
Theoretical Computer Science 710 (2018) 148–157
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

FM-index of alignment with gaps

Joong Chae Na a, Hyunjoon Kim b, Seunghwan Min b, Heejin Park c,
Thierry Lecroq d,e, Martine Léonard d, Laurent Mouchard d,f, Kunsoo Park b,∗
a Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea
b School of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
c Department of Computer Science and Engineering, Hanyang University, Seoul 04763, South Korea
d Normandie University, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen, France
e Centre for Combinatorics on Words & Applications, School of Engineering & Information Technology, Murdoch University, Murdoch
WA 6150, Australia
f Laboratoire d’Informatique de l’Ecole Polytechnique (LIX), CNRS UMR 7161, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 June 2016
Received in revised form 13 January 2017
Accepted 14 February 2017
Available online 2 March 2017

Keywords:
Indexes for similar strings
FM-indexes
Suffix arrays
Alignments
Backward search

Recently a compressed index for similar strings, called the FM-index of alignment (FMA), has
been proposed with the functionalities of pattern search and random access. The FMA is
quite efficient in space requirement and pattern search time, but it is applicable only for an
alignment of strings without gaps. In this paper we propose the FM-index of alignment with
gaps, a realistic index for similar strings, which allows gaps in their alignment. For this, we
design a new version of the suffix array of alignment by using an alignment transformation
and a new definition of the alignment-suffix. The new suffix array of alignment enables us
to support the LF-mapping and backward search, the key functionalities of the FM-index,
regardless of gap existence in the alignment. We experimentally compared our index with
RLCSA due to Mäkinen et al. and related indexes GCSA due to Sirén et al. and GCSA2 due
to Sirén on genome sequences from the 1000 Genomes Project. The index size of our index
is smaller than those of other indexes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The collection indexing problem is defined as follows [24]: Given a collection of highly similar strings, build a compressed
index for the collection of strings, and when a pattern is given, find all occurrences of the pattern in the given strings.
Since the index is compressed, we also need a separate operation which extracts a specified substring of one of the given
strings. Many indexes for the collection indexing problem have been developed such as RLCSA [23,24,32], LZ-scheme based
indexes [6,8,16], compressed suffix trees [1,29], and so on [15,28]. To exploit the similarity of the given strings, most
of them use classical compression schemes such as run-length encoding and Lempel–Ziv compressions [17,33]. Recently,
Na et al. [25–27] took a new approach for the collection indexing problem by using an alignment of similar strings, and
they proposed indexes of alignment called suffix tree of alignment [26], suffix array of alignment (SAA) [27], and FM-index of

* Corresponding author.
E-mail addresses: jcna@sejong.ac.kr (J.C. Na), hjkim@theory.snu.ac.kr (H. Kim), shmin@theory.snu.ac.kr (S. Min), hjpark@hanyang.ac.kr (H. Park),

Thierry.Lecroq@univ-rouen.fr (T. Lecroq), Martine.Leonard@univ-rouen.fr (M. Léonard), Laurent.Mouchard@univ-rouen.fr (L. Mouchard),
kpark@theory.snu.ac.kr (K. Park).
http://dx.doi.org/10.1016/j.tcs.2017.02.020
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.02.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jcna@sejong.ac.kr
mailto:hjkim@theory.snu.ac.kr
mailto:shmin@theory.snu.ac.kr
mailto:hjpark@hanyang.ac.kr
mailto:Thierry.Lecroq@univ-rouen.fr
mailto:Martine.Leonard@univ-rouen.fr
mailto:Laurent.Mouchard@univ-rouen.fr
mailto:kpark@theory.snu.ac.kr
http://dx.doi.org/10.1016/j.tcs.2017.02.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.02.020&domain=pdf

J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157 149
Fig. 1. Example of a VCF file.

alignment (FMA) [25]. The FMA, a compressed version of the SAA, is the most efficient among the three indexes but it is
applicable only for an alignment of similar strings without gaps.

However, real-world data include gaps in alignments. Fig. 1 shows Variant Call Format (VCF) files created by SAMtools
(Sequence Alignment/Map tools) for sequences from the 1000 Genomes Project [5]. A VCF file contains alignment informa-
tion between an individual sequence and its reference sequence. Note that not only substitutions but also indels (insertions
and deletions) are contained in an alignment. For example, the first line of the ‘VCF 3’ file in Fig. 1 says that AT at po-
sition 786763 in the reference sequence is aligned with A in the individual sequence. Thus, the FMA [25] allowing only
substitutions in an alignment is an unrealistic index.

In this paper we propose a new FM-index of alignment, a realistic compressed index for similar strings, allowing in-
dels as well as substitutions in an alignment. (We call our index the FMA with gaps and the previous version the FMA
without gaps.) For this, we design a new version of the SAA by using an alignment transformation and a new definition
of the suffix of an alignment (called the alignment-suffix). In our index, an alignment is divided into two kinds of regions,
common regions and non-common regions, and gaps in a non-common region are put together into one gap in the trans-
formed alignment. The alignment-suffix is defined for the transformed alignment but its definition is different from those
defined in [25–27]. Due to the alignment transformation and the new definition of the alignment-suffix, our index supports
the LF-mapping and backward search, the key functionalities of the FM-index [10–12], regardless of gap existence in the
alignment.

For constructing our index, we must find common regions and non-common regions for the given strings but we do
not need to find a multiple alignment for the given strings since the knowledge about positions where substitutions and
indels occur are of no use in our transformed alignment. Finding common and non-common regions is much easier and
simpler than finding a multiple alignment. For instance, common regions and non-common regions between an individual
sequence and its reference sequence can be directly obtained from a VCF file. In the example of Fig. 1, position 786703 is a
non-common region and positions 786704..786763 are a common region. Hence, based on the reference sequence, common
regions and non-common regions of genome sequences can be easily created. We implemented the FMA with gaps and did
experiments on 101 genome sequences from the 1000 Genomes Project. We compared our FMA with RLCSA due to Mäkinen
et al. [24]. The index size of our FMA is less than one third of that of RLCSA.

The FM-index [12] is defined on a string, but it is such a powerful tool that it can be applied to many generalizations
of a string: a tree [9], a graph [3,31,30], an alignment, etc. to produce compressed and searchable indexes. GCSA [31] is an
FM-index on a graph, and ours is an FM-index on an alignment (i.e., they solve different problems), though there are some
common ingredients in the two indexes (because they are FM-indexes). For comparison, we included GCSA and GCSA2 in
our experiments, which show that the index size of FMA is smaller than those of GCSA and GCSA2. The FM-index also has
been used in various ways for read alignment [14,18–22] and for finding set-maximal matches [7].

This paper is organized as follows. We first describe our FMA and search algorithm for an alignment with gaps in
Section 2 and give experimental results in Section 3. In Section 4, we conclude with remarks.

2. FM-index of alignment with gaps

2.1. Alignments with gaps

Consider a multiple alignment in Fig. 2 (a) of four similar strings: S1 = $cctcaaacc#, S2 = $cctccaaaca#, S3 =
$ccttataac #, and S4 = $cct aacc#. These strings are the same except the underlined characters and one string can
be transformed into another strings by replacing, inserting or deleting underlined substrings. Formally, we are given an

150 J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157
pos. 1 2 3 4 5 6 7 8 9 0 1 2 3
S1 = $ c c t c - a - a a c c #
S2 = $ c c t c c a - a a c a #
S3 = $ c c t t - a t a a c - #
S4 = $ c c t - - - - a a c c #

α̃�
1 α̃+

1 �1 α̃�
2 α̃+

2 �2 α3
(a)

pos. 1 2 3 4 5 6 7 8 9 0 1 2
S1 = $ c - c t c a a a c c #
S2 = $ c c t c c a a a c a #
S3 = $ c c t t a t a - a c #
S4 = $ c - - - c t a a c c #

α̃�
1 α̃+

1 �1 α̃�
2 α̃+

2 �2 α3
(b)

Fig. 2. An example of (a) an original alignment and (b) its transformed alignment.

alignment ϒ of m similar strings S j = α1�
j
1 . . . αr�

j
r αr+1 (1 ≤ j ≤ m) over an alphabet �, where αi (1 ≤ i ≤ r + 1) is a

common substring in all strings and � j
i (1 ≤ i ≤ r) is a non-common substring in string S j . In the example above, α1 =

$cct, α2 = aac, α3 = #. Without loss of generality, we assume α1 starts with $ and αr+1 ends with # where $ and # are
special symbols occurring nowhere else in S j , and each αi is not empty.

For each common substring αi , we define α̃+
i as follows.1

Definition 1. The string α̃+
i (1 ≤ i ≤ r) is the shortest suffix of αi occurring only once in each string S j (1 ≤ j ≤ m) and

α̃+
r+1 is an empty string.

Consider α1 = $cct in Fig. 2. Since the suffix t of length 1 occurs more than once in S3 but the suffix ct of length 2
occurs only once in each string, α̃+

1 is ct. Similarly, α̃+
2 is ac, which is the shortest suffix of α2 occurring only once in each

string. Without loss of generality, for 2 ≤ i ≤ r + 1, α̃+
i is assumed to be shorter than αi . (If α̃+

i is equal to αi , we merge αi

with its adjacent non-common substrings � j
i−1 and � j

i , and regard � j
i−1αi�

j
i as one non-common substring).

For indexing similar strings whose alignment includes gaps, we first transform the given alignment ϒ into its right-
justified form ˜ϒ so that the characters in each α̃+

i �
j
i (1 ≤ i ≤ r, 1 ≤ j ≤ m) are right-justified. See Fig. 2 for an example,

where a gap is represented by a series of hyphens ‘-’ (note that ‘-’ is not a character). Hereafter, to indicate positions of
characters in S j , we use the positions in the transformed alignment ˜ϒ and denote by ˜S j[i] the character of S j at the ith
position in ˜ϒ . If ˜S j[i] is ‘-’, we say ˜S j[i] is empty. The positions in S j and ˜S j can be easily converted into each other by
storing gap information. Moreover, we denote the suffix of ˜S j starting at position q by suffix (j, q), e.g., the suffix (3, 8) is
aac# in Fig. 2.

An alignment of similar strings can be compactly represented by combining each common substring αi in all strings
as in [25–27]. However, the representation is not suitable for the transformed alignment ˜ϒ because the characters
in α̃+

i are not aligned in ˜ϒ . Thus, we introduce another representation. Let α̃�
i (1 ≤ i ≤ r + 1) be the prefix of

αi such that αi = α̃�
i α̃+

i . Then, we represent the transformed alignment ˜ϒ by combining α̃�
i (rather than αi): ˜ϒ =

α̃�
1 (α̃+

1 �1
1/ · · ·/α̃+

1 �m
1) · · · α̃�

r (α̃+
r �1

r / · · ·/α̃+
r �m

r)α̃�
r+1. The alignment in Fig. 2 is represented as ˜ϒ = $c(ctca/ctcca/

cttat/ct)a(acc/aca/ac/acc)#. We denote (α̃+
i �1

i / · · ·/α̃+
i �m

i) by α̃+
i �i and call it a ps-region (partially-shared re-

gion). Also, we call α̃�
i a cs-region (completely-shared region).

2.2. Suffix array and FM-index of alignment with gaps

In our index, one or more suffixes starting at an identical position q are compactly represented by one alignment-suffix
(for short a-suffix) defined as follows. We have two cases according to whether the starting position q is in a cs-region or a
ps-region.

• The case when q is in a cs-region α̃�
i (1 ≤ i ≤ r + 1). Let α′

i be the suffix of α̃�
i starting at q. All the suffixes starting at

q are represented by the a-suffix α′
i(α̃

+
i �1

i / · · ·/α̃+
i �m

i) · · · . In the previous example, the suffixes starting at position 8
are represented by the a-suffix a(acc/aca/ac/acc)#.

• The case when q is in a ps-region α̃+
i �i (1 ≤ i ≤ r). Let δ j

i (1 ≤ j ≤ m) be the suffix of α̃+
i �

j
i starting at q. Then,

the set of the suffixes starting at q is partitioned so that the suffixes of S j1 and S j2 are in the same subset if and
only if δ j1

i = δ
j2
i . For each subset {δ j1

i · · · α̃�
r+1, . . . , δ

jk
i · · · α̃�

r+1}, all the suffixes in the subset are represented by the
a-suffix (δ j1

i / · · ·/δ jk
i) · · · α̃�

r+1. For example, the set of the suffixes starting at position 9 is partitioned into two subsets
{˜S1[9..12], ˜S4[9..12]} and {˜S2[9..12]}, and they are represented by the a-suffixes (acc/acc)# and aca#, respectively.
Note that no suffix of ˜S3 starts at position 9.

The suffixes represented by an a-suffix appear consecutively in the generalized suffix array of the given strings since α̃+
i

occurs only once in each given string. Note that a suffix of α̃+
i may occur more than once in a string, and thus α̃+

i does not
belong to a cs-region but to a ps-region.

1 Note that the definition of α̃+
i is different from that of α̃∗

i in [25–27]. The α̃+
i is longer than α̃∗

i by one.

J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157 151
idx SAA F a-suffixes
(cyclic shifts)

L occ(σ , i) & Bσ

strs pos a c t

1 0 1 $ $c(ctca/ctcca/cttat/ct)a(acc /aca/ac/acc)# # 0 0 0
2 0 12 # #$c(ctca/ctcca/cttat /ct)a(acc/aca/ac/acc) a,c 1 1 0
3 2 11 a a#$cctccaaac c 1 2 0
4 1,2 7 a (a/a)a(acc/aca)#$c(ctc/ctcc) c 1 3 0
5 0 8 a a(acc/aca/ac/acc)#$c(ctca/ctcca /cttat/ct) a,t 2 3 1
6 3 10 a ac#$ccttata a 3 1 3 1
7 2 9 a aca#$cctccaa 〈a〉 3 1 3 1
8 1,4 9 a (acc/acc)#$ c(ctca/ct)a 〈a〉 3 1 3 1
9 3 6 a ataac#$ cctt t 3 3 2
10 1,3,4 11 c (c/c/c)#$ c(ctca/cttat/ct)a(ac/a/ac) a,c 4 4 2
11 2 10 c ca#$cctccaaa a 5 4 2
12 1,2 6 c (ca/ca)a(acc/aca)#$c(ct/ctc) c,t 5 5 3
13 1,4 10 c (cc/cc)#$ c(ctca/ct)a(a/a) a 6 5 3
14 2 5 c ccaaaca#$cct t 6 5 4
15 0 2 c c(ctca/ctcca/cttat/ct)a(acc /aca/ac/acc)#$ $ 6 5 4
16 4 6 c ctaacc#$c c 6 6 1 4
17 1 4 c ctcaaacc#$c 〈c〉 6 6 1 4
18 2 3 c ctccaaaca#$c 〈c〉 6 6 1 4
19 3 3 c cttataac#$c 〈c〉 6 6 1 4
20 3,4 7 t (t/t)a(ac/acc)#$c(ctta/c) a,c 7 7 4
21 3 5 t tataac#$cct t 7 7 5
22 1 5 t tcaaacc#$cc c 7 8 5
23 2 4 t tccaaaca#$cc c 7 9 5
24 3 4 t ttataac#$cc c 7 10 5

Fig. 3. The SAA and FMA for ˜ϒ = $c(ctca/ctcca/cttat/ct)a(acc/aca/ac/acc)#. (Bit 0 is omitted in Bσ .)

The suffix array of alignment (SAA) is a lexicographically sorted array of all the a-suffixes of the transformed alignment
˜ϒ . See Fig. 3 for an example, where the string number 0 indicates the string numbers 1, . . . , m. We denote by S A A[i] the
ith entry of the SAA. Let us consider a-suffixes in the SAA as cyclic shifts (rotated alignments) as in the Burrows–Wheeler
transform [4]. Then, the array F [i] (resp. L[i]) is the set of the first (resp. last) characters of the suffixes represented by
the a-suffix in S A A[i]. By definition of the a-suffixes, the first characters of the suffixes represented by an a-suffix are of
the same value and thus F [i] has one element. However, L[i] may have more than one element (at most |�| elements) as
shown in Fig. 3. For example, F [13] = {˜S1[10], ˜S4[10]} = {c} and L[10] = {˜S1[10], ˜S3[10], ˜S4[10]} = {a,c}. Since gaps are
not considered as characters in ˜ϒ , when letting q be the position of the characters in F [i], the positions of the characters
in L[i] may be less than q − 1. (On the other hand, the position of the characters in L[i] is always q − 1 for an alignment
without gaps when q > 1.) In Fig. 3, F [17] =˜S1[4] and L[17] =˜S1[2] because ˜S1[3] is empty.

We define the LF-mapping for the arrays L and F . Let L be the set of pairs of a character σ and an entry index i such
that σ ∈ L[i]. In the example of Fig. 3, L = {(#, 1), (a, 2), (c, 2), (c, 3), (c, 4), (a, 5), (t, 5), . . .}. For a pair (σ , i) ∈ L, the
LF-mapping L F (σ , i) is defined as the index of F [k] containing the characters corresponding to σ in L[i]. For example, see
L[10] = {˜S1[10], ˜S3[10], ˜S4[10]} = {a, c}. Since a in L[10] corresponds to ˜S3[10] and it is contained in F [6], L F (a, 10) = 6.
Similarly, L F (c, 10) = 13 since ˜S1[10] and ˜S4[10] (i.e., c in L[10]) are contained in F [13]. Note that L F (c, 10) is well
defined since the characters in L[10] whose values are c are all contained in an identical entry F [13]. This is always true
in the transformed alignment ˜ϒ even though gaps exist in ˜ϒ , as shown in the following lemma. (It is not true in the
untransformed alignment ϒ .)

Lemma 1. For a pair (σ , i) ∈L, the characters in L[i] whose values are σ are all contained in an identical entry of F .

Proof. Let q be the starting position of the suffixes in S A A[i], and ˜S j1 [q1] and ˜S j2 [q2] (j1 	= j2) be two characters in L[i]
whose values are σ . Without loss of generality, we assume q > 1. Then, q1 and q2 are less than q. We have three cases
according to whether ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty.

• First, when none of ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty (i.e., q1 = q2 = q − 1), ˜S j1 [q1] and ˜S j2 [q2] are contained in an
identical entry of F by definition of the a-suffix, which can be shown as in [25].

• Second, when both of ˜S j1 [q − 1] and ˜S j2 [q − 1] are empty, both ˜S j1 [q1] and ˜S j2 [q2] are the last character in a cs-region
α̃�

i since the characters in ps-region α̃+
i �i are right-justified in ˜ϒ . Thus, q1 = q2 and by definition of the a-suffix, the

suffixes (j1, q1) and (j2, q2) are contained in an identical entry of the SAA. Hence, ˜S j1 [q1] and ˜S j2 [q2] are contained in
an identical entry of F .

• The third case is when only one of ˜S j1 [q − 1] and ˜S j2 [q − 1] is empty. We show by contradiction that this case cannot
happen. Without loss of generality, assume ˜S j1 [q − 1] is empty and ˜S j2 [q − 1] is not empty. Since ˜S j1 [q − 1] is empty,
˜S j1 [q1] is the last character in a cs-region α̃�

k and ˜S j1 [q] is the first character in ps-region α̃+
k �k . It means that the

suffix (j1, q) is prefixed by α̃+ . Since both suffixes (j1, q) and (j2, q) are in S A A[i], by definition of the a-suffix, the
k

152 J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157
suffix (j2, q) is also prefixed by α̃+
k . Since α̃+

k occurs only once in each string, ˜S j2 [q2] is the last character in α̃�
k (i.e.,

q1 = q2) and ˜S j2 [q2 + 1..q − 1] is empty. It contradicts with the assumption that ˜S j2 [q − 1] is not empty.

Therefore, the characters in L[i] whose values are σ are all contained in an identical entry of F . �
For a character σ ∈ �, a pair (σ , i) ∈ L will be called an Lσ -pair. For two Lσ -pairs (σ , i) and (σ , i′), we say that (σ , i)

is smaller than (σ , i′) if and only if i < i′ .
The LF-mapping L F (σ , i) is not a one-to-one correspondence. Multiple pairs can be mapped to the same entry in F .

See L[6] = {˜S3[8]} = {a}, L[7] = {˜S2[8]} = {a}, and L[8] = {˜S1[8], S4[8]} = {a}. Since all of them are a in F [5], L F (a, 6) =
L F (a, 7) = L F (a, 8) = 5. Thus, we classify pairs (σ , i) ∈ L into two types: A pair (σ , i) ∈ L is an (m:1)-type (many-to-one
mapping-type) pair if there exists another pair (σ , i′) ∈ L such that L F (σ , i) = L F (σ , i′); otherwise, (σ , i) is a (1:1)-type
(one-to-one mapping-type) pair. The following lemma shows that for a (m:1)-type pair (σ , i), the last characters of all
the suffixes in S A A[i] are mapped to an identical entry in F . (This lemma is necessary for our search algorithm to work
correctly and it is also satisfied for the FMA without gaps [25]. However, it is not satisfied when defining our index using
α̃∗ in [25] rather than α̃+ .)

Lemma 2. If a pair (σ , i) ∈L is of (m:1)-type, no pair (σ ′, i) such that σ ′ 	= σ exists in L, i.e., L[i] has only one character σ .

Proof. Let k = L F (σ , i) and qk be the starting position of the suffixes in S A A[k]. By definition of the a-suffix, the pair (σ , i)
is of (m:1)-type only if qk is the last position in a cs-region α̃�

j and the last character in α̃�
j is σ . Hence, all the suffixes in

S A A[i] are prefixed by α̃+
j . Since α̃+

j occurs only once in each string, the preceding character of α̃+
j is the last character in

α̃�
j , i.e., σ . Therefore, L[i] has only one character σ . �

To handle (m:1)-type pairs in L efficiently, we define bit-vectors Bσ ’s as follows: Bσ [i] = 1 if and only if (σ , i) is in L
and it is of (m:1)-type (see Fig. 3).

The LF-mapping can be easily computed using the array C and the function occ defined as follows [25].

• For σ ∈ �, C[σ] is the total number of entries in F containing characters alphabetically smaller than σ . C[|�| + 1] is
the size of F .

• For a character σ ∈ � and an entry index i in the SAA, occ(σ , i) is the number of Lσ -pairs (σ , i′) such that i′ ≤ i,
i.e., the number of entries in L[1..i] containing the character σ . If more than one pair (σ , i′) ∈ L are mapped to an
identical entry in F , we count only the smallest Lσ -pair among them. For example, consider occ(a, i) for i = 6, 7, 8.
Since a’s in L[6..8] are all contained in F [5], we only count (a, 6) and thus occ(a, i)’s are the same for i = 6, 7, 8. In
Fig. 3, uncounted characters in L are indicated by 〈 〉.

Then, L F (σ , i) = C[σ] + occ(σ , i). See L[10] in Fig. 3, which has two Lσ -pairs (a, 10) and (c, 10). We have L F (a, 10) =
C[a] + occ(a, 10) = 2 + 4 = 6 and L F (c, 10) = C[c] + occ(c, 10) = 9 + 4 = 13.

2.3. Pattern search

Pattern search is to find all occurrences of a given pattern P [1..p] in the given strings S1, . . . , Sm . Our pattern search
algorithm proceeds backward using the LF-mapping with the array C and the function occ. It consists of at most p steps
from Step p to Step 1. In Step � = p, . . . , 1, the algorithm finds the closed range (First�, Last�) in the SAA defined as follows:

i) Firstp (resp. Lastp) is the smallest (resp. largest) index i such that F [i] = {P [p]}.
ii) For � = p − 1, . . . , 1, First� (resp. Last�) is the LF-mapping value of the smallest (resp. largest) Lσ -pair in the range

(First�+1, Last�+1), where σ = P [�]. If there exists no Lσ -pair in (First�+1, Last�+1), then we set First� = Last� + 1.

Then, all the suffixes prefixed by P [�..p] are in S A A[First�..Last�] and the size of the range decreases monotonically when
� decreases.

While the size of the range (First�, Last�) is greater than one (i.e., First� < Last�), all the suffixes in S A A[First�..Last�] are
prefixed by P [�..p]. When First� = Last� , however, some suffixes in S A A[First�] may not be prefixed by P [�..p]. For example,
when assuming that P = aaacc, we have (First2, Last2) = (5, 5), and the suffixes (1, 8) and (4, 8) in S A A[5] are prefixed by
aacc but the other suffixes (2, 8) and (3, 8) are not. Also, we have (First1, Last1) = (4, 4), and the suffix (1, 7) in S A A[4] is
prefixed by aaacc but the suffix (2, 7) is not. Thus, in addition to the range (First�, Last�), we maintain the set Z� defined
as follows:

• When First� = Last� , Z� is the set of the string numbers of the suffixes prefixed by P [�..p].

J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157 153
Algorithm 1 BackwardSearch(P [1..p])
 using the FM-index of alignment.
1: Z ← {1, . . . , m};
 Set of all string numbers
2: σ ← P [p], First ← C[σ] + 1, Last ← C[σ + 1], � ← p − 1;
3: while (First ≤ Last) and Z 	= ∅ and (� ≥ 1) do
4: σ ← P [�], First′ ← First, Last′ ← Last;
 Previous range
5: First ← C[σ] + occ(σ , First − 1) + 1, Last ← C[σ] + occ(σ , Last);

6: if First ≥ Last then
7: Zm ← { j | (j, q) ∈ S A A[i] such that First′ ≤ i ≤ Last′ and Bσ [i] = 1};
8: if Zm 	= ∅ then
9: First ← Last, Z ← Z ∩ Zm;

10: else
11: Zc ← { j | (j, q) ∈ S A A[First..Last]},
 If First > Last, Zc = ∅
12: Z ← Z ∩ Zc;
13: � ← � − 1;

14: for all (j, q) ∈ S A A[First..Last] do
 If First > Last, no occurrence
15: if j ∈ Z then print “(j, q)”;
 Reporting an occurrence

For simplicity, we define Z� to be {1, . . . , m} when First� < Last� . Then, regardless of the size of the range (First�, Last�),
a suffix (j, q) is prefixed by P [�..p] if and only if (j, q) ∈ S A A[First�..Last�] and j ∈ Z� .

Algorithm 1 shows the search algorithm using our index, which is the same as the code in [25]. (Since the definition of
the a-suffix is different from that in [25], however, we need a correctness proof which will be given later.) The algorithm
maintains the following loop invariant for a range (First, Last) and a string number set Z:

At the end of Step � = p, . . . , 1, the range (First, Last) = (First�, Last�) and Z = Z� .

Initially (in Step p), we set (First, Last) = (Firstp, Lastp) and Z = Zp (lines 1–2). Each iteration of the while loop (lines 3–13)
represents each Step � = p − 1, . . . , 1. In Step � = p − 1, . . . , 1, we first compute range (First, Last) using the LF-mapping
of the previous range (First′, Last′) = (First�+1, Last�+1) and σ = P [�] (lines 4–5). If the size of the range (First, Last) is
more than one, then (First, Last) = (First�, Last�) and Z = Z� = {1, . . . , m}. Thus, we continue to the next step (by skipping
lines 6–12 and going to line 13). Otherwise (i.e., the size of (First, Last) is one or less), we compute Z� as follows (lines
6–12). Let Zm be the set of the string numbers in S A A[i]’s such that First�+1 ≤ i ≤ Last�+1 and Bσ [i] = 1, and let Zc be
the set of the string numbers in S A A[Last]. Then, Z� = Z�+1 ∩ Zm if Zm 	= ∅, and Z� = Z�+1 ∩ Zc, otherwise. (As in [25],
lines 10–12 for Zc can be removed by using a loose definition and a lazy update for Z� .) For example, assume P = aaacc.
In Step 2, given (First3, Last3) = (8, 8) and Z3 = {1, 2, 3, 4}, we have Zm = {1, 4} and thus Z2 = {1, 4}. In Step 1, given
(First2, Last2) = (5, 5) and Z2 = {1, 4}, we have Zm = ∅ and Zc = {1, 2} (Last1 = 4), and thus Z1 = {1, 4} ∩ {1, 2} = {1}. After
the while loop terminates, the occurrences of P are reported using the range (First, Last) and Z (lines 14–15). Since the SAA
stores positions in the transformed alignment ˜ϒ , we need to convert them to the original positions in the given strings S j ,
which can be easily done by using gap information.

Now we show the invariant is satisfied at the end of each step (an iteration of the while loop) by induction. Trivially, the
invariant is true at the end of Step p, which is the induction basis. At the beginning of Step � = p − 1, . . . , 1, by inductive
hypothesis, (First, Last) = (First�+1, Last�+1). After executing line 5, First = C[σ] + occ(σ , First�+1 − 1) + 1 and Last = C[σ] +
occ(σ , Last�+1), where σ = P [�]. Then, the following lemmas show Algorithm 1 computes correctly (First�, Last�) and Z� at
the end of Step �.

Lemma 3. If First < Last, then (First�, Last�) = (First, Last) and Z� = Z�+1 .

Proof. By definition of the LF-mapping, the suffixes in S A A[First..Last] are prefixed by P [�..p]. We show that no suffix
outside S A A[First..Last] is prefixed by P [�..p]. Suppose that a suffix prefixed by P [�..p] is contained in an S A A[i] outside
S A A[First..Last]. Then, all suffixes in S A A[i] are prefixed by P [�..p]. (If two suffixes in two distinct entries of the SAA are
prefixed by P [�..p], then all the suffixes in the two entries are prefixed by P [�..p], which can be easily shown using the
definition of the a-suffix.) Let (σ , k) be the smallest Lσ -pair such that L F (σ , k) = i. Since the suffixes in S A A[k] are prefixed
by P [� + 1..p], k is included in the previous range (First�+1, Last�+1) by definition and thus its LF-mapping value i is also
included in (First, Last) (note that the pair (σ , k) is always counted in the function occ). It contradicts with the assumption
that i is outside the range (First, Last). Therefore, we get (First�, Last�) = (First, Last). Furthermore, since First� 	= Last� ,
Z� = Z�+1 = {1, . . . , m} by definition. �
Lemma 4. If First ≥ Last and Zm 	= ∅, then (First�, Last�) = (Last, Last) and Z� = Z�+1 ∩ Zm .

Proof. Since Zm 	= ∅, there exist Lσ -pairs of (m:1)-type in (First�+1, Last�+1). Furthermore, all of the Lσ -pairs are mapped
to one entry F [Last] of F since First ≥ Last. Therefore, (First�, Last�) = (Last, Last).

Next, let us consider Z� . In this case, Lσ -pairs in (First�+1, Last�+1) are all of (m:1)-type. Moreover, for every Lσ -pair
(σ , i) in (First�+1, Last�+1), the last characters of the suffixes in S A A[i] are all σ by Lemma 2. Thus, Zm is the set of

154 J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157
the string numbers of the suffixes whose last characters are σ in S A A[First�+1..Last�+1]. By definition, Z�+1 is the set of
the string numbers of the suffixes prefixed by P [� + 1..p]. Thus, a suffix (j, q) in S A A[Last] is prefixed by σ P [� + 1..p]
(= P [�..P]) if and only if j ∈ Zm and j ∈ Z�+1. Therefore, we get Z� = Zm ∩ Z�+1. �
Lemma 5. If First ≥ Last and Zm = ∅, then (First�, Last�) = (First, Last) and Z� = Z�+1 ∩ Zc .

Proof. Since Zm = ∅, there is no Lσ -pair of (m:1)-type in (First�+1, Last�+1). If First = Last, there is one Lσ -pair of
(1:1)-type in (First�+1, Last�+1). If First > Last, there is no Lσ -pair of (1:1)-type in (First�+1, Last�+1). In both cases,
(First�, Last�) = (First, Last).

Next, let us consider Z� when First = Last. Let (σ , i) be the only one Lσ -pair in (First�+1, Last�+1). Since (σ , i) is of
(1:1)-type, the set of the string numbers in S A A[Last] (i.e., Zc) is the same as the set of the string numbers of the suffixes
whose last characters are σ in S A A[First�+1..Last�+1]. Thus, a suffix (j, q) in S A A[Last] is prefixed by σ P [� + 1..p] (=
P [�..P]) if and only if j ∈ Zc and j ∈ Z�+1. Therefore, we get Z� = Zc ∩ Z�+1. �

Therefore, we can get the following theorem.

Theorem 1. Algorithm 1 finds correctly all the occurrences of a pattern P .

2.4. Data structures

Our index consists of the function occ, the array C , the bit-vectors Bσ , and a sampled SAA. Furthermore, we store gap
information for mutual conversion between positions in an original string S j and positions in its transformed string ˜S j . As
described in [27], we first build the suffix array of alignment, from which we construct the FM index of alignment (i.e., occ,
C , Bσ , and a sampled SAA).

We store the SAA using two kinds of sampling as in [25], the regular-position sampling and the irregular-position sampling.
For the regular-position sampling, we sample S A A[i] storing every d-th position in the transformed alignment ˜ϒ where d
is a given parameter. Then, we get an S A A[i] in a sampled SAA by repeating the LF-mapping from S A A[i] until a sampled
entry S A A[k] is encountered. In order to guarantee that the string numbers in S A A[i] are the same as the ones in S A A[k],
we also need the following irregular sampling: an S A A[i] is sampled when L[i] has multiple characters or, for any σ ∈ �,
the pair (σ , i) is of (m:1)-type. Note that such an S A A[i] has different string numbers from the string number in S A A[i′]
where i′ = L F (σ , i) for a character σ ∈ L[i].

For supporting extraction (retrieval) operations, we also need a sampled inverse SAA. In the FMA without gaps [25], the
regular-position sampling is enough for the inverse SAA. Due to gaps, however, we need also an irregular sampling for the
inverse SAA. Suppose that a gap in a transformed string ˜S j includes a regular sampling position q. Then, we cannot sample
the position q in ˜S j . Let q′ be the leftmost position such that q′ > q and no gap in ˜S j includes q′ . Then, the position q′ ,
instead of q, is sampled in ˜S j . For example, assuming position 4 is a regular sampling position in Fig. 2, instead of position 4,
position 6 is sampled in ˜S4 since ˜S4[3..5] is a gap.

3. Experiments

We compared our FM-index of alignment (FMA) with RLCSA [24], GCSA [31], and GCSA2 [30]. We used SDSL (Succinct
Data Structure Library [13]) to implement the FMA and used the implementations of the other indexes distributed by the
authors.2 All experiments were conducted on a computer with Intel Xeon X5672 CPU and 32GB RAM, running the Linux
debian 3.16.0-4-amd64 operating system.

The experimental data set is a reference sequence and 100 individual sequences, which are downloaded from the 1000
Genomes Project website. The reference genome is chromosome 20 of hs37d5 of length about 63 million bases and each
individual sequence consists of a pair of BAM and BAI files, where a BAM file contains reads (short segments of length
90–125) of each individual and a BAI file contains the alignment of the reads. Each pair of BAM and BAI files is fed
to SAMtools (Sequence Alignment/Map tools) to obtain a VCF file which stores genetic mutations such as substitutions,
insertions and deletions relative to the reference genome. The individual sequences are created from the reference and the
VCF files.

First, we compared the sizes of the four indexes for 31 and 101 sequences (Table 1). The FMA, RLCSA, and GCSA were
created with sampling rates d = 32, 128, and 512, and GCSA2 was created using order-128, which means GCSA2 is a
128-mer index storing substrings of length 128 (we could not find out a parameter for sampling in the implementation of
GCSA2). The table shows that the index size of FMA is smaller than those of other indexes in every case. Note that the FMA
is the smallest even when only the “core” and “sampling” sizes are considered. Another merit of the FMA is that its size
is little influenced by the sampling rates or the number of sequences, while the sizes of RLCSA and GCSA are substantially
influenced by them.

2 GCSA2 version 0.7 was used in our experiments and an implementation of a variation [2] of RLCSA is also available.

J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157 155
Table 1
The index sizes (in MBytes) where “sampling” means the space for sampling, “gap”
means the space for storing gap information, and “core” means the space except
for sampling and gap. For GCSA, “backbone” is the space for storing the path in a
graph corresponding to the reference sequence. For GCSA2, “counter” and “lcp” are the
spaces for supporting counting queries and for storing lcp information, respectively.

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

FMA total 53.5 45.5 43.6 72.8 63.8 61.6
core 36.8 36.8 36.8 44.1 44.1 44.1
gap 1.6 1.6 1.6 5.7 5.7 5.7
sampling 15.1 7.2 5.2 22.9 14.0 11.7

RLCSA total 397.9 194.3 140.6 1114.0 410.8 225.4
core 121.6 121.6 121.6 159.9 159.9 159.9
sampling 276.3 72.7 19.0 954.1 250.9 65.5

GCSA total 187.1 179.2 177.7 2060.4 2020.6 2019.3
core 67.8 67.8 67.8 576.9 576.9 576.9
sampling 56.0 48.2 46.7 765.7 725.9 724.6
backbone 63.2 63.2 63.2 717.8 717.8 717.8

GCSA2 total 150.8 178.7
core 47.4 53.2
sampling 39.2 52.3
counter 10.5 13.4
lcp 53.7 59.8

Table 2
Pattern search (location) time (in secs) for 5000 queries.

Query
length

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

10 FMA 85.0 267.6 777.2 172.5 318.8 577.6
RLCSA 72.5 318.6 1623.5 190.0 830.0 4887.0
GCSA 85.9 190.5 508.5 349.4 452.2 651.5
GCSA2 15.38 16.32

30 FMA 1.25 3.57 9.46 2.53 4.27 7.59
RLCSA 0.68 3.28 18.32 1.86 8.48 54.25
GCSA 0.77 2.06 6.11 0.92 2.14 4.63
GCSA2 0.26 0.28

100 FMA 0.90 1.33 2.90 1.85 2.10 2.99
RLCSA 0.18 0.58 2.60 0.30 0.97 5.30
GCSA 0.87 1.08 1.85 0.89 1.07 1.51
GCSA2 0.30 0.31

Fig. 4. Total index sizes and pattern search (location) times for 5000 queries of length 100. Each index was tested with sampling rates d = 32, 128, and 512.

Second, we compared the running time of pattern search (location) reporting all occurrences. We performed the pattern
search with patterns of lengths 10, 30, and 100 on the indexes with sampling rates d = 32, 128, and 512 (Table 2 and
Fig. 4). GCSA2 shows the best performance in most cases but GCSA and GCSA2 report nodes of a graph but not occurrences
in given sequences (note that they are indexes on a graph with different functionalities). In comparison with RLCSA, FMA is
faster than RLCSA when many sequences are indexed, sampling is sparse, and/or queries are short. We also compared the

156 J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157
Table 3
Extraction time (in secs) for 5000 queries.

Query
length

Number of sequences 31 101

Sampling rate 32 128 512 32 128 512

10 FMA 0.51 1.34 4.79 0.50 1.37 5.05
RLCSA 0.06 0.15 0.71 0.06 0.16 0.64

30 FMA 1.10 1.71 5.28 1.13 1.78 5.45
RLCSA 0.14 0.19 0.79 0.14 0.20 0.59

100 FMA 2.41 3.03 6.49 2.46 3.15 6.81
RLCSA 0.24 0.33 0.71 0.26 0.34 0.73

Fig. 5. Total index sizes and extraction times for 5000 queries of length 100. Each index was tested with sampling rates d = 32, 128, and 512.

extraction time (Table 3 and Fig. 5). We compared only FMA and RLCSA because we could not find out how to perform an
extraction query in the implementations of GCSA and GCSA2. In all cases, RLCSA is faster than FMA.

4. Concluding remarks

We have proposed the FM-index of alignment with gaps, a realistic index for similar strings, which allows gaps in their
alignment. For this, we have designed a new version of suffix array of alignment by using an alignment transformation
and a new definition of the alignment-suffix. The new SAA enabled us to support the LF-mapping and backward search
regardless of gap existence in alignments. Experimental results showed that our index is more space-efficient than RLCSA
while its extraction time is slower than that of RLCSA. It remains as future work to do extensive experiments and analysis
on various real-world data.

Acknowledgements

Joong Chae Na was supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea, under National program for
Excellence in Software program (the SW oriented college support program) (R7718-16-1005) supervised by the IITP (Insti-
tute for Information & communications Technology Promotion), and by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014R1A1A1004901). Heejin
Park was supported by the research fund of Signal Intelligence Research Center supervised by Defense Acquisition Pro-
gram Administration and Agency for Defense Development of Korea. Thierry Lecroq, Martine Léonard and Laurent Mouchard
were supported by the French Ministry of Foreign Affairs Grant 27828RG (INDIGEN, PHC STAR 2012). Kunsoo Park was
supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP
(NRF-2014M3C9A3063541).

References

[1] A. Abeliuk, G. Navarro, Compressed suffix trees for repetitive texts, in: String Processing and Information Retrieval – 19th International Symposium,
SPIRE 2012, Cartagena de Indias, Colombia, October 21–25, 2012, Proceedings, 2012, pp. 30–41.

[2] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, M. Raffinot, Composite repetition-aware data structures, in: Combinatorial Pattern Matching – 26th Annual
Symposium, CPM 2015, Ischia Island, Italy, June 29–July 1, 2015, Proceedings, 2015, pp. 26–39.

[3] A. Bowe, T. Onodera, K. Sadakane, T. Shibuya, Succinct de Bruijn graphs, in: Algorithms in Bioinformatics – 12th International Workshop, WABI 2012,
Ljubljana, Slovenia, September 10–12, 2012, Proceedings, 2012, pp. 225–235.

[4] M. Burrows, D.J. Wheeler, A block-sorting lossless data compression algorithm, Technical Report 124 Digital Equipment Corporation, Paolo Alto, Cali-
fornia, 1994.

[5] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing, Nature 467 (7319) (2010) 1061–1073.
[6] H.H. Do, J. Jansson, K. Sadakane, W.-K. Sung, Fast relative Lempel–Ziv self-index for similar sequences, Theoret. Comput. Sci. 532 (2014) 14–30.

http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4162656C69756B4E3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4162656C69756B4E3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib63706D2F42656C617A7A6F75677569434750523135s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib63706D2F42656C617A7A6F75677569434750523135s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib776162692F426F77654F53533132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib776162692F426F77654F53533132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib427572726F777326576865656C65723A3934s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib427572726F777326576865656C65723A3934s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6E61747572652F3130303047656E6F6D65733130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7463732F446F4A53533134s1

J.C. Na et al. / Theoretical Computer Science 710 (2018) 148–157 157
[7] R. Durbin, Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT), Bioinformatics 30 (9) (2014) 1266–1272.
[8] H. Ferrada, T. Gagie, T. Hirvola, S.J. Puglisi, Hybrid indexes for repetitive datasets, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 372 (2016) (April

2014).
[9] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Compressing and indexing labeled trees, with applications, J. ACM 57 (1) (2009).

[10] P. Ferragina, G. Manzini, Opportunistic data structures with applications, in: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
Redondo Beach, California, USA, 2000, pp. 390–398.

[11] P. Ferragina, G. Manzini, An experimental study of an opportunistic index, in: Proceedings of the Twelfth Annual Symposium on Discrete Algorithms,
Washington, DC, USA, 2001, pp. 269–278.

[12] P. Ferragina, G. Manzini, Indexing compressed text, J. ACM 52 (4) (2005) 552–581.
[13] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: plug and play with succinct data structures, in: Experimental Algorithms – 13th Interna-

tional Symposium, SEA 2014, Copenhagen, Denmark, June 29–July 1, 2014, Proceedings, 2014, pp. 326–337.
[14] L. Huang, V. Popic, S. Batzoglou, Short read alignment with populations of genomes, Bioinformatics 29 (13) (2013) 361–370.
[15] S. Huang, T.W. Lam, W.K. Sung, S.L. Tam, S.M. Yiu, Indexing similar DNA sequences, in: Algorithmic Aspects in Information and Management, 6th

International Conference, AAIM 2010, Weihai, China, July 19–21, 2010, Proceedings, 2010, pp. 180–190.
[16] S. Kreft, G. Navarro, On compressing and indexing repetitive sequences, Theoret. Comput. Sci. 483 (2013) 115–133.
[17] S. Kuruppu, S.J. Puglisi, J. Zobel, Relative Lempel–Ziv compression of genomes for large-scale storage and retrieval, in: String Processing and Information

Retrieval – 17th International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11–13, 2010, Proceedings, 2010, pp. 201–206.
[18] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (4) (2012) 357–359.
[19] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform, Bioinformatics 25 (14) (2009) 1754–1760.
[20] B. Liu, H. Guo, M. Brudno, Y. Wang, deBGA: read alignment with de Bruijn graph-based seed and extension, Bioinformatics (2016) btw371.
[21] C.M. Liu, T. Wong, E. Wu, R. Luo, S. Yiu, Y. Li, B. Wang, C. Yu, X. Chu, K. Zhao, R. Li, T.W. Lam, SOAP3: ultra-fast GPU-based parallel alignment tool for

short reads, Bioinformatics 28 (6) (2012) 878–879.
[22] S. Maciuca, C.O. Elias, G. McVean, Z. Iqbal, A natural encoding of genetic variation in a Burrows–Wheeler transform to enable mapping and genome

inference, in: Algorithms in Bioinformatics – 16th International Workshop, WABI 2016, Aarhus, Denmark, August 22–24, 2016, Proceedings, 2016,
pp. 222–233.

[23] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, Storage and retrieval of individual genomes, in: Research in Computational Molecular Biology, 13th Annual
International Conference, RECOMB 2009, Tucson, AZ, USA, May 18–21, 2009, Proceedings, 2009, pp. 121–137.

[24] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, Storage and retrieval of highly repetitive sequence collections, J. Comput. Biol. 17 (3) (2010) 281–308.
[25] J.C. Na, H. Kim, H. Park, T. Lecroq, L. Mouchard, M. Léonard, K. Park, FM-index of alignment: a compressed index for similar strings, Theoret. Comput.

Sci. 638 (2016) 159–170.
[26] J.C. Na, H. Park, M. Crochemore, J. Holub, C.S. Iliopoulos, L. Mouchard, K. Park, Suffix tree of alignment: an efficient index for similar data, in: Combi-

natorial Algorithms – 24th International Workshop, IWOCA 2013, Rouen, France, July 10–12, 2013, Revised Selected Papers, 2013, pp. 337–348.
[27] J.C. Na, H. Park, S. Lee, M. Hong, T. Lecroq, L. Mouchard, K. Park, Suffix array of alignment: a practical index for similar data, in: String Processing and

Information Retrieval – 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7–9, 2013, Proceedings, 2013, pp. 243–254.
[28] G. Navarro, Indexing highly repetitive collections, in: Combinatorial Algorithms, 23rd International Workshop, IWOCA 2012, Tamil Nadu, India, July

19–21, 2012, Revised Selected Papers, 2012, pp. 274–279.
[29] G. Navarro, A. Ordóñez, Faster compressed suffix trees for repetitive collections, ACM J. Exp. Algorithmics 8 (2016) 1.
[30] J. Sirén, Indexing variation graphs, in: Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona,

Spain, January 17–18, 2017.
[31] J. Sirén, N. Välimäki, V. Mäkinen, Indexing graphs for path queries with applications in genome research, IEEE/ACM Trans. Comput. Biol. Bioinformatics

11 (2) (March 2014) 375–388.
[32] J. Sirén, N. Välimäki, V. Mäkinen, G. Navarro, Run-length compressed indexes are superior for highly repetitive sequence collections, in: String

Processing and Information Retrieval, 15th International Symposium, SPIRE 2008, Melbourne, Australia, November 10–12, 2008, Proceedings, 2008,
pp. 164–175.

[33] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory 23 (3) (1977) 337–343.

http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F44757262696E3134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib727374612F466572726164614748503134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib727374612F466572726164614748503134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6A61636D2F466572726167696E614C4D4D3039s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib666F63732F466572726167696E614D3030s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib666F63732F466572726167696E614D3030s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6A61636D2F466572726167696E614D3035s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7365612F476F67424D503134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7365612F476F67424D503134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F4875616E6750423133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6161696D2F4875616E674C5354593130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6161696D2F4875616E674C5354593130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7463732F4B726566744E3133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4B757275707075505A3130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4B757275707075505A3130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6E6D2F4C616E676D656164533132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F4C69443039s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F4C69754742593136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F4C697557574C594C5759435A4C4C3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib62696F696E666F726D61746963732F4C697557574C594C5759435A4C4C3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib776162692F4D616369756361454D493136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib776162692F4D616369756361454D493136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib776162692F4D616369756361454D493136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7265636F6D622F4D616B696E656E4E53563039s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7265636F6D622F4D616B696E656E4E53563039s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6A63622F4D616B696E656E4E53563130s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7463732F4E614B504C4C4D503136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib7463732F4E614B504C4C4D503136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib69776F63612F4E61504348494D503133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib69776F63612F4E61504348494D503133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4E61504C484C4D503133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F4E61504C484C4D503133s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib69776F63612F4E61766172726F3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib69776F63612F4E61766172726F3132s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib6A65612F4E61766172726F503136s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib746362622F536972656E564D3134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib746362622F536972656E564D3134s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F536972656E564D4E3038s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F536972656E564D4E3038s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib73706972652F536972656E564D4E3038s1
http://refhub.elsevier.com/S0304-3975(17)30153-6/bib5A6976264C656D70656C3A3737s1

	FM-index of alignment with gaps
	1 Introduction
	2 FM-index of alignment with gaps
	2.1 Alignments with gaps
	2.2 Sufﬁx array and FM-index of alignment with gaps
	2.3 Pattern search
	2.4 Data structures

	3 Experiments
	4 Concluding remarks
	Acknowledgements
	References

