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Background and aims: Altered risk/reward decision-making is suggested to predispose individuals with Internet
gaming disorder (IGD) to pursue short-term pleasure, despite long-term negative consequences. The anterior
cingulate cortex (ACC) and the orbitofrontal cortex (OFC) play important roles in risk/reward decision-making.
This study investigated gray matter differences in the ACC and OFC of young adults with and without IGD using
surface-based morphometry (SBM). Methods: We examined 45 young male adults with IGD and 35 age-matched
male controls. We performed region of interest (ROI)-based analyses for cortical thickness and gray matter volume
(GMV) in the ACC and OFC. We also conducted whole-brain vertex-wise analysis of cortical thickness to
complement the ROI-based analysis. Results: IGD subjects had thinner cortices in the right rostral ACC, right
lateral OFC, and left pars orbitalis than controls. We also found smaller GMV in the right caudal ACC and left pars
orbitalis in IGD subjects. Thinner cortex of the right lateral OFC in IGD subjects correlated with higher cognitive
impulsivity. Whole-brain analysis in IGD subjects revealed thinner cortex in the right supplementary motor area, left
frontal eye field, superior parietal lobule, and posterior cingulate cortex. Conclusions: Individuals with IGD had a
thinner cortex and a smaller GMV in the ACC and OFC, which are critical areas for evaluating reward values, error
processing, and adjusting behavior. In addition, in behavioral control-related brain regions, including frontoparietal
areas, they also had thinner cortices. These gray matter differences may contribute to IGD pathophysiology through
altered risk/reward decision-making and diminished behavioral control.

Keywords: cortical thickness, gray matter volume, Internet gaming disorder, risk/reward decision-making, surface-based
morphometry

INTRODUCTION

Since Young (1998b) presented the concept approximately
two decades ago, behavioral addictions to Internet-related
activities have emerged as an important mental health issue
in young people (Kuss, Griffiths, Karila, & Billieux, 2014).
Of these behavioral disorders, Internet gaming disorder
(IGD) has been widely investigated as a subject of great
interest (Kuss, 2013). Enhanced reward sensitivity and
decreased loss sensitivity are indicated in IGD cases
(Dong, DeVito, Huang, & Du, 2012; Dong, Hu, & Lin,
2013). Problems with error monitoring (Dong, Shen,
Huang, & Du, 2013) and difficulty in appropriately con-
trolling behavior (Ko et al., 2014) are also reported in IGD.
Consequently, an imbalance between enhanced reward-
seeking and diminished behavioral control in IGD pro-
motes impaired risk/reward decision-making (Dong &
Potenza, 2014). In IGD, altered risk/reward decision-
making, which is characterized by decision-making defi-
cits under risky conditions and preference for immediate
reward, is closely related to pursuing short-term pleasure

from Internet games, despite long-term negative conse-
quences (Pawlikowski & Brand, 2011; Yao et al., 2015).

A meta-analysis of decision-making revealed that that the
orbitofrontal cortex (OFC) and anterior cingulate cortex
(ACC) brain regions were most consistently involved in
risk/reward-related decisions (Krain, Wilson, Arbuckle,
Castellanos, & Milham, 2006). Specifically, the OFC is
thought to assign reward values to behavioral choices, based
on the perceived or expected outcomes of the behavior
(Wallis, 2007). The ACC is suggested to encode a reward
prediction error (the difference between a predicted reward
and an actual outcome) (Hayden, Heilbronner, Pearson, &

* Corresponding authors: In Young Kim, MD, PhD; Department of
Biomedical Engineering, Hanyang University, 04763Wangsimni-ro,
Seongdong-gu, Seoul 133 791, Republic of Korea; Phone: +82 2
2291 1713; Fax: +82 2 2220 4949; E-mail: iykim@hanyang.ac.kr;
Young‑Chul Jung, MD, PhD; Department of Psychiatry, Yonsei
University College of Medicine, 03722 Yonsei‑ro, Seodaemun‑gu,
Seoul 120 752, Republic of Korea; Phone: +82 2 2228 1620; Fax:
+82 2 313 0891; E‑mail: eugenejung@yuhs.ac

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and
source are credited, a link to the CC License is provided, and changes – if any – are indicated.

ISSN 2062-5871 © 2018 The Author(s)

FULL-LENGTH REPORT Journal of Behavioral Addictions 7(1), pp. 21–30 (2018)
DOI: 10.1556/2006.7.2018.20

First published online March 12, 2018

Unauthenticated | Downloaded 08/09/21 07:40 AM UTC

mailto:iykim@hanyang.ac.kr
mailto:iykim@hanyang.ac.kr
mailto:iykim@hanyang.ac.kr
mailto:eugenejung@yuhs.ac
mailto:eugenejung@yuhs.ac
http://creativecommons.org/licenses/by-nc/4.0/


Platt, 2011) and play a crucial role in error monitoring
and adjusting behaviors (Amiez, Joseph, & Procyk, 2005).
Individuals with IGD have reported altered functional ac-
tivity of the ACC and the OFC in response to several mental
tasks, which could affect their ability to make risk/reward-
related decisions. In a previous functional imaging study
using the Probabilistic Guessing Task, individuals with IGD
showed increased activation in the OFC during gain con-
ditions and decreased activation in the ACC during loss
conditions (Dong, Huang, & Du, 2011). Individuals with
IGD also demonstrated altered activation in the ACC and
the OFC in response to the STROOP Task, indicating a
diminished capacity to perform error monitoring and exert
cognitive control over their behavior (Dong, DeVito, Du, &
Cui, 2012; Dong, Shen, et al., 2013). Notably, these findings
are consistent with reported structural changes in the OFC
and the ACC associated with IGD (Lin, Dong, Wang, & Du,
2015; Yuan et al., 2011). A recent study, which combined a
cross-sectional and longitudinal design, indicated that def-
icits in orbitofrontal gray matter are a marker of IGD (Zhou
et al., 2017). A relationship between altered gray matter in
the ACC and dysfunctional cognitive control is reported in
IGD (Lee, Namkoong, Lee, & Jung, 2017; Wang et al.,
2015). Given the influence of altered gray matter on func-
tional neural activity (Honey, Kötter, Breakspear, & Sporns,
2007), we hypothesize that altered gray matter in the
OFC and the ACC contributes to maladaptive risk/reward
decision-making in IGD.

Several neuroanatomical techniques are used to investi-
gate gray matter, including surface-based morphometric
(SBM) analysis, which provides a sensitive method for
measuring morphological properties of the brain using
geometric models of the cortical surface (Fischl et al.,
2004). SBM analysis has numerous potential advantages
for investigations of cortical morphology: it can be utilized
to measure cortical folding patterns (Fischl et al., 2007)
and to mask out subcortical tissues (Kim et al., 2005). In
addition, SBM analysis provides meaningful information
on cortical thickness, whereas comparable techniques, such
as voxel-based morphometry (VBM), are limited to asses-
sing cortical shape (Hutton, Draganski, Ashburner, &
Weiskopf, 2009). Although VBM studies have found re-
gional gray matter volume (GMV) alterations in individuals
with IGD (Yao et al., 2017), there has not been sufficient
SBM analysis, including assessment of cortical thickness,
for IGD. Some SBM studies found a thinner OFC in
adolescents with IGD than in controls (Hong et al., 2013;
Yuan et al., 2013). However, SBM analysis of young adults
with IGD has not been performed. Furthermore, although
adolescents and young adults with IGD are reported to have
smaller GMV of the ACC (Lee et al., 2017; Wang et al.,
2015), there has been no study of cortical thickness of the
ACC. Because GMV and cortical thickness provide differ-
ent kinds of information about neuropsychiatric disorders
(Lemaitre et al., 2012; Winkler et al., 2010), we speculate
that the combined measures of GMV and cortical thickness
can offer a more complete picture of altered gray matter
in IGD.

The purpose of this study was to compare ACC and OFC
gray matter in young adults with and without IGD. Using
SBM analysis, we analyzed GMV and cortical thickness in

Internet game addicts. We hypothesized that young adults
with IGD would have a smaller GMV and a thinner cortex in
the ACC and the OFC. We anticipate that these gray matter
alterations correlate with an increased tendency to make
decisions founded in short-term gratification, such as the
pleasure of gaming, rather than assessment of long-term
risks, such as negative psychosocial consequences. To test
our hypothesis, we conducted a region of interest (ROI)-
based analysis, focused on the ACC and the OFC, to
investigate GMV and cortical thickness in young adults
with IGD. We then used correlation analyses to investigate
the relationship between altered gray matter and the clinical
features of IGD. For a secondary analysis, we performed a
whole-brain vertex-wise analysis of cortical thickness to
examine cortical thickness alterations outside of the ACC
and OFC, as a complement to the ROI-based analysis.

MATERIALS AND METHODS

Participants

Participants for this study were recruited through online
advertisements, flyers, and word of mouth. Only males
were included in the study. The participants were evaluated
for their Internet use patterns and screened for IGD using a
previously established Internet Addiction Test (IAT;
Young, 1998a). The participants who scored 50 points or
above on the IAT and reported that their main use of the
Internet was playing games were then classified as candi-
dates, with a diagnosis of IGD. These candidates then
underwent a clinician-administered interview to assess the
core components of their addiction, including tolerance,
withdrawal, adverse consequences, and excessive use with
a loss of sense of time (Block, 2008). As such, a total of
80 subjects took part in the study; these included 45 male
adults with IGD and 35 healthy male controls, who were
all right-handed and aged between 21 and 26 years (mean:
23.6± 1.6).

All subjects received the structured clinical interview for
DSM-IV Axis I disorders (First, Spitzer, & Williams, 1997)
to evaluate the presence of major psychiatric disorders and
the Korean version of the Wechsler Adult Intelligence Scale
(Wechsler, 2014) to assess Intelligence Quotient (IQ).
Considering that IGD often has psychiatric comorbidities
(Kim et al., 2016), we performed the Beck Depression
Inventory (BDI; Beck, Steer, & Brown, 1996) for depres-
sion, the Beck Anxiety Inventory (BAI; Beck, Epstein,
Brown, & Steer, 1988) for anxiety, and the Wender Utah
Rating Scale (WURS; Ward, 1993) for childhood symptoms
of attention-deficit hyperactivity disorder (ADHD). Finally,
because IGD is closely associated with high impulsivity
(Choi et al., 2014), we used the Barratt Impulsiveness
Scale – version 11 (BIS-11; Patton & Stanford, 1995) to
test impulsivity. The BIS-11 consists of three subscales:
cognitive impulsivity, motor impulsivity, and non-planning
impulsivity. All subjects were medication-naive during
assessment. Exclusion criteria for all subjects were major
psychiatric disorders other than IGD, low intelligence that
impeded ability to complete self-reports, neurological, or
medical illness, and contraindications on the MRI scan.
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Data acquisition and image processing

Brain MRI data were collected using a 3T Siemens Magne-
tom MRI scanner equipped with an eight-channel head coil.
A high-resolution structural MRI was acquired in the sagit-
tal plane by means of a T1-weighted spoiled 3D gradient
echo sequence (echo time= 2.19 ms, repetition time=
1,780 ms, flip angle= 9°, field of view= 256 mm, matrix=
256 × 256, transversal slice thickness= 1 mm). All MRI
data were visually inspected for the presence of artifacts.
FreeSurfer 5.3.0 (http://surfer.nmr.mgh.harvard.edu/) was
employed for SBM analyses of cortical thickness and GMV.
The processing stream included the disposal of non-brain
tissue using a hybrid approach (Ségonne et al., 2004), correc-
tion of intensity non-uniformity (Sled, Zijdenbos, & Evans,
1998), segmentation of gray–white matter tissue (Dale, Fischl,
& Sereno, 1999), tessellation of gray–white matter boundary
and topologically correction (Ségonne, Pacheco, & Fischl,
2007), surface inflation and flattening (Fischl, Sereno, & Dale,
1999), transformation into a spherical space atlas (Fischl,
Sereno, Tootell, & Dale, 1999), and automatic parcellation
of human cerebral cortex (Fischl et al., 2004). Cortical
thickness was determined by estimating the distance between
the gray–white matter boundary (inner surface) and the
pial surface (outer surface). The data were smoothed using
a 10-mm full-width at half maximum Gaussian kernel.

Imaging data analysis

ROI-based analyses were performed to compare GMV and
cortical thickness between individuals with IGD and con-
trols. ROIs were defined using the Desikan–Killiany cortical
atlas (Desikan et al., 2006). ROIs included both sides of the
ACC (caudal/rostral ACC) and the OFC (lateral/medial
OFC, pars orbitalis) (Figure 1). To assess group differences

(individuals with IGD vs. controls) in GMV and cortical
thickness, mean values of GMV, and cortical thickness
within each ROI were extracted using FreeSurfer. For each
ROI, we conducted an analysis of covariance with SPSS
24.0 (SPSS Inc., Chicago, IL, USA) for a significance level
of p= .05. Age, IQ, and the intracranial volume (ICV) of
each subject were entered as covariates in analysis for
GMV. Age and IQ were entered as covariates in analysis
for cortical thickness, but ICV was not included as a
covariate, as previous studies have suggested that cortical
thickness is not affected by ICV (Buckner et al., 2004). To
assess the brain-behavior relationships, we performed a
correlation analysis for gray matter alterations (GMV and
cortical thickness in the OFC and the ACC) and the self-
reporting scales (IAT and BIS).

To complement ROI analysis, the surface-based whole-
brain analyses for cortical thickness were also performed
using general linear models in FreeSurfer’s Query, Design,
Estimate, Contrast module after controlling for age and
IQ of each subject. As an exploratory investigation for
whole-brain, a cluster-forming threshold of uncorrected
p < .005 was employed for a vertex-wise comparison. We
exclusively reported clusters with a significant number of
vertices greater than 200 to reduce the possibility of
generating false positives (Fung et al., 2015; Wang
et al., 2014).

Ethics

This study was carried out under the guidelines for the use of
human participants established by the Institutional Review
Board at Yonsei University. The Institutional Review Board
of the Yonsei University approved the study. Following a
complete description of the scope of the study to all
participants, written informed consent was obtained.

Figure 1. Regions of interest (ROIs). ROIs were defined according to the Desikan–Killiany cortical atlas. ROIs for the anterior cingulate
cortex (ACC) included both sides of the caudal ACC (green) and the rostral ACC (orange). ROIs for the orbitofrontal cortex (OFC) included

both sides of the lateral OFC (red), medial OFC (blue), and the pars orbitalis (yellow)
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RESULTS

Demographic and clinical characteristics of subjects

The participants in the control and IGD groups were
matched by age and full-scale IQ (Table 1). Subjects with
IGD scored significantly higher on tests of Internet
addiction (IA) and impulsivity compared with controls
(IAT: p < .001; BIS: p = .012). In addition, members of
the IGD group scored significantly higher on tests of
depression, anxiety, and childhood ADHD symptoms com-
pared with healthy controls (BDI: p= .001; BAI: p< .001;
WURS: p< .001). Total ICV was not significantly different
between controls and subjects with IGD (1,600.39±
149.09 cm3 for IA group; 1,624.02± 138.96 cm3 for controls;
p= .467).

ROI-based analyses

ROI-based analyses of cortical thickness found that sub-
jects with IGD had a thinner cortex in the right rostral
ACC, the right lateral OFC, and the left pars orbitalis than
the cortex in controls (rostral ACC: p = .011; lateral OFC:
p = .021; pars orbitalis: p = .003; Table 2). These findings
remained significant after including comorbid conditions

(BDI, BAI, and WURS) as covariates (rostral ACC:
p = .008; lateral OFC: p = .044; pars orbitalis: p = .014).
ROI-based analyses for GMV showed that subjects with
IGD had smaller GMV in the right caudal ACC and the left
pars orbitalis, compared with controls (caudal ACC:
p = .042; pars orbitalis: p = .021). These findings remained
significant in the caudal ACC (p = .013) after including
comorbid conditions (BDI, BAI, and WURS) as covariates
but not in the pars orbitalis (p = .098). Relative to controls,
subjects with IGD did not have a larger GMV or thicker
cortex in ROIs.

In IGD subjects, a thinner cortex in the right lateral OFC
significantly correlated with higher cognitive impulsivity
scores, after comorbid conditions (BDI, BAI, and WURS)
were included as covariates (r=−.333, p= .038; Figure 2).
We found no statistical correlation between gray matter
alterations, specifically a smaller GMV and a thinner cortex,
and IAT scores.

Whole-brain vertex-wise analysis

A whole-brain vertex-wise analysis of cortical thickness
showed that subjects with IGD had a thinner cortex in the
right supplementary motor area (SMA; peak Talairach
coordinate: X = 7, Y = 21, Z = 53; Figure 3A). In addition,

Table 1. Demographics and clinical variables of participants

Internet gaming
disorder group (n= 45)

Control
group (n= 35) Test (t) p value

Age (years) 23.8± 1.5 23.4± 1.7 1.074 .286
Full Scale IQa 101.0± 10.3 102.7± 9.3 0.779 .438
Internet Addiction Test 65.8± 10.6 31.8± 12.7 12.990 <.001
Barratt Impulsiveness Scale 52.6± 14.8 44.8± 11.6 2.585 .012
Cognitive impulsivity 13.8± 5.1 12.2± 4.3 1.430 .157
Motor impulsivity 18.3± 4.2 14.9± 3.4 3.949 <.001
Non-planning impulsivity 20.6± 7.9 17.7± 5.9 1.817 .073

Beck Depression Inventory 14.4± 7.4 8.8± 6.9 3.489 .001
Beck Anxiety Inventory 13.0± 9.2 6.8± 5.8 3.695 <.001
Alcohol Use Disorder Identification Test 12.8± 9.6 9.8± 5.7 1.728 .088
Wender Utah Rating Scaleb 42.0± 21.9 25.4± 16.0 3.759 <.001

Note. Values are expressed as means± SD.
aIntelligence Quotient (IQ) was assessed using the Wechsler Adult Intelligence Scale.
bWender Utah Rating Scale was performed to assess childhood ADHD symptoms.

Table 2. Region of interest-based comparison of cortical thickness and gray matter volume between young males with Internet gaming
disorder (IGD) and controls (IGD group< control group)

Side
Internet gaming

disorder group (n= 45)
Control

group (n= 35) Test (F) p value

Cortical thickness (mm)
Rostral anterior cingulate cortex Right 2.86± 0.20 2.98± 0.19 6.747 .011
Lateral orbitofrontal cortex Right 2.71± 0.14 2.79± 0.14 5.540 .021
Pars orbitalis Left 2.71± 0.20 2.86± 0.21 9.453 .003

Gray matter volume (mm3)
Caudal anterior cingulate cortex Right 2,353.24± 556.33 2,606.89± 540.76 4.285 .042
Pars orbitalis Left 2,298.00± 323.25 2,457.83± 298.86 5.523 .021

Note. Values are expressed as means± SD.
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subjects with IGD had a thinner cortex in the left frontal
eye field (FEF; peak Talairach coordinate: X =−10,
Y = 17, Z = 45; Figure 3B), the left posterior cingulate
cortex (PCC; peak Talairach coordinate: X =−9, Y =−30,
Z = 40; Figure 3B), and the left superior parietal lobule
(SPL; peak Talairach coordinate: X =−15, Y =−62,
Z = 61; Figure 3C) than controls. Members of the IGD
group did not have any areas of the brain with a thicker
cortex compared with controls.

DISCUSSION

Using SBM analysis, we compared the gray matter of the
ACC and OFC in young adults with IGD with that of
matched healthy controls. Our findings support the hypoth-
esis that young adults with IGD have thinner cortices and
smaller GMVs in the ACC and the OFC than controls. We
performed an ROI-based analysis and found that subjects
with IGD have a thinner cortex in the right rostral ACC,
right lateral OFC, and left pars orbitalis than controls.
Previous studies have reported a thinner cortex in the lateral
OFC and pars orbitalis of adolescents with IGD (Hong et al.,
2013; Yuan et al., 2013). This study focused on young
adults and found similar results with respect to cortical
thickness in the OFC and in the rostral ACC. In subjects
with IGD, a thinner right lateral OFC cortex correlated with
higher cognitive impulsivity, reflecting a tendency to make
decisions based on short-term gratification. In addition, we
found that subjects with IGD had a smaller GMV in the right
caudal ACC and the left pars orbitalis. This finding is
consistent with previous VBM studies, which reported that
subjects with IGD have smaller GMVs in the ACC and the
OFC (Yuan et al., 2011; Zhou et al., 2011). As in previous
studies (Hutton et al., 2009; Tomoda, Polcari, Anderson, &
Teicher, 2012), our results of GMV and cortical thickness
coincided partially, but we also found differences. Our
findings suggest that cortical thickness does not coincide
completely with GMV, indicating that GMV and cortical
thickness should be considered together for a more accurate
picture of gray matter alterations.

An important finding of this study is that young adults
with IGD have gray matter alterations in the ACC; specifi-
cally, these individuals have a thinner right rostral ACC
cortex, as well as a smaller GMV in the right caudal ACC,
compared with controls. The rostral part of the ACC is
implicated in error-related responses, including affective
processing, and the caudal part of the ACC is associated
with detection of conflict to recruit cognitive control (Van
Veen & Carter, 2002). Because regional cortical thickness is
associated with behavior (Bledsoe, Semrud-Clikeman, &
Pliszka, 2013; Ducharme et al., 2012), the thinner rostral

Figure 2. Correlation analysis for brain-behavior relationships.
Partial correlation between cortical thickness in the right lateral
orbitofrontal cortex (OFC) and cognitive impulsivity score of the
Barratt Impulsiveness Scale (BIS) after controlling for covariates
(age, IQ, BDI, BAI, and WURS). To depict partial correlation,
variables were regressed onto covariates using a linear regression.
Scatter plots were generated using calculated non-standardized

residuals. The cortical thickness of the right lateral OFC
significantly correlated with cognitive impulsivity in IGD subjects

(r=−.333, p= .038)

Figure 3. Whole-brain vertex-wise analysis of cortical thickness. A statistical threshold of p< .005 (uncorrected) was employed for a vertex-
wise comparison. Compared with controls, subjects with IGD had a thinner cortex in the (A) right supplementary motor area (SMA; peak
Talairach coordinate: X= 7, Y= 21, Z= 53; number of vertices: 271), (B) left frontal eye field (FEF; peak Talairach coordinate: X=−10,
Y= 17, Z= 45; number of vertices: 224) and the left posterior cingulate cortex (PCC; peak Talairach coordinate: X=−9, Y=−30, Z= 40;
number of vertices: 215), and (C) left superior parietal lobule (SPL; peak MNI coordinate: X=−15, Y=−62, Z= 61; number of vertices: 216)
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ACC cortex in IGD may contribute to the failure to respond
to the negative consequences of excessive gaming using
impaired error processing. Also, the smaller GMV of the
caudal ACC in Internet game addicts may contribute to the
loss of cognitive control over excessive gaming. In addition,
our findings of gray matter differences in the right side of the
ACC are consistent with previous evidence that monitoring
and related behavioral control is lateralized to the right
hemisphere (Stuss, 2011).

Here, we found that young adult males with IGD had a
thinner cortex in the right lateral OFC compared with
controls. In general, the OFC contributes to the monitoring
of reward values assigned to different decisions; in particu-
lar, the right lateral part of the OFC has been implicated in
the inhibitory processes that suppress previously rewarded
choices (Elliott & Deakin, 2005; Elliott, Dolan, & Frith,
2000) and promote the selection of delayed monetary
rewards over immediate rewards (McClure, Laibson,
Loewenstein, & Cohen, 2004). Moreover, recently, the role
of the right lateral OFC was proposed to include integration
of prior outcome-based information with current perceptual
information to make anticipatory signals about upcoming
choices (Nogueira et al., 2017). On the whole, this evidence
suggests that the right lateral OFC regulates decision-
making using internal and external information in a flexible
and adaptive manner. Lesions to the lateral OFC impair
decision-making related to a delayed reward, leading to
short-term and impulsive decisions (Mar, Walker, Theobald,
Eagle, & Robbins, 2011). Here, the cortical thickness of the
right lateral OFC in IGD subjects significantly correlated
with cognitive impulsivity, which is defined as “making
quick decisions” (Stanford et al., 2009). Recently, cognitive
impulsivity was closely related to reward-based learning and
decision-making (Cáceres & San Martín, 2017). Therefore,
based on the combination of our findings and the existing
literature, we speculate that a thinner right lateral OFC
cortex prevents individuals with IGD from effectively inte-
grating information to estimate reward values, thereby
contributing to preference for short-term pleasure and
impulsive decision-making.

Another important finding was that subjects with IGD
demonstrated smaller GMV and a thinner cortex in the left
pars orbitalis compared with controls. The pars orbitalis is
located at the anterior portion of the inferior frontal gyrus, and
the inferior frontal gyrus tends to coactivate with the lateral
OFC (Zald et al., 2012). Moreover, the pars orbitalis, along
with other orbitofrontal regions, has been associated with
reward-related information processing and decision-making
(Dixon & Christoff, 2014). In particular, the left side of the
pars orbitalis has been shown to be closely connected with the
middle temporal gyrus and is implicated in cognitively
controlled memory retrieval (Badre, Poldrack, Paré-Blagoev,
Insler, & Wagner, 2005). Given that adaptive response selec-
tion involves strategic control of the memory system (Poldrack
& Packard, 2003), gray matter alterations within the left pars
orbitalis may make it difficult to guide behavior based on prior
information (Badre & Wagner, 2007). Therefore, in view of
the literature, our findings suggest that smaller GMV and
thinner cortex in the left pars orbitalis of IGD subjects may
contribute to their uncontrolled Internet use by impairing their
ability to adjust their behavior based on prior information.

In the whole-brain vertex-wise analysis, we found that
subjects with IGD had a thinner cortex in the right SMA, the
left FEF, the left SPL, and the left PCC compared with
controls. The right SMA plays a role in connecting cogni-
tion and behavior (Nachev, Kennard, & Husain, 2008) and
is an important area for response inhibition (Picton et al.,
2007). Neuronal activity in the PCC is modulated by
external environmental changes, and this modulation may
be associated with a cognitive set shift for behavioral
adaptation (Pearson, Heilbronner, Barack, Hayden, & Platt,
2011). The FEF and the SPL are also crucial brain regions
that are involved in top-down attention control (Corbetta &
Shulman, 2002). Proper coordination of the frontal and
parietal regions is suggested to be essential for adaptive
action planning (Andersen & Cui, 2009). Although neither
the FEF nor SPL regions were ROIs in this study, we
suggest that a thinner cortex in these areas of the brain,
particularly in frontoparietal areas, plays important roles
in diminished behavioral control in individuals with IGD.
This diminished behavioral control may alter risk/reward
decision-making, resulting in difficulty in suppressing urges
and the pursuit of short-term gratification.

This study has limitations that should be considered. First,
the finding of a thinner cortex in the ACC and the OFC by
ROI-based analysis was not confirmed in the whole-brain
analysis. We speculate that this discrepancy was primarily
driven by differences in methodology. For example, the
ROI-based analysis was performed by calculating the mean
cortical thickness within the manually delineated area and
group differences were investigated by subsequent statistical
analysis; in contrast, the whole-brain analysis employed a
generalized linear model to estimate vertex-wise group
differences in cortical thickness. Because the ROI-based and
whole-brain approaches offer different kinds of information,
these two methods are suggested to be complementary
(Giuliani, Calhoun, Pearlson, Francis, & Buchanan, 2005).
Our current findings would be clarified by further research to
reduce errors in the ROI-based and whole-brain vertex-wise
analyses, particularly, errors derived from spatial normaliza-
tion processes. Second, although this study defined ROIs on
the assumption that structural alterations in the OFC and the
ACC underlie the impaired risk/reward decision-making in
IGD, there was no direct measurement of decision-making
capacity by neuropsychological tests. Thus, careful consid-
eration should be made when linking our imaging findings to
dysfunctional risk/reward decision-making in IGD. Third,
although IGD diagnosis in this study was made using the
IAT scale and clinical interviews, the DSM-5 diagnostic
criteria for IGD were not applied. The DSM-5 IGD diagnos-
tic criteria are widely used, since DSM-5 identified IGD as
one of the conditions requiring further study (Petry &
O’Brien, 2013). To accumulate reliable evidences for IGD,
it is necessary to apply a consistent diagnostic tool. Thus,
future IGD studies should apply the DSM-5 diagnostic
criteria. Fourth, although we limited this study to subjects
with IGD who reported that online gaming was their primary
use of the Internet, most subjects also participated in other
online activities, including social networking. Thus, a future-
combined structural and functional study design that mea-
sure neural activities in response to gaming-specific stimuli
would enhance our findings. Fifth, we used a cross-sectional
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design in this study. Future research that utilized longitudinal
study designs to measure cortical thickness changes during
adolescence and early adulthood would investigate whether
there is a causal relationship between our imaging results and
excessive Internet gaming. Sixth, our sample for this study
was small and only included male subjects. Gender differ-
ences are reported with respect to the clinical features of IGD
(Ko, Yen, Chen, Chen, & Yen, 2005). Larger studies that
include both men and women will be necessary to expand
our understanding of IGD.

CONCLUSIONS

We performed an SBM analysis of young adult males with
IGD to investigate gray matter alterations in the ACC and the
OFC, which were related to risk/reward decision-making.
The ROI-based comparison with controls demonstrated that
IGD subjects had a thinner cortex in the right rostral ACC,
the right lateral OFC, and the left pars orbitalis, and a smaller
GMV in the right caudal ACC and the left pars orbitalis. A
thinner cortex in the right lateral OFC correlated with higher
cognitive impulsivity in IGD subjects, providing possible
insight to decision-making based on short-term gratification
in IGD. The whole-brain analysis of IGD subjects found they
had a thinner cortex in behavioral control-related brain
regions, including frontoparietal areas. Our findings suggest
that gray matter alterations may provide information about
IGD pathophysiology, by reflecting altered risk/reward
decision-making and diminished behavioral control.
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