
correlation structure between the predictors into the importance calculation59. The analysis of relative attribute 
importance for the built NNET model was carried out using a varimp function of caret package supported in R 
software60. The importance is measured based on weights between layers in the NNET model.

The results of important attribute analysis are presented in Table 8. Dose, ΔHsf, Exposure time, and 
Hydrodynamic size were relatively identified as important attributes when compared to the other attributes; this 
means that they acted as important attributes in classifying materials as either toxic or nonToxic. This result is 
similar to the previous result of MWM analysis.

Dose and ΔHsf were identified as important attributes in both analyses. That is, they play an important role in 
determining toxic label. In contrast, the exposure time and hydrodynamic size, that their importance was lower 
in the Univariate analysis, were considered as an important factor in the important attribute analysis based on 
information of the developed model. The toxicity data set for various nanomaterials under diverse experimen-
tal conditions were used in the model development. The effects and heterogeneities associated with the diverse 
experimental conditions were not considered in the Univariate analysis. On the other hand, the weights to be 
used for computing the relative importance for each attribute are adjusted with consideration for the diverse 
experimental conditions during the model training process. It indicates that the exposure time and hydrodynamic 
size are considered as an important attribute in the real situation. This result implies that the important attributes 
analysis provides more reliable results than the Univariate analysis in case that dataset including diverse environ-
ment conditions (e.g., cell line, assay method, etc.).

The importance of attributes were relatively measured based on built model information such as weight 
adjusted during model training. In the real scenario, the cell origin is an important attribute contributing to 
the change of the toxicity. However, the relative importance of the cell origin was measured low in the analysis. 
The result does not mean that the cell origin does not affect the toxicity change. The model cannot precisely 
predict the toxicity without the descriptive attributes such as cell origin, cell species, cell type, cell name, and 
assay method. The model predicts the toxicity of nanomaterial using all available information from the whole 
attributes. The descriptive attributes (nominal attributes) were coded to dummy variables. The dummy variables 
act like ‘switches’ that turn various parameter on and off in the developed model. The dummy variable which for 
some observation has a value of 0 will cause that variable’s coefficient to have no role in influencing the dependent 
variable, while when the dummy takes on a value 1 its coefficient acts to alter the intercept. Although the relative 

Attribute Relative importance

Dose 11.10

ΔHsf 7.34

Exposure time 5.33

Hydrodynamic size 4.43

Ec 3.66

Surface area 3.58

Core size 3.57

Cell species 2.88

xMeO 2.44

Cell type 2.44

Surface charge 1.90

Assay method 1.82

Ev 1.45

Cell name 1.33

Cell origin 1.06

Table 8.  Relative importance.
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importance of the descriptive attributes was measured low, the descriptive attributes actually play an important 
role in the toxicity classification of the model.

Definition of the applicability domain.  The Organization for Economic Co-operation and Development 
(OECD) has recommended that for the application of validated QSAR models to the prediction of new data 
points, there is a strict requirement of defining the applicability domain (AD) according to Principle 361,62. The 
AD is widely understood to express the scope and limitations of a model, i.e. the range of chemical structures 
for which the model is considered to be applicable63. Generally, the training set is used to define the AD with a 
range-based method, geometric methods, distance-based methods and probability density distribution-based 
method64. In the case of ANN-based classification models, the AD can be defined based on Euclidean distance 
(ED) metrics65.

As the best predictive performance was identified in the NNET model built using the balanced data set, 
kNN-based AD using ED metrics was defined. A new compound will be predicted by the model66–68 if and only if:

≤ < > + ×D D sZ ;i k k

where <Dk> is the average Euclidian distance between each compound of the training set and its k nearest neigh-
bors in the descriptors space, sk is the standard deviation of the distances between each compound of the training 
set and its k nearest neighbors in the descriptors space, and Z is an empirical parameter (0.5 by default). For each 
test compound i, the distance Di is calculated as the average of the distances between i and its k nearest neighbors 
in the training set.

The value of k was chosen as the square-root of the number of training patterns. As 10 NNET models for 10 
subsets were built, the AD for each NNET model was defined and the average values for <Dk>, sk, and Z were 
calculated in turn; in particular, the preferable Z value was selected by increasing the Z value from 0.1 to 2.4 in 
increments of 0.1 and identifying the value with the highest accuracy for the test set. The results are listed in 
Table 9. The average preferable Z value was identified as 0.77; this means that Di for the new compound should 
be less than a cutoff value, (<Dk> + 0.77 × sk), so that the new compound will be reliably predicted by the model.

Conclusions
We developed a generalized QSAR model using a dataset with a high PChem score in the S2NANO database, 
which includes various experimental results. Various preprocessing techniques and modelling algorithms were 
used for model development. In addition, the analysis of relatively important attributes based on model infor-
mation was performed. Finally, the kNN-based AD region was set up. As the proposed model can predict 
the toxicity of the nanomaterials in consideration of various experimental conditions, it has the advantage of 
having a broader and more general AD than the existing QSAR model. The results of this paper also indicate 
that preprocessing techniques appropriate to the characteristic of data should be applied for the generalized 
QSAR model.

The existing QSAR models can only predict the toxicity endpoint of nanomaterials under specific experiment 
condition. In contrast, the developed model can predict the toxicity endpoint (toxicity class) under the various 
experimental conditions conducted according to the international protocol and GLP. It allows the nanotech-
nologists as well as nanomaterial manufacturers, and researcher to obtain various toxicity results through one 
prediction model. Therefore, it enables the efficient utilization of the developed model.

The model development workflow presented in this paper can be considered a new methodology to 
develop a generalized QSAR model using a database containing various toxicity experimental results. Several 
databases exist that are relevant for engineered nanomaterials (ENM) toxicity assessment such as eNano-
Mapper, NanoMaterialRegistry, and Nanoparticle Information Library. The development of a generalized 
model for these databases using this methodology is expected to contribute to the application and utilization 
of QSAR.

split sensitivity specificity
Balanced 
Accuracy k <Dk> sk Z

1 91% 94% 93% 22 1.39 0.79 2.10

2 88% 92% 90% 22 1.40 0.82 0.80

3 95% 98% 96% 23 1.40 0.80 0.40

4 94% 95% 95% 24 1.42 0.79 0.50

5 82% 97% 89% 22 1.40 0.81 0.30

6 96% 97% 97% 21 1.35 0.79 0.40

7 100% 94% 97% 22 1.40 0.79 0.50

8 86% 95% 90% 22 1.39 0.78 1.60

9 95% 97% 96% 25 1.47 0.80 0.60

10 100% 96% 98% 25 1.49 0.80 0.50

avg. 93% 96% 94% 22.8 1.41 0.80 0.77

Table 9.  Applicability domain of the best model.
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