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As the number of Android malware has been increased rapidly over the years, various malware detection methods have been
proposed so far. Existing methods can be classified into two categories: static analysis-based methods and dynamic analysis-based
methods. Both approaches have some limitations: static analysis-based methods are relatively easy to be avoided through
transformation techniques such as junk instruction insertions, code reordering, and so on. However, dynamic analysis-based
methods also have some limitations that analysis overheads are relatively high and kernel modification might be required to
extract dynamic features. In this paper, we propose a dynamic analysis framework for Android malware detection that overcomes
the aforementioned shortcomings. +e framework uses a suffix tree that contains API (Application Programming Interface)
subtraces and their probabilistic confidence values that are generated using HMMs (Hidden Markov Model) to reduce the
malware detection overhead, and we designed the framework with the client-server architecture since the suffix tree is infeasible to
be deployed in mobile devices. In addition, an application rewriting technique is used to trace API invocations without any
modifications in the Android kernel. In our experiments, wemeasured the detection accuracy and the computational overheads to
evaluate its effectiveness and efficiency of the proposed framework.

1. Introduction

With the growing popularity of mobile devices, manymalware
authors have been targeting the mobile devices [1]. According
to the mobile malware report in G DATA [2], security experts
discovered 750,000 new Android malware during the first
quarter of 2017. Android malware is expected to be developed
continuously and to be spread to attack Android devices. As
a result, a lot of studies on Android malware detection have
been conducted in order to defend against Android malware.

Static analysis can be used to analyze malware with low
computational overheads without executing malware itself.
However, static analysis-based detection methods have a prob-
lem that malware authors can apply various transformation
techniques to avoid the detection. Rastogi et al. [3] developed
a system that applies obfuscation techniques to generate
various Android malware variants. +ey tested ten com-
mercial antivirus scanners with the newly generated malware
variants, and they showed that no scanners could detect any
variants.

In contrast, dynamic analysis is useful to detect the
transformed malware variants, because most dynamic fea-
tures are preserved while the static features are changed by
the transformation. In addition, many malware variants share
common behaviors that can be extracted through dynamic
analysis.

Despite this advantage, existingmalware detectionmethods
based on dynamic analysis have some shortcomings. First, most
of the previously proposed methods require kernel modifica-
tions to analyze malware [4–10]. To monitor application be-
haviors, the existing methods usually insert monitoring code
or instrumentation code to the Android kernel. +e kernel
modification has a drawback that the Android kernel needs to
be rebuilt and the new kernel needs to be deployed to mobile
devices. In addition, there is a concern that the kernel mod-
ification makes the process tedious for a mobile device user to
update the new kernel and new securitymechanisms. Secondly,
many malware detection methods do not consider the limited
resources of the devices. +ese existing methods are designed
to be deployed and performed on users’ devices, and these
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methods would degrade the performance of the user device
because of their expensive detection processes. In addition,
most methods use the algorithms that are not suitable to be
applied in real time because they focus on dynamic analysis
for malware detection when the sufficient time for the analysis
is given. +erefore, it is necessary to analyze applications
using the efficient algorithms while reducing the analysis
overhead in the user devices.

In this paper, we propose an Android malware detection
framework which utilizes the application rewriting technique
to monitor application behaviors instead of injecting the
monitoring code into the kernel. In addition, our framework is
designed as the client-server model in order to alleviate the
overhead of malware detection processes in user devices. +e
user devices are only responsible for monitoring application
behaviors and any other detection processes performed on
the external server. To reduce the computational overheads
of detection, we also designed the malware detection model
based on the suffix tree and developed a probabilistic model
using the suffix tree so that the model can distinguish between
malware and benign applications. In addition to the efficiency
of the model, the accuracy of the detection mechanism is
an essential factor for the malware detection. Our proposed
detection method uses a scoring method to measure and to
capture themaliciousness of invoked APIs.We developed this
runtime detection method and selected the suitable pa-
rameters that produce the best performance in terms of the
malware detection accuracy.

2. Related Work

+is section explains the previous studies that aim to secure
Android devices, such as malware detection or malicious be-
havior analysis. For malware detection, various approaches
have been proposed so far, and these approaches could be
classified into two categories: static analysis-based approaches
and dynamic analysis-based approaches.

2.1. StaticAnalysis-BasedApproaches. +ere are various static
analysis-based methods [11–19] proposed so far. Droidlegacy
[11] is a tool to extract malware family signatures by decom-
posing malware into loosely coupled modules and extracting
the API invocation frequencies of each module. Droidmat [12]
and Drebin [13] use various features, including API in-
vocation traces, intents, hardware/software components, and
permissions, to distinguish between malware and benign
applications. Yerima et al. [14] proposed a system that uses
API frequency and permission frequency of an application as
features in the Bayesian classifier to detect malware. Droid-
SIFT [15] classifies malware and benign applications by an-
alyzing weighted API dependency graphs of applications. In
Android, APIs are invoked in two ways: direct invocations
and indirect invocations. Android provides a JAVA re-
flection mechanism to invoke APIs indirectly, and invoked
APIs can be determined at the runtime. +ese aforemen-
tioned approaches may miss the APIs that are invoked at the
runtime. In addition, these approaches would analyze the
garbage APIs that are not even invoked at runtime because it

is impossible to predict the application behaviors through
static analysis. +is may cause the false alarms as well as the
analysis overheads.

+ere are also some studies to protect benign applications
from malicious applications. Chex [16], Droidchecker [17],
AAPL [18], and Amandroid [19] use variousmethods to check
if applications have component-hijacking vulnerabilities.
+ese methods perform the data-flow analysis to find out
whether an application can be exploited maliciously. +ese
researches focus on how to prevent unauthorized accesses
through component-hijacking attacks on vulnerable appli-
cations.+e purpose of their researches is different from ours.

2.2. Dynamic Analysis-Based Approaches. Many dynamic
analysis-based methods [4–10, 20] have been also proposed
so far. Isohara et al. [4] proposed a system that analyzes
kernel-level behaviors for malware detection. System call
invocations are monitored and checked whether the system
call traces are matched with preidentified malware signa-
tures, that is, system call traces. A signature is expressed as
a regular expression that is related to specific malicious
activities. Droidscope [5] provides the semantic views of
malware through dynamic analysis. +eir system monitors
invoked system calls as well as changes of processes, threads,
and memories to generate kernel-level semantic views. In
addition, Dalvik instruction traces are extracted and used in
taint analysis to generate Dalvik-level semantic views. Andrubis
[6] is a dynamic malware analysis system that can analyze
application behaviors. +is system monitors system call in-
vocations, and API invocations, and also performs the taint
analysis. Taintdroid [7] conducts the data-flow analysis of
applications and detects the information leakage of sensitive
data. +ese approaches modified the Android kernel to
monitor the behaviors of applications such as instruction
sequences, system call invocations, API invocations, and
changes of system resource usages.

Shabtai et al. [8] and Schmidt et al. [9] proposed anomaly
detection systems in mobile devices. +eir systems monitor
and analyze mobile devices using various features to identify
abnormalities of device usages. +e features used in their
systems include CPU usages, the number of sent packets,
battery levels, and so on. +ere are some malware that
conducts stealthy attacks such as user information leakages,
and this kind of malware can avoid these detection systems
because the stealthy attacks hardly affect the system metrics
used in their systems.

AASandbox [10] is a malware detection system that uses
both static analysis and dynamic analysis, and system call
frequencies of both benign applications and malware are
collected and compared for dynamic analysis. +ere is no
classification nor detection algorithm used in their paper,
and its results just show the possibility to detect malware
using this proposed system.

Crowdroid [20] is a framework that uses system call traces
to distinguish between benign applications and malware
using the k-means algorithm. +e framework uses the client-
server model as our framework does. +e k-means algorithm
has high overheads to examine application behaviors at
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runtime, and the framework cannot be used in real-time
detection because the framework needs a certain amount of
time to collect the system call frequencies. Our proposed
framework uses a detection model to examine application
behaviors �nely at runtime while perserving high e�ciency.

�ere exist researches [21–25] that use application re-
writing techniques to enforce security policies in Android.
I-ARM-Droid [21] inserts a reference monitor into an An-
droid application, and the method to embed the reference
monitor code in an application is introduced in [21]. Hao et al.
[22] proposed an application rewriting system for API-level
access control, and they studied on the e�ectiveness of the
application rewriting technique for access control. Schreck-
ling et al. [23] proposed a system that uses the application
rewriting technique to prevent Android applications from
abusing unnecessary permissions. �e system analyzes what
permissions should be declared for the speci�c application
components and provides users a tool to activate or to de-
activate permissions of applications. Aurasium [24] repackages
applications to observe behaviors for the purpose of detecting
information leakage of sensitive data. A rewritten application is
isolated in its own sandbox, and its API invocations are
monitored by their proposed system. Boxify [25] supports
application sandboxing to prevent malicious activities such as
privilege escalation. �e system hooks Bionic libc to intercept
system calls and to check whether each system call is valid or
not. �ese researches based on the application rewriting
technique only focus on how to monitor applications for the
reference monitoring, and the collected information from the
monitoring system is not delivered securely, which can be used
as an additional attack vector.

3. Proposed Malware Detection Framework

Our framework consists of two parts: the server-side
component (called as an audit system) and the client-side

component (called as a secure agent). �e overall architecture
of the framework is shown in Figure 1. When a user wants to
download an application, the user informs the secure agent of
URL (uniform resource locator) information. �en, the se-
cure agent delivers the URL information to the audit system.
�e audit system downloads an application from the URL,
and checks whether the application is a known application or
not, using whitelist and blacklist. If an application is known as
a benign application, the application is transmitted to the
secure agent and is allowed to be installed on the user device.
If an application is known as malware, the audit system raises
an alert to the secure agent. Otherwise, the application is
rewritten in the audit system for further analysis.

�e purpose of the application rewritingmechanism is to
insert self-monitoring code into an application. After the
audit system rewrites an application, the rewritten appli-
cation is transmitted to the device, and the secure agent
installs the rewritten application. �e self-monitoring code
extracts and delivers the API invocation traces of the ap-
plication to the secure agent, and the traces are transmitted
to the audit system. Each transmitted trace is examined with
the detection model in the audit system. If any parts of the
traces are matched with traces of malware, the audit system
noti�es results to the secure agent, and the secure agent
generates alarms on the device.

3.1. Whitelist/Blacklist Filtering Module. After the audit
system downloads an application, the audit system checks
whether the application is included in the whitelist or the
blacklist of known applications or not. �e purpose of the
�ltering module is to avoid unnecessary inspections of
known applications or known malware. We designed the
�ltering module using a hash algorithm for fast comparison.
We calculate a hash value of each known benign or malicious
application and store it in the whitelist database or the
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Figure 1: �e overall architecture of malware detection framework.
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blacklist database. +e file size of each application is also
stored together to mitigate the hash collision problem. By
comparing the hash value and the size of an application with
those in the whitelist database or the blacklist database, the
audit system can identify the known applications.

3.2. Application RewritingModule. +e application rewriting
process consists of three major steps: (1) the application
package is unzipped and the dex files are decompiled, (2) self-
monitoring code to monitor invocations of dangerous APIs is
inserted into the decompiled dex files, and (3) the rewritten
files are recompiled and repacked to a new application
package. +e dex file is decompiled with the modified version
of the baksmali tool [26] to produce smali files, and Apktool
[27] is used to repack the files into a new application package.
+e dangerous APIs and the self-monitoring code are
explained in the next subsections.

3.2.1. Dangerous APIs. In our framework, an application
behavior is defined as a part of the API invocation trace of an
application.

Monitoring all the API invocations can cause high over-
heads on the applications, and the size of the rewritten ap-
plication will be increased significantly due to a large number
of injected monitoring codes. +erefore, our framework de-
cided to monitor only certain APIs that are mostly utilized to
perform malicious activities, and, as a starting point, we se-
lected APIs that were presented in [28] as dangerous APIs.
Additionally, we investigated APIs that are explained in the
Android Developers reference [29] and selected dangerous
APIs which might be used in malicious activities.

Our selected dangerous APIs are classified into seven
categories: APIs that access users’ sensitive data, APIs that
perform network activities or file activities, APIs that modify
or access the device information, APIs that access or send
SMSmessages or Emails, APIs that access or execute services
or installed applications, APIs that are used in API reflection
or dynamic code loading, and APIs that affect the permission
information.

3.2.2. Self-Monitoring Code. We adapted the hooking tech-
nique of the application rewriting framework introduced in [21]
to monitor API invocations. +e application rewriting module
generates a class that contains the self-monitoring methods,
and the class is imported into the original application.

+e example of a smali file that contains the definition of
the class is depicted in Figure 2.

+e self-monitoring methods replace dangerous APIs in
the original code. +e self-monitoring method is invoked
instead of the specified dangerous APIs, and it conducts
three principal functions: delivery of the names of the in-
voked dangerous APIs to the secure agent, identifying the
types of dangerous API, and the invocation of the original
dangerous APIs.

(1) Invocation trace delivery to the secure agent: Each self-
monitoring method contains code to deliver the names of
the invoked dangerous APIs to the secure agent. Invocation

traces are delivered using intent message communications.
Sending an intent message whenever a dangerous API is
invoked can degrade the performance of the mobile device, so
the imported class contains a trace buffer to collect the traces
to reduce the communication overhead. When the buffer
becomes full, the buffer is wrapped in an intent message, and
the message is sent to the secure agent. If a rewritten appli-
cation communicates with the secure agent using intent
messages insecurely, then the communication can bemodified
by malware. To prevent the attack on vulnerable intent-based
communications, explicit intent messages with random tags
are used to deliver the API invocation traces securely. +e
explicit intent message can specify its destination, and only the
specified application can receive the messages while the other
applications cannot eavesdrop the messages. By checking
random tags in the messages, the secure agent can identify
applications and also avoid the denial of service attacks.

(2) Identifying the types of APIs: +e application re-
writing module scans the dangerous API invocations and
replaces invocation code of the APIs with the self-monitoring
methods. Naturally, the dangerous APIs that originally
supposed to be executed can be identified without any ad-
ditional process. However, in the self-monitoring method, the
name of API to be invoked is delivered as described pre-
viously. In the case of the JAVA reflection API, the additional
process is needed to identify the name of API because the
name of API is dynamically determined at runtime. To
monitor the reflected API, the self-monitoring method for
java.lang.reflect.Method.invoke() method gets the first pa-
rameter that contains the reflected API name. A lot of An-
droid malware use the Java reflection API to hide their
behaviors, so this process must be performed to improve the
accuracy of API monitoring.

Figure 2: +e example of the self-monitoring code.
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(3) Invocation of the original APIs: After the name of the
dangerous APIs is collected, the original dangerous APIs are
invoked and their return-values are also recorded by the self-
monitoring code.

3.3. Malware Detection Module. �e audit system examines
the API invocation traces of an application using the detection
model, and the detection model is built from known malware
and known benign samples. We designed the detection model
based on the su�x tree which represents the dangerous API
invocation traces’ degree of maliciousness and benignness.
�e su�x tree [30] is a data structure that is used to index all
the substrings which are contained in a set of strings. �e
su�x tree can provide linear-time solutions to search sub-
strings, and the su�x tree can only indicate which malware or
benign samples are included in the input trace. So, in our
detection method, we altered the su�x tree to have not only
trace labels, but also each trace’s con�dence value that can be
used in themalware detection.�emalware detectionmodule
is mainly composed of two phases: the detection model
generation phase and the trace examination phase.�e details
about these phases are explained in the next subsections.

3.3.1. Detection Model Generation Phase. To generate the
detection model, we extracted API invocation traces from
known malware and benign applications. �e left part of
Figure 3 shows how the API invocation traces of applications
are extracted. Each application is rewritten by the application
rewriting module, and it is executed by the UI/Application
exerciser. While an application is executed, its API invocation
traces are stored. �e explanation about the application ex-
ecution for the API invocation trace collection is given in
Section 4.2.

After the API invocation traces of all the application
samples are extracted, the detection model is generated as
described on the right side of Figure 3.

All the API invocation traces are re�ned before the su�x
tree is constructed. �ere are many consecutive elements in
each trace, and those repeating elements are merged. For
example, [API1,API1,API3] is re�ned to [API1,API3].

�e trace re�nement process reduces the size of the API
invocation trace of applications, and the decreasing rate of
trace size of 1,000 malware and 1,000 benign samples was
about 70.34% and 68.72% on average in our experiment.

In addition, the re�nement process alleviates the e�ects
of consecutive APIs on detection accuracy. Traces containing
many consecutive elements were frequently extracted from
both malware and benign applications. So, the repeating ele-
ments in a trace could cause false alarms in malware detection.
After the trace re�nement, the su�x tree is constructed with
the re�ned traces using Ukkonen’s algorithm [31].

In the left side of Figure 4, the example of the su�x tree is
described. Each edge in the su�x tree is labeled with a sub-
trace of traces, and it is used as a transition condition. Each
node has a list of trace labels whose subtraces are same with
a certain pre�x of the concatenation of all the edge labels in
the path from the root to the node. If a trace is inputted to
search the same trace in the su�x tree, nodes are visited by
following the edges that are same with pre�xes of the input
trace. When a certain leaf node is reached, the node traversal
ends.�is means that the traces that reach a leaf node include
a subtrace of samples indicated in the node. For example, if
[API2,API3,API4,API5] is the input trace, then the transition
state will move along the shaded nodes in the Figure 4, and its
destination node will be the leaf node that has mt.1 trace
which means that the input trace is a subtrace of mt.1
(� [API1,API2,API3,API4,API5]).

It is noted that even if a trace is smaller than an edge’s
trace and is a pre�x of an edge’s trace, a transition also
occurs. �e node followed by the edge is reached, and the
node traversal ends. It happens because of the path
compression in the Ukkonen’s algorithm that merges the
consecutive nodes that have only a single descendant to
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one. So, it is considered that the trace is matched to
a certain implicit node.

After the initial su�x tree is constructed, the su�x tree is
modi�ed for the further malicious trace detection. While
traversing the nodes in the su�x tree, the list of trace labels is
replaced with the con�dence values of pre�xes in each edge’s
trace for both malware and benign applications. �e ex-
ample of the modi�ed su�x tree is described in the right side
of Figure 4.

We de�ned two con�dence values to measure the input
trace’s maliciousness, and they are called as a malware
con�dence value and a benign-ware con�dence value each.
�e document frequency ratio and the log-likelihood value
are used to calculate the con�dence values. �e document
frequency ratio is the proportion of malware or benign-ware
invocation traces that include the subtrace to the total
malware or benign-ware traces, and the malware or benign-
ware log-likelihood value of a subtrace is determined using
malware or benign-ware’s HMM (Hidden Markov Model).

�e HMM [32] is an algorithm which is widely used in
various �elds such as speech recognition, bioinformatics, and so
on. For given observed variables, the HMM algorithm can
predict the state transition aswell as can estimate the probability
of matches between the given data and the prede�ned model.

�e HMMs for both malware and benign applications
should be prepared to evaluate the log likelihood of each
subtrace. For the HMM generation, the parameters such as
the number of states, emission probabilities, transition
probabilities, and initial probabilities are speci�ed �rst.

Generally, there is no rule to specify the number of states,
but we tried to �nd the number of states whose transition

probabilities are evenly distributed after the model gener-
ation. As a result, the number of states is speci�ed as �ve.�e
emission probabilities and initial probabilities are randomly
selected. �e observed variables are the dangerous API
invocations in the trace.

Once the model is initialized, the parameters are
reestimated using the Baum–Welch algorithm that is
widely used as EM (expectation maximization) algorithm.
�e Baum–Welch algorithm [33] searches a locally optimal
model that �ts with the observed data. �e parameters are
updated until the maximum likelihood values of the
updated models are converged. After the parameters are
estimated completely, then the likelihoods of each subtrace
are computed using the HMMs.

�e malware and benign-ware con�dence values are
computed as described in (1–5), and the notations in the
equations are explained in Table 1. As described in (5), the
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Table 1: Notations for the con�dence value calculation.

s
An observed sequence of dangerous API invocations,

(x1, x2, . . . , xT)

dfr Document frequency, the number of documents the
term occurs in

A Transition probability distribution, a1,2, . . . , aN−1,N{ }

B
Emission probability distribution,

b1(x1), . . . , bN(xP){ }
π Initial probability distribution, π1, . . . , πN{ }
λ Hidden Markov model, (A, B, π)
N �e number of states
K �e number of traces
P �e number of dangerous API invocations
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confidence values of a trace, mc(s) and bc(s), are the results
of the multiplication of the normalized log-likelihood
values and the document frequence ratios. +e min-max
normalization is used to scale the log-likelihood values,
llhm(s) and llhb(s). +e document frequency, dfrm(s) or
dfrb(s), is the proportion of the malware or benign-ware
traces to the whole traces that contains s as a subtrace. +e
log likelihood, llhm(s) or llhb(s), is the probability of the
observed sequence for the malware model or the benign-
ware model. +e log likelihood is computed in a recursive
way using the forward algorithm. α(log)

T in (2) is a forward
vairable, and the initial forward variable and the recursive
forword vairable in the forword algorithm are defined in
(3) and (4).

dfrm(s) �
dfm(s)

dfT(s)
,

dfrb(s) �
dfb(s)

dfT(s)
,

(1)

llhm(s) � logP s λm
􏼌􏼌􏼌􏼌􏼐 􏼑

� log sumN−1
i�2 α(log)

T (i) + logam
i,N􏼐 􏼑􏼔 􏼕,

llhb(s) � logP s λb
􏼌􏼌􏼌􏼌􏼐 􏼑

� log sumN−1
i�2 α(log)

T (i) + logab
i,N􏼐 􏼑􏼔 􏼕,

(2)

α(log)
1 (i) � log a1,i + log bi x1( 􏼁, 2≤ i≤N− 1, (3)

α(log)
t+1 (j) � log sumN−1

i�2 α(log)

T (i) + loga
m
i,j􏼐 􏼑􏼔 􏼕

+ log bj xt+1( 􏼁, 1≤ t≤T, 2≤ i, j≤N− 1,

(4)

mc(s) �

dfrm(s)∗ llhm(s)− min
0≤ i≤ k

llhm sk( 􏼁( 􏼁􏼒 􏼓

max
0≤ i≤ k

llhm sk( 􏼁( 􏼁− min
0≤ i≤ k

llhm sk( 􏼁( 􏼁
,

bc(s) �

dfrb(s)∗ llhb(s)− min
0≤ i≤ k

llhb sk( 􏼁( 􏼁􏼒 􏼓

max
0≤ i≤ k

llhb sk( 􏼁( 􏼁− min
0≤ i≤ k

llhb sk( 􏼁( 􏼁
.

(5)

3.3.2. Trace Examination Phase. Once the detectionmodel is
generated, the audit system can examine the trace trans-
mitted from the secure agent using the detection model. +e
confidence values in the detection model are used to
compute the scores for the trace examination. +e trace
examination process is described in Algorithm 1.

First, the trace from the client is scanned with a sliding
window, and each subtrace within the sliding window is
searched in the suffix tree. +e confidence values of each
subtrace are retrieved from the suffix tree, and the malware
and benign-ware confidence values are accumulated to
calculate local scores and global scores.

1: procedure Trace Examination (trace, gmc_sum, gbc_sum, lmc_queue, lbc_queue)
2: trlen←len(trace)
3: swlen←len(sw) ⊳ get the len. of the sliding window
4: i←0
5: while i< trlen− swlen do
6: sw←trace[i : i + swlen− 1]

7: mc, bc←get_conf_from_suffixtree(sw)

8: lmc_queue.enqueue(mc)
9: lmc_queue.dequeue()

10: lbc_queue.enqueue(bc)
11: lbc_queue.dequeue()

12: if lmc_queue.isfull() and lbc_queue.isfull() then
13: lms←sum(lmc_queue)/lmc_queue.size
14: lbs←sum(lbc_queue)/lbc_queue.size
15: end if
16: gcount←gcount + 1
17: gmc_sum←gmc_sum + mc
18: gbc_sum←gbc_sum + bc
19: gms←gmc_sum/gcount
20: gbs←gbc_sum/gcount
21: if lms− lbs> lth or gms− gbs> gth then
22: send_alarm(clientscok)

23: end if
24: i←i + 1
25: end while
26: end procedure

ALGORITHM 1: Trace examination procedure.
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+e local malware score or the local benign score rep-
resents the maliciousness or benignness of the traces in the
prespecified local scoring period, and it is calculated by
averaging the confidence values in the local scoring period.
+e global malware score or benign-ware score represents
the maliciousness or benignness of the traces in the whole
period, and it is also calculated by averaging the confidence
values from the beginning to the present. After the local or
global scores are calculated, it is checked whether the dif-
ference between the local scores and the global scores ex-
ceeds a certain threshold. If either of the comparison results
exceeds the threshold, then the trace matching procedure
concludes that the application is malware, and the alarm is
sent to the client.

+ere are three parameters that affect the malware de-
tection in the trace examination procedure: the size of sliding
window, the local scoring period, and the score threshold.
We have some experiments in order to find parameters that
make the malware detection accuracy high, and the ex-
perimental results are explained in Section 4.3.1.

4. Experiments

4.1. Dataset. We evaluated our framework in terms of
detection accuracy, runtime overhead, and the size
overhead of rewritten applications. 1,260 malware samples
from the Mal-Genome project [34] were used in the ex-
periments, and the malware families are listed in Table 2.
Meanwhile, 1,033 benign applications were downloaded
from Google Play Store [35] between February and March
2016, and these applications are used in the experiments as
benign samples. We implemented a tool that downloads
applications from the official Google market, and to find out
whether an application is benign or not, the online malware
scanning service of VirusTotal [36] is used.+e collection tool
uses the VirusTotal APIs to request the tests and to get the
scanning results. If all the virus-scanning tools consider an
application as benign, then the application is stored as
a benign sample.

4.2. Automatic Application Executions. +e experiment to
select suitable parameters that affect the accuracy was con-
ducted first, and the experiment to measure performance
metrics in best case was conducted to show the final results. In
the experiments, 1,033 benign applications and 1,260 malware
were used, and 80% of applications (826 benign applications
and 1,008 malware) were used as the training dataset in the
detection model generation, and the others were used as the
test dataset.

Before conducting the experiments, we measured code
coverages of applications to find out howmany system events
are required to observe application behaviors. To measure the
code coverage, we rewrote 107 applications and added ad-
ditional code in the applications. +e code is inserted in each
basic block, and the code logs unique values that are assigned
to basic blocks. Whenever a basic block is executed, its unique
value is logged. +e rewritten applications were executed by
MonkeyRunner [37], and by increasing the number of the
events from 1,000 to 15,000, the number of the executed basic
blocks was measured. +e code coverage might be affected by
the number of repeated executions. +erefore, we also exe-
cuted the applications up to three times while measuring the
number of unique basic blocks executed.

Figure 5 shows the results of the code coverage mea-
surements. As shown in Figure 5, the code coverage rate is
not increased linearly with the increasing number of the
system events or the increasing number of executions. Even
though there are possibilities of increasing number of events
when applications are executed multiple times, the training
time for malware detections is limited in practice. To find out
practical parameters, we investigated the minimum number
of events that produce the maximum code coverage rates for
each application. We also computed the code coverage
difference by the number of executions. As a result, the av-
erage of the minimum number of the events was 8,604, and
when the applications were executed twice, the code coverage
was increased significantly; 1.4% of the code coverage rate is
increased. +erefore, in the training phase for malware de-
tections, we executed the applications twice up to 9,000
system events.

4.3. Malware Detection Accuracy

4.3.1. Parameter Selection. To select the suitable parameters
for detection, we measured the accuracies of our framework
with different parameter values.+e size of sliding window, the
local scoring period, and the score threshold are parameters
that are related to the detection accuracy. We specified the
range of each parameter, and the malware detection accuracies
were measured with the combinations of possible parameter
values in the specified range.+e size of the sliding windowwas
in the range of 3 to 20, the local scoring period was in the range
of 1 to 50, and the score thresholdwas in the range of−1 to 1. In
addition, the malware detection accuracies were measured in
various cases where the local score is only used or both local
and global scores are used. Hereafter, the case that the local
score is only used in the detection is referred to the local-only
case, and the other case is referred to the local-global case.

Table 2: Malware samples used in the experiment.
ADRD Anserverbot Asroot
BaseBridge BeanBot Bgserv
CoinPirate CruseWin DogWars
DroidCoupon DroidDeluxe DroidDream
DroidDreamL DroidKungFu1 DroidKungFu2
DroidKungFu3 DroidKungFu4 DroidKungFuS
DroidKungFuU Endofday FakeNetfilx
FakePlayer GGTracker GPSSMSSpy
GamblerSMS Geinimi GingerMaster
GoldDream Gone60 HippoSMS
Jifake KMin LoveTrap
NickyBot NickySpy Pjapps
Plankton RogueLem RogueSPP
SMSReplic SndApps Spitmo
Tapsnake Walkinwat YZHC
Zitmo Zsone jSMSHider
zHash
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As shown in Figures 6(c) and 6(d), the two large heat
maps show how the malware detection accuracy is changed
with di�erent parameter values of the size of the sliding
window and the local scoring period. Each heat map is the
result either when both of the local and global scores are used
or when only the local score is used. To express the color of
each cell in the heat maps, the maximum value among the
accuracies of the di�erent threshold is selected, while the size
of the sliding window and the local scoring period is �xed.
�e selected maximum value is converted to the color of

each cell. �e highest value is represented by the green color,
and the lowest value is with the red color.

�e heat map from the accuracy measurement of the
local-global case has more green-shaded cells compared to
the other heat map. �is means that malware detection
accuracies are higher when both local and global scores are
used together. When the size of the sliding window was 5
and the local scoring period was 8, the highest accuracy
value, that is, 0.96, was obtained among the accuracy results
in all the cases that we observed.
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�e size of sliding window
3 20

Local
+ global

Local
only

Avg
Max
Avg

Max

(a)

�e local scoring period
1 50

Local
+ global

Local
only

Avg
Max
Avg

Max

(b)

3 20
1

50

�e size of sliding window

Min Max

�
e l

oc
al

 sc
or

in
g 

pe
rio

d

(c)

3 20
1

50

�e size of sliding window

�
e l

oc
al

 sc
or

in
g 

pe
rio

d

Min Max

8

5

(d)

Figure 6: Heap maps of the malware detection accuracy by the size of sliding window and the local scoring period (the min acc, 0.705, is
expressed as red, and the max acc, 0.96, is expressed as green). (a) ACCs by the size of sliding window. (b) ACCs by the local scoring period.
(c) ACC heat map of the local only case. (d) ACC heat map of the local-global case.
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To �gure out the impact of the size of the sliding window
and the local scoring period, the measured detection ac-
curacies are rearranged according to each parameter. Fig-
ures 6(a) and 6(b) show the rearranged heat map results. In
order to show the results in a comprehensive manner, we
expressed each cell in each heat map using the average or
maximumvalue of the accuraciesmeasuredwhen a parameter
is �xed to a certain value. �e average and maximum values
are calculated by scanning horizontally or vertically large heat
maps represented in Figures 6(c) and 6(d).

�ere is no big di�erence between the local-only case
and the local-global case in terms of the accuracy change by
di�erent size of the sliding window. �e overall accuracy is
increased by including the global score in the detection, but
the accuracy change pattern still remains similar. �e ac-
curacy tends to be high at a certain size of the sliding window
in both cases. �e global score is less a�ected by the size of
the sliding window, whereas the local score is highly asso-
ciated with the size of the sliding window.

�e sliding windowwhose size is in between 4 and 11 gives
high accuracies in our malware detection. �e detection
process produced the best accuracy when the sliding window

size was 5. In addition, the detection accuracy is lowered when
the sliding window size is approaching 20, and this tendency
is similar when the sliding window size is above 20.

In the local-only case, the accuracy increases as the local
scoring period decreases. After the global score is applied,
a range of the local scoring period showing a relatively high
accuracy was discovered from the results. In detail, when
a local scoring period in the range of 4 to 13 was used, the
detection accuracy was measured as relatively high. �e best
local scoring period was 8.

4.3.2. Malware Detection Performance. We evaluated the
malware detection performance of our proposed framework
from various aspects when the size of the sliding window and
the local scoring period were set to 5 and 8, respectively.
Figure 7(a) shows the false positive rate, false negative rate,
true positive rate, and true negative rate as the score
threshold is varied. In addition, the F-measure and accuracy
results are also described in Figure 7(b). When the score
threshold was 0.6, our proposed framework produced the
best result in the evaluationmetrics. In the best case, the false
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Figure 7:�e evaluation results in terms of themalware detection performance. (a) FP/FN/TP/TN rate by the threshold. (b) F-measure/Accuracy
by the threshold. (c) ROC (Receiver Operating Characteristic) Curve.
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positive rate, false negative rate, true positive rate, and true
negative rate were about 0.03, 0.04, 0.96, and 0.97, re-
spectively, and the F-measure and accuracy were about 0.96.

As shown in Figure 7(a), when the score threshold was in
between −1 and 0.1, the false negative rate and the true positive
rate were 0 and 1, respectively. When the score threshold was
less than 0.1, all the samples were determined as malware.

As the score threshold increased from 0.1, the accuracy
was improved gradually. �e false negative rate slightly
increased from 0, and the true positive rate slightly de-
creased from 1. At the same time, the false positive rate
decreased rapidly from 0.44 and the true negative rate
rapidly increased from 0.56. When the score threshold was
close to 0.6, the true positive rate and true negative rate
became 0.96 and 0.97 each. At the same time, the false
positive rate and false negative rate also became 0.03 and
0.04 each. When the score threshold was 0.7 or more, the
true negative rate and false positive rate remained 1 and 0,
respectively, due to the fact that most of the samples were
classi�ed as benign samples.

In addition to these evaluationmetrics, the ROC (Receiver
Operating Characteristic) curve is depicted in Figure 7(c).�e
ROC curve is a graphical plot that illustrates the robustness of
malware detection in our proposed framework as the score
threshold is varied. �e ROC curve is created by plotting the
true positive rate against the false positive rate with various
score thresholds. As shown in Figure 7(c), the plotted points
are above the diagonal, which represents good detection
results. �e curve line is close to the upper left corner of the
ROC area, which indicates that the malware detection test of
the framework has high discriminating capabilities. In detail,
the AUC (area under the curve) was about 0.98. �e AUC is
the evaluation metric to summarize the performance of the
classi�er.

4.4. Run-Time Overheads. �e end-to-end overhead, API
monitoring overhead, and application rewriting overhead
were measured to evaluate the e�ciency of our framework.
�e end-to-end overhead shows how e�ciently our client-
server based framework works to process a trace generated
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Figure 8: �e evaluation results in terms of time overhead. (a) Trace processing time measurement. (b) Local and global scoring time
measurement. (c) Application rewriting time measurement.
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from an application, and the API monitoring overhead shows
the time added by the self-monitoring in the rewritten appli-
cation. From these two evaluation factors, it is possible to
estimate the time required for the detection process in our
framework. Even though the application rewriting is performed
in the preprocessing phase, we also measured the application
rewriting time to show the usability of the framework. We used
Samsung Galaxy S4 with an Exynos 5 Octa 5410 CPU and 2GB
RAM. +e operating system of the device was Android 5.0.1.
We also used aWindows 7 machine with an Intel Core i5-4570
CPU and a 32GB RAM as the audit system.

(1) End-to-end time: We had two kinds of experiments to
evaluate the end-to-end time overheads of our framework. In
the first experiment, we measured the end-to-end time from
when the secure agent receives the dangerous API trace to
when the secure agent receives the examination result from
the audit system. One hundred applications were used in the
experiment, and the time overhead was measured in three
network environments: 3G network, 4G network, and wifi
network. Since the secure agent and the audit system com-
municate over the public network, the SSL (Secure Socket
Layer) protocol is used in order to protect the communica-
tions from potential attacks. +e detailed setting of SSL is
TLS_RSA_WITH_AES_128_CBC_SHA. In addition, the size
of trace which is transmitted from the client was set to 20, and
each transmitted trace is scanned using the sliding window of
length 5. +e local scoring period was set to 8.

As shown in Figure 8(a), the average time to process
a transmitted trace whose length is 20 did not exceed 0.6
seconds in all the network environments. +e average time for
the network transmissions in 3G network was longer than the
others, and there were no significant differences between 4G
network and wifi network. Naturally, the difference between
the end-to-end times of different network environments de-
pends on the network transmission time. Except for the net-
work transmission, the trace processing in the server took the
longest time. +e server, that is, the audit system, performs
many jobs such as the reception of the dangerous API in-
vocation traces, encryption and decryption for the commu-
nications, the trace examination, the transmission of the
examination results, and so on. Among these jobs in the server,
the trace examination procedure was evaluated through the
additional experiment.

Our framework detects malware based on the local and
global scores, and each score is calculated based on the
confidence values. +erefore, the execution time of exami-
nation procedure depends on the computation of the confi-
dence values of the given trace. In order to measure the effect
of the suffix tree, we repeatedly measured time to calculate the
local score and the global score in the second experiment. We
assumed that the audit server has the trace of length 296 which
is delivered from the client, and the trace from the client
is examined with the different size of sliding windows. +e
trace in the audit server was the real trace of the AnserverBot
malware. In addition, the local scoring period was set to 8, and
the number of symbols in the HMMswas specified as five.+e
scoring time was measured 20 times for each size of the sliding
window, and the average value of scoring time according to
the size of sliding window is shown as graphs in Figure 8(b).

When the suffix tree that contains the condence values is
used, all the measured times are reduced significantly. +e
scoring time when the HMM is used alone was about 10–72
times of the scoring time when the suffix tree is used. Table 3
shows the measured average time of both cases. +e suffix
tree-based scoring time ranged from 1.1 to 1.7ms, whereas
the HMM-based scoring time ranged from 10.9 to 122.2ms.
Assumed that the amount of the traces from many clients
can be very large, the trace examination should be performed
as fast as possible. +erefore, the suffix tree containing the
precomputed condence values is suitable to be utilized in the
trace examination procedure.

(2) Application rewriting time: We measured the time for
the application rewriting including the application package
decompiling and the self-monitoring code insertion. 1,617
applications were used in these experiments. +e measured
time ranges from 1.52 seconds to 197.41 seconds, and its
average was 23.81 seconds. As shown in Figure 8(c), about
80% of the applications were rewritten within 30 seconds.

(3) Self-monitoring time: We also measured the over-
heads of the rewritten applications which are generated with
the added self-monitoring methods. To evaluate the per-
formance degradations caused by API invocation moni-
toring, we implemented a program that repeatedly invokes
FileWriter.append() to write a string to a file. +e buffer size
which is same with the transmission trace unit in the secure
agent was set to 20. Table 4 shows that the time for API
invocations are increased by the self-monitoring method. As
a result, the average of the increased time per one invocation
was about 0.013ms.

4.5. Size Increase of Rewritten Applications. +e application
rewriting module inserts the self-monitoring code into the
dex file of the application. 1,645 applications were used in
our experiments. We measured the size increases of the dex

Table 3: Scoring time using suffix tree and HMM.

+e size of
sliding
window

Suffix tree-based
scoring time, t1 (ms)

HMM-based
scoring time, t2

(ms)

t1/t2
(ratio)

3 1.1 10.9 9.6
4 1.1 17.3 15.5
5 1.2 23.4 19
6 1.3 29.8 23.2
7 1.3 36.1 27.1
8 1.5 42.6 29
9 1.3 49.1 37.3
10 1.4 55.5 38.7
11 1.3 61.8 48.3
12 1.4 70.4 49.5
13 1.6 74.6 47.3
14 1.5 81.3 52.9
15 1.7 87.6 52.6
16 1.6 94.1 58.2
17 1.6 104.1 66.1
18 1.6 107 66.3
19 1.7 114.9 67.4
20 1.7 122.2 71.5
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files in the rewritten applications and calculated the per-
centage of the increased size of each dex file. +e average of
the size increase was 25.17 kB. +e minimum size increase
and the maximum size increase were 12.56 kB and 47.13 kB,
respectively. +e percentage increases of the applications are
shown in Table 5, and the percentage increases of most
applications were less than 1, which is negligible.

4.6. ComparisonwithOtherMethods. We had an experiment
to compare our framework with other detection methods.
In the experiment, we evaluated n-gram frequency-based
frameworks using general classification methods which are
widely used in dynamic analysis-based detection. +e n-gram
frequency of the API trace is measured, and it is inputted to
the classification algorithm.+e bi-gramwhose size of n-gram
is 2 was used in the frameworks.

Table 6 shows the performance result of our framework and
the n-gram frequency-based detection methods. As shown in
the table, we used three different kinds of classification algo-
rithm in the n-gram based frameworks, and the sliding window
size and the local scoring period of our framework were set to 5
and 8 each. 1,033 benign applications and 1,260 malware were
used in this experiment, and 80% of total applications (826
benign applications and 1,008 malware) were used as the
training dataset, and the others were used as the test dataset.

+e results show that our framework produces higher
detection accuracy compared to the other methods. In
addition, the n-gram frequency methods using classification
algorithms are not designed to be used in the runtime de-
tection, and it needs the sufficient amount of API traces for
more accurate detection. To achieve the accuracies presented
in Table 6, 475 API invocations on average were collected
and used in the audit system. It means that traces of length
20 should be transmitted through the network at least 20
times. In contrast, our framework can detect the malware in
near real time with the relatively small amount of traces
while showing higher detection accuracy. On average, our

framework was able to detect the malware using only 4% of
traces that were used in n-gram based methods.

5. Discussion

Rewritten applications are resigned with a new signature.
+erefore, if the rewritten application tries to update itself, then
it would be failed because of the different signatures. If the
updated version of an application is available to download from
the onlinemarket, then it is possible to apply ourmechanism to
the updated application for further analysis. In another case, to
mitigate the update problem, a simple heuristic solution can be
applied to our framework, as follows: the secure agent prohibits
the autoupdate of applications, and if the new dangerous API
traces from the applications are not generated in a certain
period of time or a user wants to update the application directly,
then the original applications are provided by the audit system.
+ere is no proper period of time that guarantees that an
application is not malicious, and so the period should be
specified by considering two factors: usability and security.

6. Conclusion

In this paper, we proposed a novel Android malware de-
tection framework that uses the application rewriting tech-
nique for application behavior monitoring without any kernel
modifications. Furthermore, we designed the framework as
a client-server model and deployed the analysis processes for
malware detection on the server-side. +e client component
only monitors applications, and the server component ex-
amines the traces using the suffix tree algorithm. In the de-
tection process, we designed the suffix tree-based model to
have the confidence values that are precomputed using the
document frequency ratios and the likelihood values from the
HMM. In addition, we also proposed the scoring method to
make the final decision for the malware detection. We made
efforts for our framework not only to have the high detection
accuracy, but also to be efficient enough to examine the
application behaviors at runtime.

In the evaluation, we conducted the experiments to show
the performance of our proposed framework in terms of

Table 4: API execution time overhead by self-monitoring.

Number of repetitions
1000 2000 3000 4000 5000

Original app Total time (ms) 28 63 150 145 197
Average time per an invocation (ms) 0.028 0.032 0.05 0.036 0.039

Rewritten app Total time (ms) 59 75 152 205 255
Average time per an invocation (ms) 0.059 0.038 0.051 0.051 0.051

Table 5: Size increase by app rewriting.

Percentage increase (�size
increase/original size)

Number of
applications

0%≤P.I.≤ 0.5% 1285
0.5%≤P.I.≤ 1.0% 237
1.0%≤P.I.≤ 1.5% 68
1.5%≤P.I.≤ 2% 13
2.0%≤P.I.≤ 2.5% 7
2.5%≤P.I.≤ 3.0% 1
3.0%≤P.I. 34

Table 6: Comparison with n-gram frequency-based detection
methods.

Method TPR FPR TNR FNR Accuracy
n-gram (RandomForest) 0.95 0.05 0.95 0.05 0.95
n-gram (DecisionTree) 0.93 0.07 0.93 0.07 0.93
n-gram (NaiveBayes) 0.76 0.25 0.75 0.24 0.76
Ours 0.96 0.03 0.97 0.04 0.96
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detection accuracy, runtime overhead, and size overhead of
rewritten application. +e framework could achieve about
96%malware detection accuracy in the best case, the average
time for processing each trace from the secure agent and the
audit system was less than 0.6 seconds in three different
network environments. In addition, the newly proposed
detection method only took 1-2ms to process about three
hundred subtraces. +is means that our score based de-
tection barely affects the end-to-end time overhead.

7. Future Work

+e event generations to trigger behaviors of applications
still remain as the future work.We figured out the appropriate
way to improve the code coverage with MonkeyRunner.
However, if there is an elaborate way to generate the events
considering execution paths in an application, the perfor-
mance of dynamic analysis can be improved significantly.
Some existing researches on automated testing [38, 39, 40]
have been proposed, but their approaches use heuristic ways
to generate events. We plan to apply the symbolic execution
methods to our framework to trigger application behaviors.
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