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Abstract: We have proved the Hyers-Ulam stability and the hyperstability of the quadratic functional equation
fx+y+2)+fx+y-2)+fx-y+2) +f(-x +y +2) = 4[f() + f(y) + f(2)]

in the class of functions from an abelian group G into a Banach space.
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1 Introduction

In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University of Wisconsin in
which he discussed a number of important unsolved problems. Among those was the question concerning
the stability of homomorphisms:

Let (G, -) be a group and let (G/, -, d) be a metric group with the metric d. Given € > 0, does there exist
8 > 0 such that if a mapping h : G — G’ satisfies the inequality

d(h(x-y),h(x) - h(y)) <6
forall x, y € G, then there is a homomorphism H : G — G’ with
dh(x),H(x)) < €

forall x € G?

Ulam’s problem was partially solved by Hyers [2] in 1941.

Theorem 1. [2] Let E be a normed vector space, F a Banach space and suppose that the mapping f : E — F
satisfies the inequality

Ifx+y) - fx) - f)|| < €

forallx,y € E, where € is a constant. Then the limit

T(x) = nli_}n; 27 (2™x)
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exists for each x € E and T is the unique additive mapping satisfying
||f(x) - T(x)|| <e

forall x € E. Also, if for each x the function t — f(tx) from R to F is continuous for each fixed x, then T is linear.
If fis continuous at a single point of E, then T is continuous in E.

Bourgin [3], Aoki [4], Rassias [5] and Gajda [6] treated this problem for approximate additive mappings con-
trolled by unbounded functions.

Theorem 2. Let f : E — F be a mapping from a real normed vector space E into a Banach space F satisfying
the inequality
[fOc+y) = F0O = F)|| < 6(Ix(1P + [[yII) .1)

forall x,y € E\ {0}, where 8 and p are constants with 6 > 0 and p # 1. Then there exists a unique additive
mapping T : E — F such that

69~ TG = 55 Ix|l” 1.2)

0
— zp—l‘
forallx € E\ {0}.

Theorem 2 is due to Aoki [4] for O < p < 1 (see also [5]); Gajda [6] for p > 1; Hyers [2] for p = 0 and Rassias [7]
for p < 0 (see [3, 8]).

In 1994, Gavruta [9] generalized these theorems for approximate additive mappings controlled by the
unbounded Cauchy difference with regular conditions, i.e., he replaced 6(||x||” + ||y||’) with a general control
function @(x, y).

The stability problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [10-13]).

Recently, interesting results concerning quadratic functional equation

fx+y+2)+fx+y-2)+fx-y+2)+ f(=x+y + 2) = 4[f () + f(y) + f(2)] (1.3)
have been obtained in [14, 15].

Lemma 1. [14] Let X and Y be vector spaces over fields of characteristic different from 2, respectively. A mapping
f : X — Y satisfies (1.3) if and only if the mapping f : X — Y is a solution of the quadratic equation f(x + y) +
fO=y) =2f(x) + 2f(y).

We say a functional equation D is hyperstable if any function f satisfying the equation ® is approximately a
true solution of ®. The term hyperstability was used for the first time probably in [16]. However, it seems that
the first hyperstability result was published in [3] and concerned the ring homomorphisms. The hyperstabil-
ity results for Cauchy equation were investigated by Brzdek [17-19]. Gselmann [20] studied the hyperstability
of the parametric fundamental equation of information. In [21], Bahyrycz and Piszczek provided the hyper-
stability of the Jensen functional equation. For more information on hyperstability of functional equations,
see [22].

Throughout this paper, we will denote the set of natural numbers by N, the set of integers by Z and the
set of real numbers by R. Let N" be the set of positive integers. We denote that N, (with mg € N") the set
of all integers greater than or equal to mg. Let R, := [0, o) be the set of nonnegative real numbers and Y*
denote the family of all functions mapping from a nonempty set X into a nonempty set Y.

In this paper, we present the stability and hyperstability results for the quadratic functional equation
(1.3) in the class of functions from a commutative group (G, +) into a Banach space E.

The method of the proof of the main results is motivated by an idea used in [17-19, 23, 24]. It is based on
a fixed point theorem for functional spaces obtained by Brzdek et al. (see [25, Theorem 1]).
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First, we take the following three hypotheses (all notations come from [25]):
(H1) U is a nonempty set, V is a Banach space, f1, ....fy : U — Uand Ly, ....Ly : U — R, are given.
(H2) T : VY — VU is an operator satisfying the inequality

k
17£60 - TuG)|| < 37 Li0) [EGR) - u(Fi00)|
i=1

forallé, e VU, x e U.
(H3) A : RV — RY is a linear operator defined by

k
AB(X) = Li()8(fi(x)
i=1

forall 6 e RY, x € U.

The mentioned fixed point theorem is stated as follows.

Theorem 3. Let (H1)-(H3) be valid and functions € : U — R, and let ¢ : U — V fulfil the following two
conditions:
[[To(x) - )| < e(x), x €U,

€)=Y A"e(x) <oo, x€U.
n=0
Then there exists a unique fixed point \ of T with

|90 - Y| <€), xeU.

Moreover
Y(x) = nli_>m T e(x), x € U.

2 Main results

The following theorems are the main results in this paper and concern the stability of the functional equation
(1.3).

Theorem 4. Let (G, +) be an abelian group and E be a Banach space. Letf : G — E, ¢ : G> — [0, o0) and
u:7Z" =7\{0} — [0, oo) be functions satisfying the following three conditions
M:=={me 7" 2u@m + 1) + 8u(-m) + u(-4m - 1) < 1} #0, 2.1

o(tx, ty, tz) < u(p(x, y, z) 2.2)
and
Ifx+y+2)+fx+y-2)+fx-y+2)+f(-x+y +2) = 4[f(x) + f(¥) + f(2)]]| < p(x,y, 2) (2.3)

forallx,y,z € G, t € {2m+1,-m,-4m — 1} and m € M. Then there exists a unique mapping Q : G — E
satisfying (1.3) and
[fx) - Q)| < p(), (2.4)

where

. @((2m + 1)x, -mx, -mx) )
P00 := mf{ 1-2u(2m+1) - 8u(-m)-u(-4m-1) me M}

forallx € G.
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Proof. Replacing (x, y, z) by ((2m + 1)x, -mx, -mx) in (2.3), we get

|2f((2m + 1)x) + 8f(-mx) - f((-4m - 1)x) - fX)|| < p((2m + 1)x, —mx, -mX) := £m(X) (2.5)
forall x € G and m € Z". Further put

TE(X) :=2&(2m + 1)x) + 8(-mx) - E((-4m - 1)x), x€G, & ¢ ES, meZ".
Then the inequality (2.5) takes the form
||‘If(x) —f(x)H <em(x), x €G.
Now, we define an operator A : RS — RY for m € Z" by
A8(x) := 26(2m + 1)x) + 88(-mx) + 8((-4m - 1)x), x € G, 6 € RS, (2.6)

This operator has the form described in (H3) with k = 4 and f;(x) = 2m+1)x, f(x) = -mx, f3(x) = (-4m-1)x,
Li(x)=2,L,(x) =8and L3(x) = 1 forx € G.
Moreover, forevery &,y € E G and x € G, we obtain

ITEC) = TROO|| = 122 = W () + 8(E - W(F200) - (€ - W(F00)]
< 2|(€ - WD) + 81|(€ - WECN]| + 1€ - )]

4
=Y L) [|& - W)

i=1

1)

where (& — p)(y) = &(y) - u(y) forall y € G. So (H2) is valid. It is easy to check that

Agi(x) = 2, ((2m + 1)x) + 8, (-mx) + £, ((-4m - 1)x)
< 2u(2m + 1)gg(x) + 8u(-m)ei(x) + u(-4m - 1)g,(x)
=[2u(2m + 1) + 8u(-m) + u(-4m - 1)]e,(x) 2.7

forall x € G, k € Z" and m € M. Therefore, since the operator A is linear, we have

)= iA"em(x)
n=0

< i(Zu(Zm +1) +8u(-m) + u(-4m - 1))"em(x)
n=0

_ em(x) < oo
1-2u(2m+1)-8u(-m)-u(-4m-1)

(2.8)

for all x € G and m € M. Thus, according to Theorem 3, for each m € M there exists a unique mapping
Qm : G — E such that

Qm(x) = 2Qm((2m + 1)x) + 8Qm(-mx) - Qm((-4m - 1)x), x€ G

em(x)
1-2u(2m+1) - 8u(-m) - u(-4m-1)

IF() - Qmx)|| < 2.9)
for all x € G and m € M. Moreover
Qmx) = nle Tf(x), x€ G, meM. (2.10)

Next, we show that

1T x+y+2)+ T f(x+y-2) + T f(x -y +2) + Tf(y - x + 2) - 4T"f(x)
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—4Tf(y) - 4T"f(2)|| < Qu(2m + 1) + 8u(-m) + u(-4m - 1))"p(x, y, 2) (2.11)

Fix m € M. Indeed, if n = 0, then (2.11) is simply (2.3). So, fix n € N and suppose that (2.11) holds for n.
Then

[T e+ y +2) + T+ y - 2) + T (- y + 2) + Ty — x + 2)
— 4T(x) - 4T (y) - 4T )|
= |27"F(@m + 1)(x + y + 2)) + 8T F(-m(x + y + 2))
—Tf((~4m - D(x +y +2)) + 2T"f(2m + D(x +y - 2))
+8T"f(-mlx +y - 2)) = T'f((~4m - D(x +y - 2))
+2T"f(2m + Dx -y +2) + 8T"f(-m(x — y + 2))
- T f((~4m - Dx —y +2) + 2T f(2m + 1)(-x + y +2))
+ 8T f(-m(-=x +y +2)) - T'f((-4m - 1)(-x +y + 2))
— 4[2T"F((2m + 1)x) + 8T"f(=mx) - T*f((~4m - 1)x)]
~42T"f(2m + 1)y) + 8T"f(=my) - T"f((~4m ~ 1)y)]
— 427" f(2m + 1)2) + 8T"f(-mz) - T*f(~4m - 1)2)]|
<2Qu2m + 1) + 8u(-m) + u(-4m — 1))"p((2m + Dx, (2m + 1)y, 2m + 1)2)
+82u(2m +1) + 8u(-m) + u(-4m - 1)) p(-mx, -my, ~m2)
+Qu2m +1) + 8u(-m) + u(-4m - 1))"((-4m - 1)x, (-4m - 1)y, (-4m - 1)2)
< Qu@2m + 1) + 8u(-m) + u(-4m - 1)) p(x, y, 2)

forallx,y,z € G.
Thus, by induction, we obtain that (2.11) holds for all x, y, z € G and for all n € N. Letting n — oo in (2.11),
we obtain that

Qux+y+2)+ Qux+y —2) + Qm(x -y + 2) + Qm(-x + ¥ + 2) = 4[Qm(X) + Qm(y) + Qm(2)] (212)
forall x,y, z € Gand m € M such that

em(x)
1-2u(2m+1)-8u(-m) -u(-4m-1)"

[F() - Qm()| <

Now, we prove that Qm = Q for all m, k € M. Let us fix m, k € M and note that Q; satisfie (2.9) with m
replaced by k. Hence, by replacing (x, y, z) by (2m + 1)x, -mx, -mx) in (2.12), we get TQ; = Q; forj = m, k
and

Em(x) £x(x)

1Qm0) = QN < T o D~ suCom) —wam = 1) 1= 2utzk + 1) - 8u(k) — a4k = 1)

for all x € G. It follows from the linearity of A and (2.7) that

[Qm() = Q)| = 17" Qm () = T" Qe ()|
. A"em(x) N Agr(x)
“1-2u(2m+1)-8u(-m)-u(-4m-1) 1-2u(k+1)-8u(-k)-u(-4k-1)

(2u(2m + 1) + 8u(-m) + u(-4m - 1)) " Am(x) + (2u(2k + 1) + 8u(-k) + u(-4k - 1))“Ak(x),

IN

where
em(x)

1-2u(2m+1)-8u(-m) - u(-4m-1)
forall x € G and n € N. Letting n — oo, we get Qm = Qi =: Q. Thus we have

Am(X) =

If() - Q)| < Am(x), x€ G, meM
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and so we obtain (2.4).

In view of 2.12, it is easy to notice that Q is a solution of (1.3).

To prove the uniqueness of the mapping Q, let us assume that there exists a mapping Q' : G — E which
satisfies (1.3) and the inequality

[fx) - Q)| < ), x €G.
Then
Q) - Q') < 2¢(x), x€G.

Further 7Q’(x) = Q'(x) for all x € G. Consequently, with a fixed m € M

1Q0) - Q') = |T"Q(x) - T"Q' ()|
< 2A"p(x)
. 2A™em(x)
“1-2u(2m+1)-8u(-m)-u(-4m-1)
. 2[2u(2m + 1) + 8u(-m) + u(-4m - )" em(x)
1-2u(2m+1) - 8u(-m) - u(-4m-1)

forall x € Gand n € N. Letting n — oo, we get Q = Q’. The proof of the theorem is complete. O

In a similar way, we can prove Theorem 5 if the inequality (2.3) is defined on G\{0} := Go.

Theorem 5. Let (G, +) be an abelian group and E be a Banach space. Letf : G — E, ¢ : Gg — [0, o0) and
u:Z" =7\{0} — [0, o) be functions satisfying the following three conditions

M:={meZ :2u@@m+1)+8u(-m)+u(-4m-1) < 1} # 0, (2.13)
o(tx, ty, tz) < u(t)p(x, y, 2) (2.14)

and
Ifx+y+2)+fx+y-2)+fx-y+2)+f(-x+y +2) = 4[f() + f(y) + f(2)]]] < p(x, ¥, 2) (2.15)

forallx,y,z € Go, t € {2m+ 1,-m, -4m — 1} and m € M with f(0) = 0. Then there exists a unique mapping
Q : G — E satisfying (1.3) and
[fO) - QM)|| < p(x), (2.16)

where

. @((2m + 1)x, -mx, -mx) .
PO = mf{ 1-2u@m+ 1) -8uCm) -uC4m-1) "€ M}

forall x € Gg.

Corollary 1. Let (G, +) be a commutative group and E be a Banach space. Letf : G — E, ¢ : G> — [0, o) and
u:7Z" =7Z\{0} — [0, oo) be functions and the conditions (2.1), (2.2) and (2.3) be valid. Assume that

inf{op(2m + 1)x, -mx, -mx) : m € M} =0, (2.17)
n}gn Qu2m+1)+8u(-m)+u(-4m-1))=0 (2.18)
for all x € G. Then f satisfies (1.3) on G.

Proof. Suppose that
inf{eo(2m + 1)x,-mx,-mx) : me M} =0

for all x € G. Hence from Theorem 4 we have ¢(x) = 0 for all x € G. Then f satisfies (1.3) on G. O
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Remark 1. In Theorem 4, if
lglljnf(Zu(Zm +1)+8u(-m)+u(-4m-1))=0
(this is the case when, e.g., lim o0 u(m) = 0), then (2.1) holds and

¢(x) = inf @((2m + 1)x, -mx, —-mx)
meM
forallx € G.

Now we give some applications of Theorem 5 to some cases:
P10,y,2) = Ox|IP - ly|? - ||zll", p+q+71<0

and
@206,y,2) = (x| + |ly|I” + ||zIIP), p <O,

where ¢(x,y,2) = j(x,y,z) forj e {1,2},0 e Ry, p,q,r e Rand x,y,z # 0.

Corollary 2. Let E; and E, be a normed space and a Banach space, respectively. Assume S := (S,+) is a
subgroup of the group (E1,+),p,q, T € R,p+q+r<0and 6= 0.Iff(0) =0andf : S — E; satisfies

Ifx+y+2)+fx+y-2)+f(x -y +2) + fy - x +2) - 4[f(x) + f(y) + fD]] < Ol Ix|1P Iyl | z||"
forallx,y,z e S\ {0}, then f is a solution of (1.3) on S.
Proof. Let @1(x,y,2) = 0||x||P - |ly||? - ||z||” and u(t) = |¢|’*?*"" in Theorem 5 where p,q,r e R,p+q+r <0
and t € Z". Then we observe that condition (2.14) is valid. Obviously, (2.17) and (2.18) hold and there exists

mo € N" such that
212m + 1P + 8ImP* T + |am + 1P < 1, m 2 my.

So we obtain (2.13), as well. Consequently, by Corollary 1, every mapping f : S — E> fulfilling (2.15) satisfies
(1.3)on S. O

Corollary 3. Let E1 and E, be a normed space and a Banach space, respectively. Assume S := (S, +) is a
subgroup of the group (E1,+),p € R,p<0and 6> 0.Iff(0) =0andf : S — E, satisfies

Ifx+y+2) +fl+y-2)+flx—y+2) +fly - x+2) - 4[f() + f) + F@] < O(Ix]]” + Iy ][ + [|z]1")

forallx,y,z € S\ {0}, then f is a solution of (1.3) on S.
Proof. Let @>(x,y,z) = 8(|x||” + ||ly||” + ||z||’) and u(t) = |t|P in Theorem 5 wherep ¢ R,p < Oand t € Z .
Then we observe that condition (2.14) is valid. Obviously, (2.17) and (2.18) hold and there exists my € N" such

that
22m+ 1P +8mP + |4m+ 1P <1, m 2 my.

So we obtain (2.13), as well. Consequently, by Corollary 1, every mapping f : S — E, fulfilling (2.15) satisfies
(1.3)on S. O

We know that any norm that satisfies the parallelogram law is bound to have been originated from a scalar
product. The following corollary gives a characterization of the inner product space, which is one of the ap-
plications of Corollaries 2 and 3.

Corollary 4. Let X be a normed space and Xo = X\{0}. Write
Ay, z) = |Ix+y+zl> +x+y -zl + |[x =y +z||* +lly —x+2z]|> = 4[|x]|* + [ly||* +||z]|°]

forall x,y € X. Assume that one of the following two hypotheses is valid
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: Ax,y,2)
@ SUPxyzex, iy fefar < ooforp+a+r <0,

- A(x,y,2)
(i) SUPyy.zex, Tyl < °2forp <O

Then X is an inner product space.

Proof. Write f(x) = ||x||2. Then from Corollaries 2 and 3, we easily derive f which is a solution of the functional
equation (1.3). That implies A(x, y) = 0. Thus the norm || - || on X satisfies the parallelogram low:

b+ Y112 + = yII* = 211x]1 + 21lyl%, x,y € X.
Therefore, X is an inner product space. O

Corollary 5. Let G be a commutative group and E be a Banach space. Let ¢ : G* — [0,00) and u : Z" =
Z\{0} — [0, o0) be functions and the conditions (2.1), (2.2), (2.17) and (2.18) be valid. If F : G> — Eisa
mapping such that F(xq, Yo, 2zo) # O for some xq, Yo, z0 € G and

|Fx,y,2)| < o(x,y,2)

forallx,y, z € G, then the functional equation

gx+y+2)+g(x-y+2)+g(y-x+2)+g(x+y-2)=F(x,y,2) + 4[gx) + g(y) + g(2)], x,y,z€ G (219)

has no solution in the class of functions g : G — E.

Proof. Suppose that g : G — E is a solution to (2.19). Then (2.3) holds, and consequently, according to Corol-
lary 1, g satisfies (1.3) on G, which means that F(xg, yo, zo) = 0. This is a contradiction. O

3 Conclusions

We have proved the Hyers-Ulam stability and the hyperstability of the quadratic functional equation

fx+y+2)+fx+y-2)+fx-y+2)+ f(-x +y +2) = 4[f(x) + f(y) + f(2)]

in the class of functions from an abelian group G into a Banach space.
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