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Recently a compressed index for similar strings, called the FM-index of alignment (FMA), has 
been proposed with the functionalities of pattern search and random access. The FMA is 
quite efficient in space requirement and pattern search time, but it is applicable only for an 
alignment of strings without gaps. In this paper we propose the FM-index of alignment with 
gaps, a realistic index for similar strings, which allows gaps in their alignment. For this, we 
design a new version of the suffix array of alignment by using an alignment transformation 
and a new definition of the alignment-suffix. The new suffix array of alignment enables us 
to support the LF-mapping and backward search, the key functionalities of the FM-index, 
regardless of gap existence in the alignment. We experimentally compared our index with 
RLCSA due to Mäkinen et al. and related indexes GCSA due to Sirén et al. and GCSA2 due 
to Sirén on genome sequences from the 1000 Genomes Project. The index size of our index 
is smaller than those of other indexes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The collection indexing problem is defined as follows [24]: Given a collection of highly similar strings, build a compressed 
index for the collection of strings, and when a pattern is given, find all occurrences of the pattern in the given strings. 
Since the index is compressed, we also need a separate operation which extracts a specified substring of one of the given 
strings. Many indexes for the collection indexing problem have been developed such as RLCSA [23,24,32], LZ-scheme based 
indexes [6,8,16], compressed suffix trees [1,29], and so on [15,28]. To exploit the similarity of the given strings, most 
of them use classical compression schemes such as run-length encoding and Lempel–Ziv compressions [17,33]. Recently, 
Na et al. [25–27] took a new approach for the collection indexing problem by using an alignment of similar strings, and 
they proposed indexes of alignment called suffix tree of alignment [26], suffix array of alignment (SAA) [27], and FM-index of 
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Fig. 1. Example of a VCF file.

alignment (FMA) [25]. The FMA, a compressed version of the SAA, is the most efficient among the three indexes but it is 
applicable only for an alignment of similar strings without gaps.

However, real-world data include gaps in alignments. Fig. 1 shows Variant Call Format (VCF) files created by SAMtools 
(Sequence Alignment/Map tools) for sequences from the 1000 Genomes Project [5]. A VCF file contains alignment informa-
tion between an individual sequence and its reference sequence. Note that not only substitutions but also indels (insertions 
and deletions) are contained in an alignment. For example, the first line of the ‘VCF 3’ file in Fig. 1 says that AT at po-
sition 786763 in the reference sequence is aligned with A in the individual sequence. Thus, the FMA [25] allowing only 
substitutions in an alignment is an unrealistic index.

In this paper we propose a new FM-index of alignment, a realistic compressed index for similar strings, allowing in-
dels as well as substitutions in an alignment. (We call our index the FMA with gaps and the previous version the FMA 
without gaps.) For this, we design a new version of the SAA by using an alignment transformation and a new definition 
of the suffix of an alignment (called the alignment-suffix). In our index, an alignment is divided into two kinds of regions, 
common regions and non-common regions, and gaps in a non-common region are put together into one gap in the trans-
formed alignment. The alignment-suffix is defined for the transformed alignment but its definition is different from those 
defined in [25–27]. Due to the alignment transformation and the new definition of the alignment-suffix, our index supports 
the LF-mapping and backward search, the key functionalities of the FM-index [10–12], regardless of gap existence in the 
alignment.

For constructing our index, we must find common regions and non-common regions for the given strings but we do 
not need to find a multiple alignment for the given strings since the knowledge about positions where substitutions and 
indels occur are of no use in our transformed alignment. Finding common and non-common regions is much easier and 
simpler than finding a multiple alignment. For instance, common regions and non-common regions between an individual 
sequence and its reference sequence can be directly obtained from a VCF file. In the example of Fig. 1, position 786703 is a 
non-common region and positions 786704..786763 are a common region. Hence, based on the reference sequence, common 
regions and non-common regions of genome sequences can be easily created. We implemented the FMA with gaps and did 
experiments on 101 genome sequences from the 1000 Genomes Project. We compared our FMA with RLCSA due to Mäkinen 
et al. [24]. The index size of our FMA is less than one third of that of RLCSA.

The FM-index [12] is defined on a string, but it is such a powerful tool that it can be applied to many generalizations 
of a string: a tree [9], a graph [3,31,30], an alignment, etc. to produce compressed and searchable indexes. GCSA [31] is an 
FM-index on a graph, and ours is an FM-index on an alignment (i.e., they solve different problems), though there are some 
common ingredients in the two indexes (because they are FM-indexes). For comparison, we included GCSA and GCSA2 in 
our experiments, which show that the index size of FMA is smaller than those of GCSA and GCSA2. The FM-index also has 
been used in various ways for read alignment [14,18–22] and for finding set-maximal matches [7].

This paper is organized as follows. We first describe our FMA and search algorithm for an alignment with gaps in 
Section 2 and give experimental results in Section 3. In Section 4, we conclude with remarks.

2. FM-index of alignment with gaps

2.1. Alignments with gaps

Consider a multiple alignment in Fig. 2 (a) of four similar strings: S1 = $cctcaaacc#, S2 = $cctccaaaca#, S3 =
$ccttataac #, and S4 = $cct aacc#. These strings are the same except the underlined characters and one string can 
be transformed into another strings by replacing, inserting or deleting underlined substrings. Formally, we are given an 
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pos. 1 2 3 4 5 6 7 8 9 0 1 2 3
S1 = $ c c t c - a - a a c c #
S2 = $ c c t c c a - a a c a #
S3 = $ c c t t - a t a a c - #
S4 = $ c c t - - - - a a c c #

α̃�
1 α̃+

1 �1 α̃�
2 α̃+

2 �2 α3
(a)

pos. 1 2 3 4 5 6 7 8 9 0 1 2
S1 = $ c - c t c a a a c c #
S2 = $ c c t c c a a a c a #
S3 = $ c c t t a t a - a c #
S4 = $ c - - - c t a a c c #

α̃�
1 α̃+

1 �1 α̃�
2 α̃+

2 �2 α3
(b)

Fig. 2. An example of (a) an original alignment and (b) its transformed alignment.

alignment ϒ of m similar strings S j = α1�
j
1 . . . αr�

j
r αr+1 (1 ≤ j ≤ m) over an alphabet �, where αi (1 ≤ i ≤ r + 1) is a 

common substring in all strings and � j
i (1 ≤ i ≤ r) is a non-common substring in string S j . In the example above, α1 =

$cct, α2 = aac, α3 = #. Without loss of generality, we assume α1 starts with $ and αr+1 ends with # where $ and # are 
special symbols occurring nowhere else in S j , and each αi is not empty.

For each common substring αi , we define α̃+
i as follows.1

Definition 1. The string α̃+
i (1 ≤ i ≤ r) is the shortest suffix of αi occurring only once in each string S j (1 ≤ j ≤ m) and 

α̃+
r+1 is an empty string.

Consider α1 = $cct in Fig. 2. Since the suffix t of length 1 occurs more than once in S3 but the suffix ct of length 2 
occurs only once in each string, α̃+

1 is ct. Similarly, α̃+
2 is ac, which is the shortest suffix of α2 occurring only once in each 

string. Without loss of generality, for 2 ≤ i ≤ r + 1, α̃+
i is assumed to be shorter than αi . (If α̃+

i is equal to αi , we merge αi

with its adjacent non-common substrings � j
i−1 and � j

i , and regard � j
i−1αi�

j
i as one non-common substring).

For indexing similar strings whose alignment includes gaps, we first transform the given alignment ϒ into its right-
justified form ˜ϒ so that the characters in each α̃+

i �
j
i (1 ≤ i ≤ r, 1 ≤ j ≤ m) are right-justified. See Fig. 2 for an example, 

where a gap is represented by a series of hyphens ‘-’ (note that ‘-’ is not a character). Hereafter, to indicate positions of 
characters in S j , we use the positions in the transformed alignment ˜ϒ and denote by ˜S j[i] the character of S j at the ith 
position in ˜ϒ . If ˜S j[i] is ‘-’, we say ˜S j[i] is empty. The positions in S j and ˜S j can be easily converted into each other by 
storing gap information. Moreover, we denote the suffix of ˜S j starting at position q by suffix ( j, q), e.g., the suffix (3, 8) is
aac# in Fig. 2.

An alignment of similar strings can be compactly represented by combining each common substring αi in all strings 
as in [25–27]. However, the representation is not suitable for the transformed alignment ˜ϒ because the characters 
in α̃+

i are not aligned in ˜ϒ . Thus, we introduce another representation. Let α̃�
i (1 ≤ i ≤ r + 1) be the prefix of 

αi such that αi = α̃�
i α̃+

i . Then, we represent the transformed alignment ˜ϒ by combining α̃�
i (rather than αi ): ˜ϒ =

α̃�
1 (α̃+

1 �1
1/ · · ·/α̃+

1 �m
1 ) · · · α̃�

r (α̃+
r �1

r / · · ·/α̃+
r �m

r )α̃�
r+1. The alignment in Fig. 2 is represented as ˜ϒ = $c(ctca/ctcca/

cttat/ct)a(acc/aca/ac/acc)#. We denote (α̃+
i �1

i / · · ·/α̃+
i �m

i ) by α̃+
i �i and call it a ps-region (partially-shared re-

gion). Also, we call α̃�
i a cs-region (completely-shared region).

2.2. Suffix array and FM-index of alignment with gaps

In our index, one or more suffixes starting at an identical position q are compactly represented by one alignment-suffix
(for short a-suffix) defined as follows. We have two cases according to whether the starting position q is in a cs-region or a 
ps-region.

• The case when q is in a cs-region α̃�
i (1 ≤ i ≤ r + 1). Let α′

i be the suffix of α̃�
i starting at q. All the suffixes starting at 

q are represented by the a-suffix α′
i(α̃

+
i �1

i / · · ·/α̃+
i �m

i ) · · · . In the previous example, the suffixes starting at position 8 
are represented by the a-suffix a(acc/aca/ac/acc)#.

• The case when q is in a ps-region α̃+
i �i (1 ≤ i ≤ r). Let δ j

i (1 ≤ j ≤ m) be the suffix of α̃+
i �

j
i starting at q. Then, 

the set of the suffixes starting at q is partitioned so that the suffixes of S j1 and S j2 are in the same subset if and 
only if δ j1

i = δ
j2
i . For each subset {δ j1

i · · · α̃�
r+1, . . . , δ

jk
i · · · α̃�

r+1}, all the suffixes in the subset are represented by the 
a-suffix (δ j1

i / · · ·/δ jk
i ) · · · α̃�

r+1. For example, the set of the suffixes starting at position 9 is partitioned into two subsets 
{˜S1[9..12], ˜S4[9..12]} and {˜S2[9..12]}, and they are represented by the a-suffixes (acc/acc)# and aca#, respectively. 
Note that no suffix of ˜S3 starts at position 9.

The suffixes represented by an a-suffix appear consecutively in the generalized suffix array of the given strings since α̃+
i

occurs only once in each given string. Note that a suffix of α̃+
i may occur more than once in a string, and thus α̃+

i does not 
belong to a cs-region but to a ps-region.

1 Note that the definition of α̃+
i is different from that of α̃∗

i in [25–27]. The α̃+
i is longer than α̃∗

i by one.
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idx SAA F a-suffixes 
(cyclic shifts)

L occ(σ , i) & Bσ

strs pos a c t

1 0 1 $ $c(ctca/ctcca/cttat/ct)a(acc /aca/ac/acc)# # 0 0 0
2 0 12 # #$c(ctca/ctcca/cttat /ct)a(acc/aca/ac/acc) a,c 1 1 0
3 2 11 a a#$cctccaaac c 1 2 0
4 1,2 7 a (a/a)a(acc/aca)#$c(ctc/ctcc) c 1 3 0
5 0 8 a a(acc/aca/ac/acc)#$c(ctca/ctcca /cttat/ct) a,t 2 3 1
6 3 10 a ac#$ccttata a 3 1 3 1
7 2 9 a aca#$cctccaa 〈a〉 3 1 3 1
8 1,4 9 a (acc/acc)#$ c(ctca/ct)a 〈a〉 3 1 3 1
9 3 6 a ataac#$ cctt t 3 3 2
10 1,3,4 11 c (c/c/c)#$ c(ctca/cttat/ct)a(ac/a/ac) a,c 4 4 2
11 2 10 c ca#$cctccaaa a 5 4 2
12 1,2 6 c (ca/ca)a(acc/aca)#$c(ct/ctc) c,t 5 5 3
13 1,4 10 c (cc/cc)#$ c(ctca/ct)a(a/a) a 6 5 3
14 2 5 c ccaaaca#$cct t 6 5 4
15 0 2 c c(ctca/ctcca/cttat/ct)a(acc /aca/ac/acc)#$ $ 6 5 4
16 4 6 c ctaacc#$c c 6 6 1 4
17 1 4 c ctcaaacc#$c 〈c〉 6 6 1 4
18 2 3 c ctccaaaca#$c 〈c〉 6 6 1 4
19 3 3 c cttataac#$c 〈c〉 6 6 1 4
20 3,4 7 t (t/t)a(ac/acc)#$c(ctta/c) a,c 7 7 4
21 3 5 t tataac#$cct t 7 7 5
22 1 5 t tcaaacc#$cc c 7 8 5
23 2 4 t tccaaaca#$cc c 7 9 5
24 3 4 t ttataac#$cc c 7 10 5

Fig. 3. The SAA and FMA for ˜ϒ = $c(ctca/ctcca/cttat/ct)a(acc/aca/ac/acc)#. (Bit 0 is omitted in Bσ .)

The suffix array of alignment (SAA) is a lexicographically sorted array of all the a-suffixes of the transformed alignment 
˜ϒ . See Fig. 3 for an example, where the string number 0 indicates the string numbers 1, . . . , m. We denote by S A A[i] the 
ith entry of the SAA. Let us consider a-suffixes in the SAA as cyclic shifts (rotated alignments) as in the Burrows–Wheeler 
transform [4]. Then, the array F [i] (resp. L[i]) is the set of the first (resp. last) characters of the suffixes represented by 
the a-suffix in S A A[i]. By definition of the a-suffixes, the first characters of the suffixes represented by an a-suffix are of 
the same value and thus F [i] has one element. However, L[i] may have more than one element (at most |�| elements) as 
shown in Fig. 3. For example, F [13] = {˜S1[10], ˜S4[10]} = {c} and L[10] = {˜S1[10], ˜S3[10], ˜S4[10]} = {a,c}. Since gaps are 
not considered as characters in ˜ϒ , when letting q be the position of the characters in F [i], the positions of the characters 
in L[i] may be less than q − 1. (On the other hand, the position of the characters in L[i] is always q − 1 for an alignment 
without gaps when q > 1.) In Fig. 3, F [17] =˜S1[4] and L[17] =˜S1[2] because ˜S1[3] is empty.

We define the LF-mapping for the arrays L and F . Let L be the set of pairs of a character σ and an entry index i such 
that σ ∈ L[i]. In the example of Fig. 3, L = {(#, 1), (a, 2), (c, 2), (c, 3), (c, 4), (a, 5), (t, 5), . . .}. For a pair (σ , i) ∈ L, the 
LF-mapping L F (σ , i) is defined as the index of F [k] containing the characters corresponding to σ in L[i]. For example, see 
L[10] = {˜S1[10], ˜S3[10], ˜S4[10]} = {a, c}. Since a in L[10] corresponds to ˜S3[10] and it is contained in F [6], L F (a, 10) = 6. 
Similarly, L F (c, 10) = 13 since ˜S1[10] and ˜S4[10] (i.e., c in L[10]) are contained in F [13]. Note that L F (c, 10) is well 
defined since the characters in L[10] whose values are c are all contained in an identical entry F [13]. This is always true 
in the transformed alignment ˜ϒ even though gaps exist in ˜ϒ , as shown in the following lemma. (It is not true in the 
untransformed alignment ϒ .)

Lemma 1. For a pair (σ , i) ∈L, the characters in L[i] whose values are σ are all contained in an identical entry of F .

Proof. Let q be the starting position of the suffixes in S A A[i], and ˜S j1 [q1] and ˜S j2 [q2] ( j1 	= j2) be two characters in L[i]
whose values are σ . Without loss of generality, we assume q > 1. Then, q1 and q2 are less than q. We have three cases 
according to whether ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty.

• First, when none of ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty (i.e., q1 = q2 = q − 1), ˜S j1 [q1] and ˜S j2 [q2] are contained in an 
identical entry of F by definition of the a-suffix, which can be shown as in [25].

• Second, when both of ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty, both ˜S j1 [q1] and ˜S j2 [q2] are the last character in a cs-region 
α̃�

i since the characters in ps-region α̃+
i �i are right-justified in ˜ϒ . Thus, q1 = q2 and by definition of the a-suffix, the 

suffixes ( j1, q1) and ( j2, q2) are contained in an identical entry of the SAA. Hence, ˜S j1 [q1] and ˜S j2 [q2] are contained in 
an identical entry of F .

• The third case is when only one of ˜S j1 [q − 1] and ˜S j2 [q − 1] is empty. We show by contradiction that this case cannot 
happen. Without loss of generality, assume ˜S j1 [q − 1] is empty and ˜S j2 [q − 1] is not empty. Since ˜S j1 [q − 1] is empty, 
˜S j1 [q1] is the last character in a cs-region α̃�

k and ˜S j1 [q] is the first character in ps-region α̃+
k �k . It means that the 

suffix ( j1, q) is prefixed by α̃+ . Since both suffixes ( j1, q) and ( j2, q) are in S A A[i], by definition of the a-suffix, the 
k
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suffix ( j2, q) is also prefixed by α̃+
k . Since α̃+

k occurs only once in each string, ˜S j2 [q2] is the last character in α̃�
k (i.e., 

q1 = q2) and ˜S j2 [q2 + 1..q − 1] is empty. It contradicts with the assumption that ˜S j2 [q − 1] is not empty.

Therefore, the characters in L[i] whose values are σ are all contained in an identical entry of F . �
For a character σ ∈ �, a pair (σ , i) ∈ L will be called an Lσ -pair. For two Lσ -pairs (σ , i) and (σ , i′), we say that (σ , i)

is smaller than (σ , i′) if and only if i < i′ .
The LF-mapping L F (σ , i) is not a one-to-one correspondence. Multiple pairs can be mapped to the same entry in F . 

See L[6] = {˜S3[8]} = {a}, L[7] = {˜S2[8]} = {a}, and L[8] = {˜S1[8], S4[8]} = {a}. Since all of them are a in F [5], L F (a, 6) =
L F (a, 7) = L F (a, 8) = 5. Thus, we classify pairs (σ , i) ∈ L into two types: A pair (σ , i) ∈ L is an (m:1)-type (many-to-one 
mapping-type) pair if there exists another pair (σ , i′) ∈ L such that L F (σ , i) = L F (σ , i′); otherwise, (σ , i) is a (1:1)-type
(one-to-one mapping-type) pair. The following lemma shows that for a (m:1)-type pair (σ , i), the last characters of all 
the suffixes in S A A[i] are mapped to an identical entry in F . (This lemma is necessary for our search algorithm to work 
correctly and it is also satisfied for the FMA without gaps [25]. However, it is not satisfied when defining our index using 
α̃∗ in [25] rather than α̃+ .)

Lemma 2. If a pair (σ , i) ∈L is of (m:1)-type, no pair (σ ′, i) such that σ ′ 	= σ exists in L, i.e., L[i] has only one character σ .

Proof. Let k = L F (σ , i) and qk be the starting position of the suffixes in S A A[k]. By definition of the a-suffix, the pair (σ , i)
is of (m:1)-type only if qk is the last position in a cs-region α̃�

j and the last character in α̃�
j is σ . Hence, all the suffixes in 

S A A[i] are prefixed by α̃+
j . Since α̃+

j occurs only once in each string, the preceding character of α̃+
j is the last character in 

α̃�
j , i.e., σ . Therefore, L[i] has only one character σ . �

To handle (m:1)-type pairs in L efficiently, we define bit-vectors Bσ ’s as follows: Bσ [i] = 1 if and only if (σ , i) is in L
and it is of (m:1)-type (see Fig. 3).

The LF-mapping can be easily computed using the array C and the function occ defined as follows [25].

• For σ ∈ �, C[σ ] is the total number of entries in F containing characters alphabetically smaller than σ . C[|�| + 1] is 
the size of F .

• For a character σ ∈ � and an entry index i in the SAA, occ(σ , i) is the number of Lσ -pairs (σ , i′) such that i′ ≤ i, 
i.e., the number of entries in L[1..i] containing the character σ . If more than one pair (σ , i′) ∈ L are mapped to an 
identical entry in F , we count only the smallest Lσ -pair among them. For example, consider occ(a, i) for i = 6, 7, 8. 
Since a’s in L[6..8] are all contained in F [5], we only count (a, 6) and thus occ(a, i)’s are the same for i = 6, 7, 8. In 
Fig. 3, uncounted characters in L are indicated by 〈 〉.

Then, L F (σ , i) = C[σ ] + occ(σ , i). See L[10] in Fig. 3, which has two Lσ -pairs (a, 10) and (c, 10). We have L F (a, 10) =
C[a] + occ(a, 10) = 2 + 4 = 6 and L F (c, 10) = C[c] + occ(c, 10) = 9 + 4 = 13.

2.3. Pattern search

Pattern search is to find all occurrences of a given pattern P [1..p] in the given strings S1, . . . , Sm . Our pattern search 
algorithm proceeds backward using the LF-mapping with the array C and the function occ. It consists of at most p steps 
from Step p to Step 1. In Step � = p, . . . , 1, the algorithm finds the closed range (First�, Last�) in the SAA defined as follows:

i) Firstp (resp. Lastp) is the smallest (resp. largest) index i such that F [i] = {P [p]}.
ii) For � = p − 1, . . . , 1, First� (resp. Last�) is the LF-mapping value of the smallest (resp. largest) Lσ -pair in the range 

(First�+1, Last�+1), where σ = P [�]. If there exists no Lσ -pair in (First�+1, Last�+1), then we set First� = Last� + 1.

Then, all the suffixes prefixed by P [�..p] are in S A A[First�..Last�] and the size of the range decreases monotonically when 
� decreases.

While the size of the range (First�, Last�) is greater than one (i.e., First� < Last�), all the suffixes in S A A[First�..Last�] are 
prefixed by P [�..p]. When First� = Last� , however, some suffixes in S A A[First�] may not be prefixed by P [�..p]. For example, 
when assuming that P = aaacc, we have (First2, Last2) = (5, 5), and the suffixes (1, 8) and (4, 8) in S A A[5] are prefixed by
aacc but the other suffixes (2, 8) and (3, 8) are not. Also, we have (First1, Last1) = (4, 4), and the suffix (1, 7) in S A A[4] is 
prefixed by aaacc but the suffix (2, 7) is not. Thus, in addition to the range (First�, Last�), we maintain the set Z� defined 
as follows:

• When First� = Last� , Z� is the set of the string numbers of the suffixes prefixed by P [�..p].
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Algorithm 1 BackwardSearch(P [1..p]) 
 using the FM-index of alignment.
1: Z ← {1, . . . , m}; 
 Set of all string numbers
2: σ ← P [p], First ← C[σ ] + 1, Last ← C[σ + 1], � ← p − 1;
3: while (First ≤ Last) and Z 	= ∅ and (� ≥ 1) do
4: σ ← P [�], First′ ← First, Last′ ← Last; 
 Previous range
5: First ← C[σ ] + occ(σ , First − 1) + 1, Last ← C[σ ] + occ(σ , Last);

6: if First ≥ Last then
7: Zm ← { j | ( j, q) ∈ S A A[i] such that First′ ≤ i ≤ Last′ and Bσ [i] = 1};
8: if Zm 	= ∅ then
9: First ← Last, Z ← Z ∩ Zm;

10: else
11: Zc ← { j | ( j, q) ∈ S A A[First..Last]}, 
 If First > Last, Zc = ∅
12: Z ← Z ∩ Zc;
13: � ← � − 1;

14: for all ( j, q) ∈ S A A[First..Last] do 
 If First > Last, no occurrence
15: if j ∈ Z then print “( j, q)”; 
 Reporting an occurrence

For simplicity, we define Z� to be {1, . . . , m} when First� < Last� . Then, regardless of the size of the range (First�, Last�), 
a suffix ( j, q) is prefixed by P [�..p] if and only if ( j, q) ∈ S A A[First�..Last�] and j ∈ Z� .

Algorithm 1 shows the search algorithm using our index, which is the same as the code in [25]. (Since the definition of 
the a-suffix is different from that in [25], however, we need a correctness proof which will be given later.) The algorithm 
maintains the following loop invariant for a range (First, Last) and a string number set Z:

At the end of Step � = p, . . . , 1, the range (First, Last) = (First�, Last�) and Z = Z� .

Initially (in Step p), we set (First, Last) = (Firstp, Lastp) and Z = Zp (lines 1–2). Each iteration of the while loop (lines 3–13) 
represents each Step � = p − 1, . . . , 1. In Step � = p − 1, . . . , 1, we first compute range (First, Last) using the LF-mapping 
of the previous range (First′, Last′) = (First�+1, Last�+1) and σ = P [�] (lines 4–5). If the size of the range (First, Last) is 
more than one, then (First, Last) = (First�, Last�) and Z = Z� = {1, . . . , m}. Thus, we continue to the next step (by skipping 
lines 6–12 and going to line 13). Otherwise (i.e., the size of (First, Last) is one or less), we compute Z� as follows (lines 
6–12). Let Zm be the set of the string numbers in S A A[i]’s such that First�+1 ≤ i ≤ Last�+1 and Bσ [i] = 1, and let Zc be 
the set of the string numbers in S A A[Last]. Then, Z� = Z�+1 ∩ Zm if Zm 	= ∅, and Z� = Z�+1 ∩ Zc, otherwise. (As in [25], 
lines 10–12 for Zc can be removed by using a loose definition and a lazy update for Z� .) For example, assume P = aaacc. 
In Step 2, given (First3, Last3) = (8, 8) and Z3 = {1, 2, 3, 4}, we have Zm = {1, 4} and thus Z2 = {1, 4}. In Step 1, given 
(First2, Last2) = (5, 5) and Z2 = {1, 4}, we have Zm = ∅ and Zc = {1, 2} (Last1 = 4), and thus Z1 = {1, 4} ∩ {1, 2} = {1}. After 
the while loop terminates, the occurrences of P are reported using the range (First, Last) and Z (lines 14–15). Since the SAA 
stores positions in the transformed alignment ˜ϒ , we need to convert them to the original positions in the given strings S j , 
which can be easily done by using gap information.

Now we show the invariant is satisfied at the end of each step (an iteration of the while loop) by induction. Trivially, the 
invariant is true at the end of Step p, which is the induction basis. At the beginning of Step � = p − 1, . . . , 1, by inductive 
hypothesis, (First, Last) = ( First�+1, Last�+1). After executing line 5, First = C[σ ] + occ(σ , First�+1 − 1) + 1 and Last = C[σ ] +
occ(σ , Last�+1), where σ = P [�]. Then, the following lemmas show Algorithm 1 computes correctly ( First�, Last�) and Z� at 
the end of Step �.

Lemma 3. If First < Last, then ( First�, Last�) = (First, Last) and Z� = Z�+1 .

Proof. By definition of the LF-mapping, the suffixes in S A A[First..Last] are prefixed by P [�..p]. We show that no suffix 
outside S A A[First..Last] is prefixed by P [�..p]. Suppose that a suffix prefixed by P [�..p] is contained in an S A A[i] outside 
S A A[First..Last]. Then, all suffixes in S A A[i] are prefixed by P [�..p]. (If two suffixes in two distinct entries of the SAA are 
prefixed by P [�..p], then all the suffixes in the two entries are prefixed by P [�..p], which can be easily shown using the 
definition of the a-suffix.) Let (σ , k) be the smallest Lσ -pair such that L F (σ , k) = i. Since the suffixes in S A A[k] are prefixed 
by P [� + 1..p], k is included in the previous range ( First�+1, Last�+1) by definition and thus its LF-mapping value i is also 
included in (First, Last) (note that the pair (σ , k) is always counted in the function occ). It contradicts with the assumption 
that i is outside the range (First, Last). Therefore, we get ( First�, Last�) = (First, Last). Furthermore, since First� 	= Last� , 
Z� = Z�+1 = {1, . . . , m} by definition. �
Lemma 4. If First ≥ Last and Zm 	= ∅, then ( First�, Last�) = (Last, Last) and Z� = Z�+1 ∩ Zm .

Proof. Since Zm 	= ∅, there exist Lσ -pairs of (m:1)-type in (First�+1, Last�+1). Furthermore, all of the Lσ -pairs are mapped 
to one entry F [Last] of F since First ≥ Last. Therefore, (First�, Last�) = (Last, Last).

Next, let us consider Z� . In this case, Lσ -pairs in (First�+1, Last�+1) are all of (m:1)-type. Moreover, for every Lσ -pair 
(σ , i) in (First�+1, Last�+1), the last characters of the suffixes in S A A[i] are all σ by Lemma 2. Thus, Zm is the set of 
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the string numbers of the suffixes whose last characters are σ in S A A[First�+1..Last�+1]. By definition, Z�+1 is the set of 
the string numbers of the suffixes prefixed by P [� + 1..p]. Thus, a suffix ( j, q) in S A A[Last] is prefixed by σ P [� + 1..p]
(= P [�..P ]) if and only if j ∈ Zm and j ∈ Z�+1. Therefore, we get Z� = Zm ∩ Z�+1. �
Lemma 5. If First ≥ Last and Zm = ∅, then ( First�, Last�) = (First, Last) and Z� = Z�+1 ∩ Zc .

Proof. Since Zm = ∅, there is no Lσ -pair of (m:1)-type in (First�+1, Last�+1). If First = Last, there is one Lσ -pair of 
(1:1)-type in (First�+1, Last�+1). If First > Last, there is no Lσ -pair of (1:1)-type in (First�+1, Last�+1). In both cases, 
(First�, Last�) = (First, Last).

Next, let us consider Z� when First = Last. Let (σ , i) be the only one Lσ -pair in (First�+1, Last�+1). Since (σ , i) is of 
(1:1)-type, the set of the string numbers in S A A[Last] (i.e., Zc) is the same as the set of the string numbers of the suffixes 
whose last characters are σ in S A A[First�+1..Last�+1]. Thus, a suffix ( j, q) in S A A[Last] is prefixed by σ P [� + 1..p] (=
P [�..P ]) if and only if j ∈ Zc and j ∈ Z�+1. Therefore, we get Z� = Zc ∩ Z�+1. �

Therefore, we can get the following theorem.

Theorem 1. Algorithm 1 finds correctly all the occurrences of a pattern P .

2.4. Data structures

Our index consists of the function occ, the array C , the bit-vectors Bσ , and a sampled SAA. Furthermore, we store gap 
information for mutual conversion between positions in an original string S j and positions in its transformed string ˜S j . As 
described in [27], we first build the suffix array of alignment, from which we construct the FM index of alignment (i.e., occ, 
C , Bσ , and a sampled SAA).

We store the SAA using two kinds of sampling as in [25], the regular-position sampling and the irregular-position sampling. 
For the regular-position sampling, we sample S A A[i] storing every d-th position in the transformed alignment ˜ϒ where d
is a given parameter. Then, we get an S A A[i] in a sampled SAA by repeating the LF-mapping from S A A[i] until a sampled 
entry S A A[k] is encountered. In order to guarantee that the string numbers in S A A[i] are the same as the ones in S A A[k], 
we also need the following irregular sampling: an S A A[i] is sampled when L[i] has multiple characters or, for any σ ∈ �, 
the pair (σ , i) is of (m:1)-type. Note that such an S A A[i] has different string numbers from the string number in S A A[i′]
where i′ = L F (σ , i) for a character σ ∈ L[i].

For supporting extraction (retrieval) operations, we also need a sampled inverse SAA. In the FMA without gaps [25], the 
regular-position sampling is enough for the inverse SAA. Due to gaps, however, we need also an irregular sampling for the 
inverse SAA. Suppose that a gap in a transformed string ˜S j includes a regular sampling position q. Then, we cannot sample 
the position q in ˜S j . Let q′ be the leftmost position such that q′ > q and no gap in ˜S j includes q′ . Then, the position q′ , 
instead of q, is sampled in ˜S j . For example, assuming position 4 is a regular sampling position in Fig. 2, instead of position 4, 
position 6 is sampled in ˜S4 since ˜S4[3..5] is a gap.

3. Experiments

We compared our FM-index of alignment (FMA) with RLCSA [24], GCSA [31], and GCSA2 [30]. We used SDSL (Succinct 
Data Structure Library [13]) to implement the FMA and used the implementations of the other indexes distributed by the 
authors.2 All experiments were conducted on a computer with Intel Xeon X5672 CPU and 32GB RAM, running the Linux 
debian 3.16.0-4-amd64 operating system.

The experimental data set is a reference sequence and 100 individual sequences, which are downloaded from the 1000 
Genomes Project website. The reference genome is chromosome 20 of hs37d5 of length about 63 million bases and each 
individual sequence consists of a pair of BAM and BAI files, where a BAM file contains reads (short segments of length 
90–125) of each individual and a BAI file contains the alignment of the reads. Each pair of BAM and BAI files is fed 
to SAMtools (Sequence Alignment/Map tools) to obtain a VCF file which stores genetic mutations such as substitutions, 
insertions and deletions relative to the reference genome. The individual sequences are created from the reference and the 
VCF files.

First, we compared the sizes of the four indexes for 31 and 101 sequences (Table 1). The FMA, RLCSA, and GCSA were 
created with sampling rates d = 32, 128, and 512, and GCSA2 was created using order-128, which means GCSA2 is a 
128-mer index storing substrings of length 128 (we could not find out a parameter for sampling in the implementation of 
GCSA2). The table shows that the index size of FMA is smaller than those of other indexes in every case. Note that the FMA 
is the smallest even when only the “core” and “sampling” sizes are considered. Another merit of the FMA is that its size 
is little influenced by the sampling rates or the number of sequences, while the sizes of RLCSA and GCSA are substantially 
influenced by them.

2 GCSA2 version 0.7 was used in our experiments and an implementation of a variation [2] of RLCSA is also available.
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Table 1
The index sizes (in MBytes) where “sampling” means the space for sampling, “gap” 
means the space for storing gap information, and “core” means the space except 
for sampling and gap. For GCSA, “backbone” is the space for storing the path in a 
graph corresponding to the reference sequence. For GCSA2, “counter” and “lcp” are the 
spaces for supporting counting queries and for storing lcp information, respectively.

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

FMA total 53.5 45.5 43.6 72.8 63.8 61.6
core 36.8 36.8 36.8 44.1 44.1 44.1
gap 1.6 1.6 1.6 5.7 5.7 5.7
sampling 15.1 7.2 5.2 22.9 14.0 11.7

RLCSA total 397.9 194.3 140.6 1114.0 410.8 225.4
core 121.6 121.6 121.6 159.9 159.9 159.9
sampling 276.3 72.7 19.0 954.1 250.9 65.5

GCSA total 187.1 179.2 177.7 2060.4 2020.6 2019.3
core 67.8 67.8 67.8 576.9 576.9 576.9
sampling 56.0 48.2 46.7 765.7 725.9 724.6
backbone 63.2 63.2 63.2 717.8 717.8 717.8

GCSA2 total 150.8 178.7
core 47.4 53.2
sampling 39.2 52.3
counter 10.5 13.4
lcp 53.7 59.8

Table 2
Pattern search (location) time (in secs) for 5000 queries.

Query
length

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

10 FMA 85.0 267.6 777.2 172.5 318.8 577.6
RLCSA 72.5 318.6 1623.5 190.0 830.0 4887.0
GCSA 85.9 190.5 508.5 349.4 452.2 651.5
GCSA2 15.38 16.32

30 FMA 1.25 3.57 9.46 2.53 4.27 7.59
RLCSA 0.68 3.28 18.32 1.86 8.48 54.25
GCSA 0.77 2.06 6.11 0.92 2.14 4.63
GCSA2 0.26 0.28

100 FMA 0.90 1.33 2.90 1.85 2.10 2.99
RLCSA 0.18 0.58 2.60 0.30 0.97 5.30
GCSA 0.87 1.08 1.85 0.89 1.07 1.51
GCSA2 0.30 0.31

Fig. 4. Total index sizes and pattern search (location) times for 5000 queries of length 100. Each index was tested with sampling rates d = 32, 128, and 512.

Second, we compared the running time of pattern search (location) reporting all occurrences. We performed the pattern 
search with patterns of lengths 10, 30, and 100 on the indexes with sampling rates d = 32, 128, and 512 (Table 2 and 
Fig. 4). GCSA2 shows the best performance in most cases but GCSA and GCSA2 report nodes of a graph but not occurrences 
in given sequences (note that they are indexes on a graph with different functionalities). In comparison with RLCSA, FMA is 
faster than RLCSA when many sequences are indexed, sampling is sparse, and/or queries are short. We also compared the 



156 J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157
Table 3
Extraction time (in secs) for 5000 queries.

Query
length

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

10 FMA 0.51 1.34 4.79 0.50 1.37 5.05
RLCSA 0.06 0.15 0.71 0.06 0.16 0.64

30 FMA 1.10 1.71 5.28 1.13 1.78 5.45
RLCSA 0.14 0.19 0.79 0.14 0.20 0.59

100 FMA 2.41 3.03 6.49 2.46 3.15 6.81
RLCSA 0.24 0.33 0.71 0.26 0.34 0.73

Fig. 5. Total index sizes and extraction times for 5000 queries of length 100. Each index was tested with sampling rates d = 32, 128, and 512.

extraction time (Table 3 and Fig. 5). We compared only FMA and RLCSA because we could not find out how to perform an 
extraction query in the implementations of GCSA and GCSA2. In all cases, RLCSA is faster than FMA.

4. Concluding remarks

We have proposed the FM-index of alignment with gaps, a realistic index for similar strings, which allows gaps in their 
alignment. For this, we have designed a new version of suffix array of alignment by using an alignment transformation 
and a new definition of the alignment-suffix. The new SAA enabled us to support the LF-mapping and backward search 
regardless of gap existence in alignments. Experimental results showed that our index is more space-efficient than RLCSA 
while its extraction time is slower than that of RLCSA. It remains as future work to do extensive experiments and analysis 
on various real-world data.
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