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Abstract: In this work, the Hyers-Ulam type stability and the hyperstability of the functional equation

f
(︁ x + y

2 + xy
)︁
+ f

(︁ x − y
2 − xy

)︁
= f (x)

are proved.
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1 Introduction
The functional equation (ξ ) is called stable if any function g satisfying the equation (ξ ) approximately, is
near to a true solution of (ξ ). Ulam, in 1940 [1], introduced the stability of homomorphisms between two
groups. More precisely, he proposed the following problem: given a group (G1, .), a metric group (G2, *, d)
and a positive number ϵ, does there exist a δ > 0 such that if a function f : G1 → G2 satisfies the inequal-
ity d(f (x.y), f (x) * f (y)) < δ for all x, y ∈ G1, then there exists a homomorphism T : G1 → G2 such that
d(f (x), T(x)) < ϵ for all x ∈ G1? If this problem has a solution, we say that the homomorphisms from G1 to
G2 are stable. In 1941, Hyers [2] gave a partial solution of Ulam’s problem for the case of approximate addi-
tive mappings under the assumption that G1 and G2 are Banach spaces. Aoki [3] and Rassias [4] provided a
generalization of the Hyers’ theorem for additive and linear mappings, respectively, by allowing the Cauchy
difference to be unbounded. During the last decades, several stability problems of functional equations have
been investigated by several mathematicians. A large list of references concerning the stability of functional
equations can be found in [5–15].

In this paper, we deal with the functional equations

f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
= f (x), (1.1)

f
(︀ x + y

2 + xy
)︀
+ g

(︀ x − y
2 − xy

)︀
= h(x), (1.2)

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 + βxy

)︀
= f (x) + (α + β)f (xy). (1.3)
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2 Solutions of the functional equations (1.1), (1.2) and (1.3)
Theorem 2.1. Let X be a vector space. A mapping f : R → X satisfies equation (1.1) if and only if f is additive.

Proof. Let f satisfy equation (1.1). Letting x = y = 0 in equation (1.1), we get f (0) = 0. Letting x = 0 in equation
(1.1), we obtain that f is odd. Setting x = 1

2 and replacing y by y +
1
4 in equation (1.1) and using the oddness of

f , we obtain
f
(︀
y + 1

2
)︀
= f (y) + f

(︀1
2
)︀
, y ∈ R. (2.1)

Let a, b ∈ R with 2a + 2b ≠ −1. Let x, y ∈ R such that x = a + b and y = a−b
2a+2b+1 . Since f satisfies equation

(1.1), we get
f (a + b) = f (a) + f (b) (2.2)

for all a, b ∈ Rwith2a+2b ≠ −1. Since f is odd, it follows fromequations (2.1) and (2.2) that f (x+y) = f (x)+f (y)
for all x, y ∈ R. Therefore f is additive.

Conversely, if f is additive, it is easy to check that f satisfies equation (1.1).

Theorem 2.2. Let X be a vector space. Suppose that mappings f , g, h : R → X satisfy equation (1.2). Then

(i) f (x) + g
(︀
− x − 1

2
)︀
= h

(︀
− 1

2
)︀
, x ∈ R,

(ii) f (x) + g(y) = h(x + y), x, y ∈ R,
(iii) f − f (0), g − g(0) and h − h(0) are additive.

Proof. Letting x = 0 and replacing y by 2y in equation equation (1.2), we get

f (y) + g(−y) = h(0), y ∈ R. (2.3)

Letting y = 0 in equation (1.2), we get

f
(︀ x
2
)︀
+ g

(︀ x
2
)︀
= h(x), x ∈ R. (2.4)

It follows from equations (2.3) and (2.4) that

h(x) + h(−x) =
[︁
f
(︀ x
2
)︀
+ g

(︀ x
2
)︀]︁

+
[︁
f
(︀
− x2

)︀
+ g

(︀
− x2

)︀]︁
=
[︁
f
(︀ x
2
)︀
+ g

(︀
− x2

)︀]︁
+
[︁
f
(︀
− x2

)︀
+ g

(︀ x
2
)︀]︁

= h(0) + h(0) = 2h(0), x ∈ R.

In particular,
h
(︀1
2
)︀
+ h

(︀
− 1
2
)︀
= 2h(0). (2.5)

Setting x = 1
2 and replacing y by −y −

1
4 in equation (1.2), we obtain

f (−y) + g
(︀
y + 1

2
)︀
= h

(︀1
2
)︀
, y ∈ R. (2.6)

It follows from equations (2.3), (2.5) and (2.6) that

f
(︀
− y − 1

2
)︀
+ g(y) = h

(︀
− 1
2
)︀
, y ∈ R. (2.7)

Letting x = −y − 1
2 in equation (2.7), we get

f (x) + g
(︀
− x − 1

2
)︀
= h

(︀
− 1
2
)︀
, x ∈ R. (2.8)

Replacing x and y by x + y and x−y
1+2x+2y in equation (1.2), respectively, we get

f (x) + g(y) = h(x + y), x, y ∈ R, 2x + 2y ≠ −1. (2.9)

By equations (2.8) and (2.9), we obtain that f (x) + g(y) = h(x + y) for all x, y ∈ R. Then h(x) = f (x) + g(0) =
f (0) + g(x) for all x ∈ R. This implies f − f (0), g − g(0) and h − h(0) are additive.
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We need the following theorem from [16] to find the general solution of equation (1.3).

Theorem 2.3. [16] Let X be a vector space and α be a real number. If a function f : R → X satisfies f (x + y −
αxy) + f (αxy) = f (x) + f (y) and f (0) = 0, then f is additive.

Theorem 2.4. Let X be a vector space and α, β be real numbers. If a mapping f : R → X satisfies equation
(1.3) with f (0) = 0 or α + β ≠ 1, then f is additive.

Proof. Letting x = y = 0 in equation (1.3), we get (α + β)f (0) = 0. Therefore we may assume that f (0) = 0.
Letting x = 0 in equation (1.3), we obtain that f is odd. Letting y = 0 and replacing x by 2x in equation (1.3),
we get f (2x) = 2f (x) for all x ∈ R. Replacing y by −y in equation (1.3), we obtain

f
(︀ x − y

2 − αxy
)︀
+ f

(︀ x + y
2 − βxy

)︀
= f (x) + (α + β)f (−xy) (2.10)

for all x, y ∈ R. Adding the equations (1.3) and (2.10) and using the oddness of f , we have[︁
f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 − αxy

)︀]︁
+
[︁
f
(︀ x + y

2 − βxy
)︀
+ f

(︀ x − y
2 + βxy

)︀]︁
= 2f (x) (2.11)

for all x, y ∈ R. Interchanging x with y in equation (1.3), we obtain

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ y − x
2 + βxy

)︀
= f (y) + (α + β)f (−xy) (2.12)

for all x, y ∈ R. Replacing y by −y in equation (2.12), and then adding the resulting equation to equation
(2.12), we have [︁

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 − αxy

)︀]︁
=
[︁
f
(︀ x + y

2 + βxy
)︀
+ f

(︀ x − y
2 − βxy

)︀]︁
(2.13)

for all x, y ∈ R. Using equation (2.13), we rewrite equation (2.11) as[︁
f
(︀ x + y

2 + βxy
)︀
+ f

(︀ x + y
2 − βxy

)︀]︁
+
[︁
f
(︀ x − y

2 − βxy
)︀
+ f

(︀ x − y
2 + βxy

)︀]︁
= 2f (x) (2.14)

for all x, y ∈ R. Interchanging x with y in equation (2.14), and then adding the resulting equation to (2.14),
we obtain

f
(︀ x + y

2 + βxy
)︀
+ f

(︀ x + y
2 − βxy

)︀
= f (x) + f (y) (2.15)

for all x, y ∈ R. Replacing x and y by 2x and 2y in equation (2.15), respectively, and using f (2t) = 2f (t), we
get

f (x + y + 4βxy) + f (x + y − 4βxy) = 2f (x) + 2f (y), x, y ∈ R. (2.16)

Let β = 0. It follows from equation (2.16) that f is additive. Let β ≠ 0 and let 𝛾 = 4β. Letting y = 1/𝛾 in equation
(2.16), we have

f (2x + 1/𝛾) = 2f (x) + f (1/𝛾), x ∈ R. (2.17)

Replacing y by 2y + 1/𝛾 in equation (2.16), we get

f
(︀
2(x + y + 𝛾xy) + 1/𝛾

)︀
+ f

(︀
2(y − 𝛾xy) + 1/𝛾

)︀
= 2f (x) + 2f (2y + 1/𝛾) (2.18)

for all x, y ∈ R. Using (2.17), we rewrite equation (2.18) as

f (x + y + 𝛾xy) + f (y − 𝛾xy) = f (x) + 2f (y), x ∈ R. (2.19)

Letting y = 1/𝛾 in equation (2.19) and using equation (2.17), we obtain

f (1/𝛾 − x) = f (1/𝛾) − f (x), x ∈ R. (2.20)

Replacing y by 1/𝛾 − y in equation (2.19), we get

f
(︀
1/𝛾 − (x + y − 𝛾xy)

)︀
− f (1/𝛾 − y) = f (𝛾xy) − f (x), x, y ∈ R. (2.21)

Using equation (2.19), we rewrite equation (2.21) as

f (x + y − 𝛾xy) + f (𝛾xy) = f (x) + f (y), x, y ∈ R.

Then by Theorem 2.3, we obtain that f is additive.
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Using the ideas from Theorem 2.4, we have

Theorem 2.5. Let X be a vector space and α, β be real numbers. If a mapping f : R → X with f (0) = 0 satisfies

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 + βxy

)︀
= f (x) + f

(︀
(α + β)xy

)︀
(2.22)

for all x, y ∈ R, then f is additive.

Proof. Letting x = 0 in equation (2.22), we obtain that f is odd, since f (0) = 0. Letting y = 0 and replacing x
by 2x in equation (2.22), we get f (2x) = 2f (x) for all x ∈ R. Replacing y by −y in equation (2.22), we obtain

f
(︀ x − y

2 − αxy
)︀
+ f

(︀ x + y
2 − βxy

)︀
= f (x) + f

(︀
− (α + β)xy

)︀
(2.23)

for all x, y ∈ R. Adding the equations (2.22) and (2.23) and using the oddness of f , we have[︁
f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 − αxy

)︀]︁[︁
f
(︀ x + y

2 − βxy
)︀
+ f

(︀ x − y
2 + βxy

)︀]︁
= 2f (x)

for all x, y ∈ R. Interchanging x with y in equation (2.22), we obtain

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ y − x
2 + βxy

)︀
= f (y) + f

(︀
(α + β)xy

)︀
(2.24)

for all x, y ∈ R. Replacing y by −y in equation (2.24), and then adding the resulting equation to equation
(2.24), we have [︁

f
(︀ x + y

2 + αxy
)︀
+ f

(︀ x − y
2 − αxy

)︀]︁
=
[︁
f
(︀ x + y

2 + βxy
)︀
+ f

(︀ x − y
2 − βxy

)︀]︁
for all x, y ∈ R.

By the same method as in the proof of Theorem 2.4, one can complete the proof.

3 Stability of the functional equation (1.1)
In this section, we investigate the Hyers-Ulam stability problem for the functional equation (1.1). We assume
that X is a Banach space.

Theorem 3.1. Let ε > 0 be fixed and let f : R → X be a mapping satisfying⃦⃦⃦
f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃦⃦⃦
6 ε (3.1)

for all x, y ∈ R. Then there exists a unique additive mapping A : R → X satisfying

‖f (x) − A(x)‖ 6 5ε (3.2)

for all x, y ∈ R.

Proof. Letting x = y = 0 in inequality (3.1), we get ‖f (0)‖ 6 ε. Putting x = 0 and replacing y by 2y in inequality
(3.1), we have

‖f (y) + f (−y) − f (0)‖ 6 ε, y ∈ R. (3.3)

Setting x = 1
2 and replacing y by −y −

1
4 in inequality (3.1), we obtain⃦⃦⃦

f (−y) + f
(︀
y + 1

2
)︀
− f

(︀1
2
)︀⃦⃦⃦

6 ε, y ∈ R. (3.4)

It follows from inequalities (3.3) and (3.4) that⃦⃦⃦
f (y) + f

(︀
− y − 1

2
)︀
− f

(︀
− 1
2
)︀⃦⃦⃦

6 5ε, y ∈ R. (3.5)



On the stability of a Cauchy type functional equation | 327

Replacing x and y by x + y and x−y
1+2x+2y in inequality (3.1), respectively, we get

‖f (x) + f (y) − f (x + y)‖ 6 ε, x, y ∈ R, 2x + 2y ≠ −1. (3.6)

It follows from inequalities (3.5) and (3.6) that

‖f (x) + f (y) − f (x + y)‖ 6 5ε, x, y ∈ R.

By the Hyers’ theorem, the limn→∞ 2−n f (2nx) exists for each x ∈ R and the mapping A : R → X given by
A(x) := limn→∞ 2−n f (2nx) is the unique additive mapping satisfying inequality (3.2).

Theorem 3.2. Let ε > 0, 0 < p < 1, q > 0 be fixed and let f : R → X be a mapping satisfying⃦⃦⃦
f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃦⃦⃦
6 ε(|x|p + |y|q) (3.7)

for all x, y ∈ R. Then there exists a unique additive mapping A : R → X satisfying

‖f (x) − A(x)‖ 6

⎧⎪⎪⎨⎪⎪⎩
2p

2 − 2p ε|x|
p , if x ∈ R \ S

θ(x), if x ∈ S

(3.8)

for all x ∈ R, where S =
{︁
− 1

2m+2 : m ∈ N ∪ {0}
}︁
and

θ(x) =
[︁ 2p
2 − 2p −

2(m+1)p

2(m+1)
]︁
ε|x|p +

1 + 2
2q +

1
2p

2m+1 ε,

when 2m+2x = −1 for some integer m > 0.

Proof. Letting x = y = 0 in inequality (3.7), we get f (0) = 0. Setting x = 1
2 and y = 0, we obtain⃦⃦⃦

f
(︀1
2
)︀
− 2f

(︀1
4
)︀⃦⃦⃦

6
ε
2p . (3.9)

Putting x = 0 and replacing y by 2y in inequality (3.7), we have

‖f (y) + f (−y)‖ 6 2qε|y|q , y ∈ R. (3.10)

Using inequalities (3.9) and (3.10), we obtain⃦⃦⃦
f
(︀
− 1
2
)︀
− 2f

(︀
− 1
4
)︀⃦⃦⃦

6
[︁
1 + 2

2q +
1
2p

]︁
ε. (3.11)

Replacing x and y by x + y and x−y
1+2x+2y in inequality (3.7), respectively, we get

‖f (x) + f (y) − f (x + y)‖ 6 ε
[︁
|x + y|p +

⃒⃒⃒ x − y
1 + 2x + 2y

⃒⃒⃒q]︁
(3.12)

for all x, y ∈ R with 2x + 2y ≠ −1. Letting y = x in inequality (3.12)

‖f (2x) − 2f (x)‖ 6 2pε|x|p , x ∈ R, 4x ≠ −1.

For x ∈ R, there exists m > 1 such that 2n+2x ≠ −1 for all n > m. Therefore⃦⃦⃦ f (2n+1x)
2n+1 − f (2

nx)
2n

⃦⃦⃦
6

(︁2p
2

)︁n+1
ε|x|p , n > m. (3.13)

Hence the sequence {2−n f (2nx)} is Cauchy. Let x ∈ R such that 2m+2x ≠ −1 for all integers m > 0. Then
inequality (3.13) implies that ⃦⃦⃦ f (2n+1x)

2n+1 − f (x)
⃦⃦⃦
6 ε

n∑︁
k=0

(︁2p
2

)︁k+1
|x|p . (3.14)
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If x ∈ R such that 2m+2x = −1 for some integer m > 0, then inequalities (3.11) and (3.13) imply that⃦⃦⃦ f (2n+1x)
2n+1 − f (x)

⃦⃦⃦
6 ε

n∑︁
k=0
k≠m

(︁2p
2

)︁k+1
|x|p +

1 + 2
2q +

1
2p

2m+1 ε. (3.15)

Letting n →∞ in inequalities (3.14) and (3.15), we get inequality (3.8).

One can obtain a similar result for the case p > 1. The proof can be achieved similarly as in that of Theorem
3.2. In the following proposition, by using Gajda’s function (see [17]), we show that Theorem 3.2 is false for
p = 1.

Proposition 3.3. Let ϕ : R → R be defined by

ϕ(x) :=
{︃
x for |x| < 1;
1 for |x| > 1.

Consider the function f : R → R by the formula

f (x) :=
∞∑︁
n=0

2−nϕ(2nx).

Then f satisfies ⃒⃒⃒
f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃒⃒⃒
6 12(|x| + |y|) (3.16)

for all x, y ∈ R, and the range of |f (x) − A(x)|/|x| for x ≠ 0 is unbounded for each additive function A : R → R.

Proof. It is clear that f is bounded by 2 on R. If |x| + |y| = 0 or |x| + |y| > 1
2 , then⃒⃒⃒

f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃒⃒⃒
6 6 6 12(|x| + |y|).

Now suppose that 0 < |x| + |y| < 1
2 . Then there exists an integer k > 1 such that

1
2k+1

6 |x| + |y| < 1
2k

. (3.17)

Therefore
2m

⃒⃒ x + y
2 + xy

⃒⃒
, 2m

⃒⃒ x − y
2 − xy

⃒⃒
, 2m|x| < 1

for all m = 0, 1, ..., k − 1. From the definition of f and inequality (3.17), we have⃒⃒⃒
f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃒⃒⃒
6

∞∑︁
n=k

2−n
[︁⃒⃒⃒
ϕ
(︀
2n( x + y2 + xy)

)︀⃒⃒⃒
+
⃒⃒⃒
ϕ
(︀
2n( x − y2 − xy)

)︀⃒⃒⃒
+ |ϕ(2n(x))|

]︁
6

6
2k

6 12(|x| + |y|).

Therefore f satisfies inequality (3.16). To complete the proof, we assume that there exists an additive function
A : R → R and a constant β > 0 such that

|f (x) − A(x)| 6 β|x|, x ∈ R.

Since A is additive, there exists a constant c ∈ R such that A(x) = cx for all rational numbers x. Then we have

|f (x)| 6 (β + |c|)|x| (3.18)

for all rational numbers x. Let m ∈ N with m > β + |c| and let x be a rational number in (0, 21−m). Then
2nx ∈ (0, 1) for all n = 0, 1, ...,m − 1. So

f (x) >
m−1∑︁
n=0

2−nϕ(2nx) = mx > (β + |c|)x,

which contradicts inequality (3.18).
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Theorem 3.4. Let ε > 0, p, q > 0 and let f : R → X be a mapping satisfying⃦⃦⃦
f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x)

⃦⃦⃦
6 ε|x|p|y|q (3.19)

for all x, y ∈ R. Then f is additive.

Proof. Letting x = y = 0 in inequality (3.19), we get f (0) = 0. Letting x = 0 in inequality (3.19), we obtain that
f is odd. Setting y = 0 in inequality (3.19), we get that f (2x) = 2f (x), and so f (2nx) = 2n f (x) for all x ∈ R and
all positive integers n. Replacing x and y by x + y and x−y

1+2x+2y in inequality (3.19), we get

‖f (x) + f (y) − f (x + y)‖ 6 ε|x + y|p
⃒⃒⃒ x − y
1 + 2x + 2y

⃒⃒⃒q
(3.20)

for all x, y ∈ R with 2x + 2y ≠ −1. We may assume that p < 1 (for the case p > 1 we have a similar proof).
For x, y ∈ R, there exists m > 1 such that 2n+1(x + y) ≠ −1 for all n > m. Replacing x an y by 2nx and 2ny in
inequality (3.20), respectively, and using f (2n t) = 2n f (t) for t = x, y, x + y, we get

‖f (x) + f (y) − f (x + y)‖ 6 ε
(︁2p
2

)︁n |x + y|p|x − y|q
|2−n + 2x + 2y|q (3.21)

for all n > m. Taking the limit as n →∞ in inequality (3.21), we obtain f (x + y) = f (x) + f (y).

4 Stability of the functional equation (1.1) in topological vector
spaces

In this section, E is a sequentially complete Hausdorff topological vector space over the field Q of rational
numbers.

Theorem 4.1. Let V be a nonempty bounded convex subset of E containing the origin. Suppose that f : R → E
satisfies

f
(︀ x + y

2 + xy
)︀
+ f

(︀ x − y
2 − xy

)︀
− f (x) ∈ V (4.1)

for all x, y ∈ R. Then there exists a unique additive mapping A : R → E such that

f (x) − A(x) ∈ 4V − V (4.2)

for all x ∈ R, where 4V − V denotes the sequential closure of 4V − V.

Proof. Letting x = y = 0 in (4.1), we get f (0) ∈ V. Putting x = 0 and replacing y by 2y in (4.1), we have

f (y) + f (−y) − f (0) ∈ V , y ∈ R. (4.3)

Setting x = 1
2 and replacing y by −y −

1
4 in (4.1), we obtain

f (−y) + f
(︀
y + 1

2
)︀
− f

(︀1
2
)︀
∈ V , y ∈ R. (4.4)

It follows from (4.3) and (4.4) that

f (y) + f
(︀
− y − 1

2
)︀
− f

(︀
− 1
2
)︀
∈ 4V − V , y ∈ R. (4.5)

Replacing x and y by x + y and x−y
1+2x+2y in (4.1), we get

f (x) + f (y) − f (x + y) ∈ V , x, y ∈ R, 2x + 2y ≠ −1. (4.6)
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Since V ⊆ 4V − V, it follows from (4.5) and (4.6) that

f (x) + f (y) − f (x + y) ∈ 4V − V , x, y ∈ R. (4.7)

It is easy to prove that

f (2nx)
2n − f (2

n+1x)
2n+1 ∈ 1

2n+1W ⊆ W , (4.8)

f (x) − f (2
nx)
2n ∈

n∑︁
k=1

1
2k
W ⊆ W (4.9)

for all x ∈ R and all integers n > 1, where W = 4V − V. Since V is a nonempty bounded convex subset of
E containing the origin, W is a nonempty bounded convex subset of E containing the origin. It follows from
(4.8) that

f (2nx)
2n − f (2

mx)
2m =

m−1∑︁
k=n

[︁ f (2kx)
2k

− f (2
k+1x)
2k+1

]︁
∈
m−1∑︁
k=n

1
2k+1

W ⊆ 1
2nW (4.10)

for all x ∈ R and all integers m > n > 0. Let U be an arbitrary neighborhood of the origin in E. Since W is
bounded, there exists a rational number t > 0 such that tW ⊆ U. Choose n0 ∈ N such that 2n0 t > 1. Let x ∈ R
and m, n ∈ N with m > n > n0. Then (4.10) implies that

f (2nx)
2n − f (2

mx)
2m ∈ U .

Thus the sequence {2−n f (2nx)} is a Cauchy sequence in E. By the sequential completeness of E, the limit
A(x) = limn→∞ 2−n f (2nx) exists for each x ∈ R. So (4.2) follows from (4.9) by letting n →∞.

To show that A : R → E is additive, replacing x and y by 2nx and 2ny, respectively, in (4.7) and then
dividing by 2n, we obtain

f (2nx)
2n + f (2

ny)
2n − f (2

n(x + y))
2n ∈ 1

2nW

for all x, y ∈ R and all integers n > 0. Since W is bounded, on taking the limit as n → ∞, we get that A is
additive.

To prove the uniqueness of A, assume on the contrary that there is another additive mapping T : R → E
satisfying (4.2) and there is an a ∈ R such that x = T(a) −A(a) ≠ 0. So there is a neighborhood U of the origin
in E such that x /∈ U, since E is Hausdorff. Since A and T satisfy (4.2), we get T(b) − A(b) ∈ W − W for all
b ∈ R. SinceW is bounded,W−W is bounded. Hence there exists a positive integerm such thatW−W ⊆ mU.
Therefore mx = T(ma) − A(ma) ∈ mU which is a contradiction to x /∈ U. This completes the proof.
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