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Background. Evaluation of resting myocardial computed tomography perfusion (CTP) by
coronary CT angiography (CCTA) might serve as a useful addition for determining coronary
artery disease. We aimed to evaluate the incremental benefit of resting CTP over coronary
stenosis for predicting ischemia using a computational algorithm trained by machine learning
methods.

Methods. 252 patients underwent CCTA and invasive fractional flow reserve (FFR). CT
stenosis was classified as 0%, 1-30%, 31-49%, 50-70%, and >70% maximal stenosis. Significant
ischemia was defined as invasive FFR < 0.80. Resting CTP analysis was performed using a
gradient boosting classifier for supervised machine learning.

Results. On a per-patient basis, accuracy, sensitivity, specificity, positive predictive, and
negative predictive values according to resting CTP when added to CT stenosis (>70%) for
predicting ischemia were 68.3%, 52.7%, 84.6%, 78.2%, and 63.0%, respectively. Compared
with CT stenosis [area under the receiver operating characteristic curve (AUC): 0.68, 95%
confidence interval (CI) 0.62-0.74], the addition of resting CTP appeared to improve discrim-
ination (AUC: 0.75, 95% CI 0.69-0.81, P value .001) and reclassification (net reclassification
improvement: 0.52, P value < .001) of ischemia.

Conclusions. The addition of resting CTP analysis acquired from machine learning tech-
niques may improve the predictive utility of significant ischemia over coronary stenosis. (J Nucl
Cardiol 2018;25:223–33.)
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Abbreviations
CCTA Cardiac computed tomography

angiography

CAD Coronary artery disease

CTP Computed tomography myocardial

perfusion

ACS Acute coronary syndromes

FFR Fractional flow reserve

NPI Normalized perfusion intensity

TPI Transmural perfusion intensity ratio

MWT Myocardial wall thickness

AUC Area under the receiver operating char-

acteristic curve

NRI Category-free net reclassification

improvement

INTRODUCTION

Recent advances in computed tomography technol-

ogy have allowed cardiac computed tomography

angiography (CCTA) to become an important non-

invasive diagnostic modality for anatomic assessment of

the coronary arteries among individuals with suspected

coronary artery disease (CAD).1 Although coronary

stenosis assessment by CCTA demonstrates high sensi-

tivity and negative predictive values, only about half of

the anatomically obstructive lesions detected by CCTA

are physiologically significant of ischemia.2 To address

this important limitation, much effort has been made by

prior studies to combine CCTA with stress imaging.3,4

Despite a combined approach showing increased diag-

nostic performance for detecting ischemia, these

approaches require additional radiation exposure, and

are costly and time consuming.

Computed tomography myocardial perfusion (CTP)

imaging is an emerging tool that is used for detecting

myocardial ischemia.5 Resting CTP can be evaluated by

routine clinical CCTA without additional contrast injec-

tion or radiation exposure for stress imaging. Although it

is well established that the stress phase of perfusion

imaging is related to ischemia, prior studies have

demonstrated the presence, albeit to a lesser degree, of

reduced rest hyperemic blood flow for stenotic lesions.

To this end, rest-only myocardial perfusion may also

reflect the degree of coronary artery stenosis.6,7 Further

still, the high spatial resolution of CT and vasodilatory

effect of contrast medium might contribute towards

promising results for resting CTP analysis.8,9 Indeed,

prior studies reported that resting CTP in CCTA provides

additional diagnostic value for predicting obstructive

CAD or acute coronary syndromes (ACS).10-12

Fractional flow reserve (FFR) is the gold standard

for determining physiologically significant CAD. Nota-

bly, in the FAME study, an FFR-guided treatment

strategy demonstrated significantly improved MACE

outcomes compared to an anatomically-guided treat-

ment strategy.13 However, despite the benefits of FFR,

its use is limited due to the invasive nature of the

procedure. In light of this, the combination of CCTA

and resting CTP analysis may prove beneficial for

predicting physiological significant ischemia in a non-

invasive manner. To date, the role of resting CTP for

predicting ischemia by FFR is yet to be firmly

established.

In a previous study, our group developed software

for resting perfusion analysis using a machine learning

technique and validated its diagnostic performance

against coronary stenosis detected by invasive angiog-

raphy.14 In this study, we aimed to test the incremental

value of resting perfusion analysis by a machine

learning approach over coronary stenosis by CCTA for

predicting significant ischemia as determined by FFR.

METHODS

Study Population

We studied 252 consecutive adult stable patients

with suspected CAD from the DeFACTO (Determina-

tion of Fractional Flow Reserve by Anatomic Computed

Tomographic Angiography) study, who underwent both

clinically indicated non-emergent CCTA and ICA.15 In

brief, the DeFACTO study (NCT01233518) is a

prospective, multicenter study performed at 17 centers

in 5 countries [Canada (n = 1), Belgium (n = 1), Latvia

(n = 1), South Korea (n = 2), and United States

(n = 12)].16 ICA with intended FFR were performed

within 60 days of CCTA and no intervening coronary

events were observed. Patients were not deemed eligible

for participation if they had a prior history of coronary

artery bypass graft surgery, percutaneous coronary

intervention with suspected in-stent restenosis based

upon CCTA findings, contraindication to adenosine,

suspicion of or recent ACS, complex congenital heart

disease, pacemaker or defibrillator, prosthetic heart

valve, significant arrhythmia, serum creatinine level

greater than 1.5 mg/dL, allergy to iodinated contrast,

pregnant state, body mass index[35 kg/m2, evidence of

active clinical instability or life-threatening disease, or

an inability to adhere to study procedures. The appro-

priate institutional review board committees approved

the study protocol and all patients provided written

informed consent.
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Invasive Coronary Angiography

Selective ICA was performed by standard protocol

in accordance with the American College of Cardiology

guidelines for coronary angiography,17 with a minimum

of 2 projections obtained per-vessel distribution and

with angles of projection optimized according to the

cardiac position. FFR was performed at the time of ICA

(PressureWire Certus, St. Jude Medical Systems, St.

Paul, Minnesota; ComboWire, Volcano Corp, San

Diego, California) in vessels deemed clinically indicated

for evaluation and demonstrating an ICA stenosis

between 30% and 90%. After administration of intra-

coronary nitroglycerin, a pressure-monitoring guide wire

was inserted distal to a stenosis. Hyperemia was induced

with intravenous administration of adenosine at a rate of

140 lg/kg per minute. FFR was calculated by dividing

the mean distal coronary pressure by the mean aortic

pressure during hyperemia. In accordance with prior

multicenter studies, FFR at a threshold of 0.80 or less

was considered significant to indicate lesion-specific

ischemia.13

Coronary Computed Tomography
Angiography

CCTA was performed with single- or dual-source

CT scanners using 64—or higher detector rows with

prospective or retrospective electrocardiographic gating

in direct accordance with the Society of Cardiovascular

Computed Tomography (SCCT) guidelines on perfor-

mance of CCTA.18,19 An intravenous contrast agent

(approximately 80-100 mL), followed by saline (50-

80 mL), was injected at a flow rate of 5 mL/s. The scan

parameters included heart rate-dependent pitch (0.20-

0.45), 330 ms gantry rotation time, 100 or 120 kVp tube

voltage, and 350-800 mA tube current. Transaxial

images were reconstructed with 0.5- to 0.75-mm slice

thickness, 0.3-mm slice increment, 160- to 250-mm field

of view, 512 9 512 matrix, and a standard kernel.

Optimal phase reconstruction was assessed by compar-

ison of different phases, if available, and the phase with

the least amount of coronary artery motion was chosen

for analysis. Multiple phases were utilized for image

interpretation if minimal coronary artery motion differed

among the various arteries. All CTs were interpreted in

an intention-to-diagnose approach. CCTA was analyzed

using dedicated 3 dimensional workstations (Ziosoft,

Redwood City, California; Advantage AW Workstation,

GE Healthcare, Milwaukee, Wisconsin) by independent

level III experienced readers in a masked fashion. The

readers interpreted CCTA images using any or all of the

available post-processing image techniques, including 2-

dimensional axial and 3-dimensional maximal intensity

projection, multiplanar reformat, maximum intensity

projections, and short-axis cross-sectional views. In each

coronary artery segment, coronary atherosclerosis was

defined as tissue structures C1 mm2 that existed either

within the coronary artery lumen or adjacent to the

coronary artery lumen that could be discriminated from

surrounding pericardial tissue, epicardial fat, or the

vessel lumen itself. Coronary arteries and branches were

categorized into 1 of 3 vascular territories: left anterior

descending coronary artery (LAD), left circumflex

coronary artery (LCX), and right coronary artery

(RCA); diagonal branches, obtuse marginal branches,

and posterolateral branches were considered part of the

left anterior descending coronary artery, LCX, and RCA

systems, respectively. The left main coronary artery was

considered part of the LAD system. The posterior

descending artery was considered part of the RCA or

LCX system, depending upon the coronary artery

dominance. Stenosis severity was graded in accordance

with SCCT guidelines, and categorized as 0%, 1-30%,

31-49%, 50-69%, and C70%. High-grade stenosis by

CCTA was dichotomized at the 70% threshold, with a

stenosis C70% considered obstructive. Scan image

quality was assessed using a five-point ranking scale

as previously described.20

Myocardial Perfusion Analysis

Retrospective image reconstruction was performed

during mid-diastole, at 60-75% of the cardiac cycle

phase. The images were analyzed with custom software

(SmartHeart; Weill Cornell Medicine, New York, USA),

which has been previously validated for analyzing

perfusion defects using coronary stenosis detected by

ICA.14 Briefly, the software employs a compact repre-

sentation of the left ventricle by subdivision surfaces,

which ensures the smoothness of left ventricle geometry

with a small number of vertices extracted from CCTA

images (Fig. 1A). The thickness of the myocardium is

explicitly modeled at each vertex in this representation,

enabling the coupling between endocardial and epicar-

dial layers. Using mesh parameterization techniques, the

myocardium was divided automatically into an Amer-

ican Heart Association (AHA) 17-segment model

(Fig. 1B).21 A total of 51 features were extracted per

heart, with three features for each of the 17 segments:

normalized perfusion intensity (NPI), transmural perfu-

sion intensity ratio (TPI), and myocardial wall thickness

(MWT) were calculated. NPI was computed by first

averaging the minimal image intensity on the line

segment then dividing by a median of perfusion inten-

sity measurements within a region of interest in the

ascending aorta. TPI was defined as the ratio of

subendocardium perfusion intensity to subepicardial
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perfusion intensity in each segment. MWT was com-

puted as the average thickness over all points belonging

to each myocardial segment. Further details regarding

these three features have been documented in a prior

study.14

Based on these three features from resting perfusion

analysis—NPI, TPI, and MWT—perfusion prediction

analysis was performed using a gradient boosting

classifier in a supervised machine learning method.22

For the validation strategy, we employed the ‘‘leave-

one-out’’ cross-validation method to obtain the likeli-

hood (%) of ischemia on both a per-patient and per-

vessel level.23 An example of this analysis is displayed

in Fig. 2. For the per-vessel analysis, myocardial seg-

ments were assigned to one of the three major coronary

artery territories as defined by AHA guidelines.21

Statistical Methods

Continuous variables are reported as mean ± stan-

dard deviation, and categorical variables are reported as

counts (percentages). The optimal cut-off value for the

likelihood (%) to differentiate ischemic lesion was

determined using Liu’s method.24 The relationship

Figure 1. Development LV segmentation and 17-segment AHA model using SmartHeart software.
Reprinted with permission from the Journal of Medial Image Analysis.14 (A) LV model is consisted
with the control mesh (vertices in red and edges in black). The midcardial surface (Mmid) is
modeled as subdivision surface. The endocardial (Mendo) and epicardial surfaces (Mepi) are
represented by warping inwards and outwards along normal directions by half of the thickness each.
(B) Mapping from a 3D point 9 to a 2D point (u,v) within a unit circle. LV, left ventricle; AHA,
American Heart Association.
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between the likelihood of resting CTP and significant

ischemia was assessed using linear regression analyses

reporting beta coefficients with standard errors (SE).

Dominance analysis was employed to determine the

relative importance of each feature derived from resting

CTP analysis (e.g., NPI, TPI, and MWT) for predicting

the likelihood of ischemia.25 We used general domi-

nance analysis with the ensemble method in the current

investigation. The general dominance weights of pre-

dictors were calculated by aggregating results across all

Figure 2. An example of perfusion, transmural perfusion ratio, and myocardial wall thickness
quantified using SmartHeart software in individuals with non-obstructive coronary stenosis by
CCTA causing ischemia. (A) 2nd obtuse marginal branch shows less than 50% stenosis indicating
non-obstructive lesion in CCTA. (B) Corresponding invasive angiogram demonstrating approx-
imately 70% stenosis in the same branch of the circumflex coronary artery. The FFR value was
0.71, indicating ischemia. (C) The color maps demonstrate the measurement of perfusion intensity
based on the AHA 17-segment model, which include (D) normalized perfusion intensity (NPI)
within each segment divided by aorta reference, (E) transmural perfusion intensity ratio (TPI)
averaged within each segment, as well as (F) myocardial wall thickness (MWT). Probability for
significant ischemia was 0.59 when using machine learning analysis in this case. CCTA, coronary
computed tomography; FFR, fractional flow reserve; AHA, American Heart Association.
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combinations of the independent variables in the pre-

diction model.25,26 General dominance weight was

reported as the rank order according to the importance

of each individual feature, and a standardized weight

that represented the contribution of a variable-to-vari-

ance was explained. The diagnostic performance of

resting CTP incremental to CT stenosis for predicting

physiological significant CAD was calculated using

sensitivity, specificity, negative predictive value (NPV)

and positive predictive value (PPV) indexes. Area under

the receiver operating characteristic curve (AUC) anal-

yses were used to examine the discrimination for each

diagnostic imaging method, and AUC values were

compared using the method reported by DeLong

et al.27 In addition, as a sensitivity analyses, we

recalculated AUC after excluding the patients with

known CAD (prior MI or prior PCI, n = 24). Category-

free net reclassification improvement (NRI) indexes

were utilized to determine the correct reclassification

according to resting CTP when added to CT stenosis. A

P value\ .05 was considered statistically significant.

Statistical analyses were performed using SAS (version

9. 3; SAS Institute, Cary, NC, USA) and STATA

(version 14; StataCorp, College Station, TX, USA).

RESULTS

Study Population

Of 252 patients, mean age was 63 ± 8.7 years and

70.6% (n = 178) were male. Of the study sample, the

number of patients who experienced a previous myocar-

dial infarction (n = 15, 6.0%) or previous percutaneous

coronary intervention (n = 16, 6.4%) was relatively low

(Table 1). Among 252 CT scans, 215 (85.3%) had

excellent image quality and 34 (13.5%) had good image

quality, while 2 (0.8%) and 1 (0.4%) had fair and poor

image quality, respectively.

The Relationship Between NPI, TPI, and
MWT in Resting CTP Analysis

In linear regression analysis, each feature was

related with the likelihood of having a perfusion defect

by resting CTP analysis (Table 2). Dominance analysis

of the three features revealed that TPI was the highest

ranked parameter among the CTP features, accounting

for 60.8% of the predicted variance for the likelihood of

having a perfusion defect according to resting CTP

analysis.

Relationship Between Resting CTP Analysis
and Invasive FFR

In total, 129 patients (51%) and 151 vessels (37%)

presented with significant ischemia. Among three rest-

ing CTP analysis features, NPI and MWT were

correlated with the invasive FFR (P value .001, for

both), however, TPI did not show direct relationship

with the invasive FFR (P value .248) (Electronic

Supplementary Material 1-3). Resting CTP analysis

estimated a likelihood of 58 ± 14% of ischemia among

those with and 48 ± 17% in those without significant

ischemia (P value\ .001). The optimally derived cut-

off value for likelihood (e.g., 53.3%) of resting CTP

yielded a 62.8% sensitivity, 64.2% specificity, 64.8%

positive predictive value, and 62.2% negative predictive

value (Table 3).

Table 1. Baseline characteristics of study population

Variable Overall (n 5 252)

Age, years, mean ± SD 62.9 ± 8.7

Male, n (%) 178 (70.6)

Body mass index, kg/m2, mean ± SD 26.8 ± 3.8

Race, n (%)

Caucasian 169 (67.1)

Other 83 (32.9)

Risk factors, n (%)

Diabetes mellitus 53 (21.0)

Hypertension 178 (71.2)

Hyperlipidemia 201 (79.8)

Current smoker 44 (17.5)

Family history of coronary artery disease 50 (19.9)

Prior myocardial infarction, n (%) 15 (6.0)

Prior percutaneous coronary intervention, n (%) 16 (6.4)
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Diagnostic Performance of Resting CTP
When Added to CT Stenosis for Predicting
Ischemia

On a per-patient basis, the diagnostic accuracy of

abnormal resting CTP in combination with CT stenosis

([70% stenosis) for predicting ischemia was 68.2%,

indicating somewhat higher diagnostic performance than

resting CTP (63.5%) or CT stenosis (65.8%) alone.

Although sensitivity and NPV were somewhat higher for

CT stenosis alone, notably, the combination of resting

CTP with CT stenosis demonstrated substantially higher

specificity (85.4%) and PPV (78.2%), as compared with

the specificity (61%) and PPV (65.5%) for CT stenosis

alone (P value\ .001 and .03, respectively). On a per-

vessel basis, the diagnostic accuracy of combined

resting CTP with CT stenosis was similar compared

with CT stenosis alone (e.g., 73.5%, for both). Further,

there is no added benefit of resting CTP analysis over

CT stenosis for diagnostic performance in the per-vessel

basis analysis (Table 4).

Discrimination and Reclassification of
Resting CTP When Added to CT Stenosis

On a per-patient basis analysis, compared with CT

stenosis alone, combining resting CTP with CT stenosis

demonstrated superior discrimination {AUC, 0.68 [95%

confidence interval (CI) 0.62-0.74] vs 0.76 [95% CI

0.70-0.82], respectively; difference, 0.092; P\ .001}

(Table 5; Fig. 3A). Also, in Table 5, the addition of

resting CTP to CT stenosis significantly improved

reclassification beyond CT stenosis alone (category-free

NRI: 0.59; P value\ .001). On a vessel basis analysis,

however, the addition of resting CTP to CT stenosis did

not elicit an improvement in discrimination beyond CT

stenosis alone (Fig. 3B).

As a sensitivity analysis, we restricted the sample

population to include only patients without prior PCI

and MI (n = 228). Combining resting CTP with CT

stenosis still displayed higher discrimination when

compared with CT stenosis alone [AUC, 0.75 (95% CI

0.69-0.81) vs 0.66 (0.60-0.72), respectively; difference,

0.089; P\ .001] (Electronic Supplementary Material 4).

DISCUSSION

In this international multicenter study, resting CTP

analysis using a novel machine learning-based algorithm

demonstrated a significant and independent association

with physiologically significant CAD. Further, resting

CTP analysis improved diagnostic performance and

discrimination for predicting significant ischemia over

anatomical stenosis defined by CCTA alone. Specifi-

cally, the addition of resting CTP to CT stenosis

substantially augmented diagnostic specificity, with a

threefold reduction in patients with a false positive

finding. To the best of our knowledge, this is the first

study that demonstrates the diagnostic value of resting

CT perfusion for predicting physiological significant

CAD as defined by invasive FFR, utilizing a novel

automated machine learning approach.

Previous studies have shown that stress CTP affords

reasonable accuracy for detecting myocardial ischemia,5

however, some concern remains as to whether patients

are exposed to additional radiation, contrast, and admin-

istration of medication during the administration of

stress CTP that could perhaps provoke serious adverse

events, particularly in those with significant lesion

ischemia. In contrast, resting CTP analysis can be

evaluated using routine CCTA images without the need

for additional procedures, rendering it a more safer and

convenient approach for patient evaluation of ischemia.

There are several reasons that perhaps explain why

ischemia can be detected in even in rest-only CTP

imaging. Briefly, myocardial blood flow can maintain

homeostasis by auto-regulation of hydrostatic pressure

despite increasing degrees of coronary stenosis.6 How-

ever, if the degree of coronary stenosis rises above a

Table 2. Contribution of NPI, TPI, and NWT for determining the likelihood (%) of having a perfusion
defect from resting CTP analysis

Linear regression Dominance

Beta coefficient
(standardized)

Standard
error

P value for
regress

Standardized weight by
dominant analysis Rank

NPI 0.388 (0.319) 0.049 \.001 0.182 3

TPI 0.629 (0.585) 0.043 \.001 0.608 1

NWT 0.443 (0.361) 0.049 \.001 0.211 2

NPI, normalized perfusion intensity; TPI, transmural perfusion intensity ratio; MWT, myocardial wall thickness; CTP, computed
tomography perfusion
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certain level, auto-regulation phenomenon is exhausted

and myocardial blood decreased. Reduced myocardial

blood flow in patients without myocardial infarction is

then observed as decreased attenuation in resting

myocardial perfusion imaging.7 In addition, advance-

ments in CT technology permit the assessment of high

spatial resolution compared with other perfusion imag-

ing modalities—such as cardiac magnetic resonance

imaging or positron emission tomography—and may

allow for mild forms of subendocardial ischemia.

Branch et al11 reported that resting CTP improved

detection of ACS in patients who presented to the

emergency department with suggested ACS. In this

study, although resting CTP improved the detection of

ACS, the results showed limited value for exclusion of

ACS. In another study, Yang et al28 reported the

discriminatory power of CTP for predicting hemody-

namically significant stenosis. The findings of that study

indicated that visual analysis of stress CTP provides

incremental value over CCTA. Yet, the AUC relative to

resting CTP alone for predicting myocardial ischemia

was only 0.52. Given the relatively poor signal to noise

of myocardial perfusion at lower levels of blood flow,

the poor diagnostic inaccuracy of visual CTP is

unsurprising.

In the present study, we automated myocardial

perfusion analysis on a myocardial segment basis (i.e.,

hypo-enhancement of myocardium in resting CTP) to

improve detection of hypoperfusion. In addition, we

further examined myocardial thickness and the ratio of

subendocardium perfusion to subepicardial perfusion

(e.g., MWT and TPI). The myocardial thickness and

Table 3. Per-patient diagnostic performance of resting CTP and CT stenosis for detection of physio-
logically significant ischemia

CT stenosis Resting CTP
Resting CTP 1 CT

stenosis

Estimate (%)
(95% CI)

No.
patients in

group
Estimate (%)
(95% CI)

No.
patients in

group
Estimate (%)
(95% CI)

No.
patients in

group

Accuracy 65.8 (59.7–71.7) 166/252 63.5 (57.2–69.4) 160/252 68.2 (62.1–74.0) 172/252

Sensitivity 70.5 (61.9–78.2) 91/129 62.8 (53.8–71.1) 81/129 51.9 (43–60.8) 67/129

Specificity 61 (51.8–69.6) 75/123 64.2 (55.1–72.7) 79/123 85.4 (77.9–91.1) 105/123

PPV 65.5 (56.9–73.3) 91/139 64.8 (55.8–73.1) 81/125 78.2 (68.6–86.9) 67/85

NPV 66.4 (56.9–75) 75/113 62.2 (53.2–70.7) 79/127 63 (55.1–70.2) 105/167

Describe cut-off points: CT stenosis, C70% coronary stenosis by CCTA; Resting CTP, C53 of likelihood (%) of having a perfusion
defect; significant ischemia, B0.8 by invasive fractional flow reserve
PPV, positive predictive value; NPV, negative predictive value; CT, computed tomography; CTP, computed tomography perfusion

Table 4. Per-vessel diagnostic performance of resting CTP and CT stenosis for detection of physio-
logically significant ischemia

CT stenosis Resting CTP
Resting CTP 1 CT

stenosis

Estimate (%)
(95% CI)

No.
patients in

group
Estimate (%)
(95% CI)

No.
patients in

group
Estimate (%)
(95% CI)

No.
patients in

group

Accuracy 73.5 (68.9–77.7) 299/407 57.5 (52.5–62.3) 234/407 73.5 (68.9–77.7) 299/407

Sensitivity 69.5 (61.5–76.8) 105/151 66.9 (58.8–74.3) 101/151 69.5 (61.5–76.8) 105/151

Specificity 75.8 (70.1–80.9) 194/256 52.0 (45.6–58.2) 133/256 75.8 (70.1–80.9) 194/256

PPV 62.9 (55.1–70.2) 105/167 45.1 (38.5–51.9) 101/224 62.9 (55.1–70.2) 105/167

NPV 80.8 (75.3–85.6) 194/240 72.7 (65.6–79.0) 133/183 80.8 (75.3–85.6) 194/240

Describe cut-off points: CT stenosis, C70% coronary stenosis by CCTA; Resting CTP, C30 of likelihood (%) of having a perfusion
defect; significant ischemia, B0.8 by invasive fractional flow reserve
PPV, positive predictive value; NPV, negative predictive value; CT, computed tomography; CTP, computed tomography perfusion
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ratio of subendocardium perfusion to subepicardial

perfusion are easily obtainable parameters when per-

formed using CTP analysis and are closely related to

ischemia. Indeed, previous data suggest that a high

myocardial thickness is associated with atherosclerotic

burden and elevated inflammatory activity,29 and was

found to be an independent predictor of adverse events

in addition to coronary atherosclerosis and myocardial

ischemia.30 It is also well known that there are signif-

icant relationships between the subendocardium-to-

subepicardial perfusion ratio and ischemia. Particularly,

subendocardium is more vulnerable to coronary stenosis

because of potential transmural differences in vascular

anatomy.31 These approaches are known to predict

significant ischemia even on the background of only

resting imaging as reported in the current study.

Taking into consideration these three potential

approaches (e.g., NPI, TPI and MWT) from resting

CTP analysis, we used a machine learning-based

method to obtain the probability of significant ische-

mia. Machine learning analysis is developed based on a

pattern recognition and computational learning theory

in artificial intelligence, and can identify patterns and

relationships formed from complex databases.32

Though widespread in computer science and com-

monly used in internet-based text searches, more

recently its use has been applied to other areas

including medical research. To this end, machine

Table 5. Per-patient basis discrimination and reclassification of resting CTP when added to CT stenosis

Characteristics Value

C-Statistic for CT stenosis (95% CI) 0.68 (0.62–0.74)

C-Statistic for resting CTP (95% CI) 0.66 (0.60–0.73)

C-Statistic for resting CTP ? CT stenosis (95% CI) 0.75 (0.69–0.81)

D C-statistic (95% CI) vs CT stenosis alone 0.09 (0.04–0.14)

P value .001

Category-free NRI (95% CI) 0.52 (0.28–0.76)

P value \.001

% Events reclassified 29% (P value .001)

% Non-events reclassified 24% (P value .009)

NRI, net reclassification improvement; CI, confidence interval; CT, computed tomography; CTP, computed tomography perfusion

Figure 3. Receiver operating characteristic curves of (A) Per-patient and (B) Per-vessel
performance of CT stenosis, resting CTP and resting CTP added to CT stenosis for detecting
significant ischemia. CT, computed tomography; CTP, computed tomography perfusion.
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learning applications are being utilized for genetics and

DNA analysis.33 As an example, machine learning

methods have been employed for the purpose of

clinical tasks such as the prediction of cancer progno-

sis.34 In this study, this analytic approach was applied

to calculate the likelihood proportion of having signif-

icant ischemia. A major finding was that when added to

CCTA, resting CTP analysis significantly improved

specificity and PPV as compared with CCTA alone,

and also provided incremental benefit over CT stenosis

for predicting significant ischemia. Despite our signif-

icant findings, the clinical usefulness of resting CTP

analysis is still unclear due to loss of sensitivity and

NPV when resting CTP analysis is added to CT

stenosis alone. In addition, the improvement of dis-

crimination is somewhat marginal (delta AUC: 0.09).

Therefore, future studies are warranted to evaluate the

utility of resting CTP analysis for lesions with signif-

icant ischemia.

Our study has several potential limitations that

should be emphasized. Our study population comprised

of predominantly Caucasianmales with a high prevalence

of risk factors, who were indicated to undergo invasive

angiography. Therefore, caution should be taken when

attempting to extrapolate these findings to the general

population as a whole. Invasive FFR was performed only

in those vessels that were clinically indicated for safety

when performing FFR in non-clinically indicated coro-

nary vessel. Therefore, we cannot discount the possibility

that determining the presence of atherosclerosis in other

unmeasured coronary vessels could have influenced the

presence of ischemia observed in this study. A current

drawback of the SmartHeart program is its inability to

assess: (1) the anatomic variability in the coronary artery

blood supply to myocardial segment, and (2) the myocar-

dial segment that supplies coronary artery blood

according to the location of the stenosis in each coronary

artery. Further, it is likely that the affected myocardial

area by coronary artery stenosis will significantly differ

according to the anatomical variability or location of the

stenosis. Consequently, this might have influenced the

non-significant results according to the per-vessel anal-

ysis in the current study. Lastly, although we used the

‘‘leave one out’’ cross-validation method for our valida-

tion processing of the machine learning algorithm, further

validation testing and a validation cohort might be needed

to test the performance of the resting CTP analysis

algorithm more definitively.

NEW KNOWLEDGE GAINED

Machine learning-based prediction algorithms may

identify ischemia with resting perfusion images in

routine CCTA without additional procedures.

CONCLUSIONS

In conclusion, the use of this novel machine

learning-based analysis resulted in improved diagnosis

and reclassification of individuals with FFR-based

ischemia albeit its present clinical utilization is still

unclear. These findings demonstrate the potential feasi-

bility of resting CTP for identifying patients with

physiologically significant ischemia without the need

for additional stress imaging testing or other invasive

procedures.
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