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1 Introduction
In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University of Wisconsin in
which he discussed a number of important unsolved problems. Among those was the question concerning
the stability of homomorphisms:

Let (G, ·) be a group and let (G′, ·, d) be a metric group with the metric d. Given ϵ > 0, does there exist
δ > 0 such that if a mapping h : G → G′ satisfies the inequality

d(h(x · y), h(x) · h(y)) ≤ δ

for all x, y ∈ G, then there is a homomorphism H : G → G′ with

d(h(x), H(x)) ≤ ϵ

for all x ∈ G?

Ulam’s problem was partially solved by Hyers [2] in 1941.

Theorem 1. [2] Let E be a normed vector space, F a Banach space and suppose that the mapping f : E → F
satisfies the inequality ⃦⃦

f (x + y) − f (x) − f (y)
⃦⃦
≤ ϵ

for all x, y ∈ E, where ϵ is a constant. Then the limit

T(x) = lim
n→∞

2−n f (2nx)
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exists for each x ∈ E and T is the unique additive mapping satisfying⃦⃦
f (x) − T(x)

⃦⃦
≤ ϵ

for all x ∈ E. Also, if for each x the function t → f (tx) fromR to F is continuous for each fixed x, then T is linear.
If f is continuous at a single point of E, then T is continuous in E.

Bourgin [3], Aoki [4], Rassias [5] and Gajda [6] treated this problem for approximate additive mappings con-
trolled by unbounded functions.

Theorem 2. Let f : E → F be a mapping from a real normed vector space E into a Banach space F satisfying
the inequality ⃦⃦

f (x + y) − f (x) − f (y)
⃦⃦
≤ θ(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E \ {0}, where θ and p are constants with θ > 0 and p ≠ 1. Then there exists a unique additive
mapping T : E → F such that ⃦⃦

f (x) − T(x)
⃦⃦
≤ θ
|1 − 2p−1| ‖x‖

p (1.2)

for all x ∈ E \ {0}.

Theorem 2 is due to Aoki [4] for 0 < p < 1 (see also [5]); Gajda [6] for p > 1; Hyers [2] for p = 0 and Rassias [7]
for p < 0 (see [3, 8]).

In 1994, Gǎvruta [9] generalized these theorems for approximate additive mappings controlled by the
unbounded Cauchy difference with regular conditions, i.e., he replaced θ(‖x‖p + ‖y‖p)with a general control
function φ(x, y).

The stability problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [10–13]).

Recently, interesting results concerning quadratic functional equation

f (x + y + z) + f (x + y − z) + f (x − y + z) + f (−x + y + z) = 4[f (x) + f (y) + f (z)] (1.3)

have been obtained in [14, 15].

Lemma 1. [14]Let X and Y be vector spaces over fields of characteristic different from2, respectively. Amapping
f : X → Y satisfies (1.3) if and only if the mapping f : X → Y is a solution of the quadratic equation f (x + y) +
f (x − y) = 2f (x) + 2f (y).

We say a functional equationD is hyperstable if any function f satisfying the equationD is approximately a
true solution ofD. The term hyperstability was used for the first time probably in [16]. However, it seems that
the first hyperstability result was published in [3] and concerned the ring homomorphisms. The hyperstabil-
ity results for Cauchy equation were investigated by Brzdȩk [17–19]. Gselmann [20] studied the hyperstability
of the parametric fundamental equation of information. In [21], Bahyrycz and Piszczek provided the hyper-
stability of the Jensen functional equation. For more information on hyperstability of functional equations,
see [22].

Throughout this paper, we will denote the set of natural numbers by N, the set of integers by Z and the
set of real numbers by R. Let N* be the set of positive integers. We denote that Nm0 (with m0 ∈ N*) the set
of all integers greater than or equal to m0. Let R+ := [0,∞) be the set of nonnegative real numbers and YX

denote the family of all functions mapping from a nonempty set X into a nonempty set Y.

In this paper, we present the stability and hyperstability results for the quadratic functional equation
(1.3) in the class of functions from a commutative group (G, +) into a Banach space E.

The method of the proof of the main results is motivated by an idea used in [17–19, 23, 24]. It is based on
a fixed point theorem for functional spaces obtained by Brzdȩk et al. (see [25, Theorem 1]).
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First, we take the following three hypotheses (all notations come from [25]):
(H1) U is a nonempty set, V is a Banach space, f1, ....fk : U → U and L1, ....Lk : U → R+ are given.
(H2) T : VU → VU is an operator satisfying the inequality

⃦⃦
Tξ (x) − Tµ(x)

⃦⃦
≤

k∑︁
i=1

Li(x)
⃦⃦
ξ (fi(x)) − µ(fi(x))

⃦⃦
for all ξ , µ ∈ VU , x ∈ U.
(H3) Λ : RU+ → RU+ is a linear operator defined by

Λδ(x) :=
k∑︁
i=1

Li(x)δ(fi(x))

for all δ ∈ RU+ , x ∈ U.

The mentioned fixed point theorem is stated as follows.

Theorem 3. Let (H1)–(H3) be valid and functions ε : U → R+ and let φ : U → V fulfil the following two
conditions: ⃦⃦

Tφ(x) − φ(x)
⃦⃦
≤ ε(x), x ∈ U,

ε*(x) :=
∞∑︁
n=0

Λnε(x) < ∞, x ∈ U .

Then there exists a unique fixed point ψ of T with⃦⃦
φ(x) − ψ(x)

⃦⃦
≤ ε*(x), x ∈ U .

Moreover
ψ(x) = lim

n→∞
Tnφ(x), x ∈ U .

2 Main results
The following theorems are themain results in this paper and concern the stability of the functional equation
(1.3).

Theorem 4. Let (G, +) be an abelian group and E be a Banach space. Let f : G → E, φ : G3 → [0,∞) and
u : Z* = Z∖{0} → [0,∞) be functions satisfying the following three conditions

M := {m ∈ Z* : 2u(2m + 1) + 8u(−m) + u(−4m − 1) < 1} ≠ ∅, (2.1)

φ(tx, ty, tz) ≤ u(t)φ(x, y, z) (2.2)

and

‖f (x + y + z) + f (x + y − z) + f (x − y + z) + f (−x + y + z) − 4[f (x) + f (y) + f (z)]‖ ≤ φ(x, y, z) (2.3)

for all x, y, z ∈ G, t ∈ {2m + 1, −m, −4m − 1} and m ∈ M. Then there exists a unique mapping Q : G → E
satisfying (1.3) and ⃦⃦

f (x) − Q(x)
⃦⃦
≤ ϕ(x), (2.4)

where

ϕ(x) := inf
{︃

φ
(︀
(2m + 1)x, −mx, −mx

)︀
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) : m ∈ M

}︃
for all x ∈ G.
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Proof. Replacing (x, y, z) by ((2m + 1)x, −mx, −mx) in (2.3), we get⃦⃦
2f ((2m + 1)x) + 8f (−mx) − f ((−4m − 1)x) − f (x)

⃦⃦
≤ φ((2m + 1)x, −mx, −mx) := εm(x) (2.5)

for all x ∈ G and m ∈ Z*. Further put

Tξ (x) := 2ξ ((2m + 1)x) + 8ξ (−mx) − ξ ((−4m − 1)x), x ∈ G, ξ ∈ EG , m ∈ Z*.

Then the inequality (2.5) takes the form⃦⃦
Tf (x) − f (x)

⃦⃦
≤ εm(x), x ∈ G.

Now, we define an operator Λ : RG+ → RG+ for m ∈ Z* by

Λδ(x) := 2δ((2m + 1)x) + 8δ(−mx) + δ((−4m − 1)x), x ∈ G, δ ∈ RG+ . (2.6)

This operator has the formdescribed in (H3) with k = 4 and f1(x) = (2m+1)x, f2(x) = −mx, f3(x) = (−4m−1)x,
L1(x) = 2, L2(x) = 8 and L3(x) = 1 for x ∈ G.
Moreover, for every ξ , µ ∈ EG and x ∈ G, we obtain

‖Tξ (x) − Tµ(x)‖ = ‖2(ξ − µ)(f1(x)) + 8(ξ − µ)(f2(x)) − (ξ − µ)(f3(x))‖
≤ 2

⃦⃦
(ξ − µ)(f1(x))

⃦⃦
+ 8

⃦⃦
(ξ − µ)(f2(x))

⃦⃦
+ ‖(ξ − µ)(f3(x))‖

=
4∑︁
i=1

Li(x)
⃦⃦
(ξ − µ)(fi(x))

⃦⃦
,

where (ξ − µ)(y) = ξ (y) − µ(y) for all y ∈ G. So (H2) is valid. It is easy to check that

Λεk(x) = 2εk((2m + 1)x) + 8εk(−mx) + εk((−4m − 1)x)
≤ 2u(2m + 1)εk(x) + 8u(−m)εk(x) + u(−4m − 1)εk(x)
= [2u(2m + 1) + 8u(−m) + u(−4m − 1)]εk(x) (2.7)

for all x ∈ G, k ∈ Z* and m ∈ M. Therefore, since the operator Λ is linear, we have

ε*(x) : =
∞∑︁
n=0

Λnεm(x)

≤
∞∑︁
n=0

(2u(2m + 1) + 8u(−m) + u(−4m − 1))nεm(x)

= εm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) < ∞ (2.8)

for all x ∈ G and m ∈ M. Thus, according to Theorem 3, for each m ∈ M there exists a unique mapping
Qm : G → E such that

Qm(x) = 2Qm((2m + 1)x) + 8Qm(−mx) − Qm((−4m − 1)x), x ∈ G

⃦⃦
f (x) − Qm(x)

⃦⃦
≤ εm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) (2.9)

for all x ∈ G and m ∈ M. Moreover

Qm(x) = lim
n→∞

Tn f (x), x ∈ G, m ∈ M. (2.10)

Next, we show that

‖Tn f (x + y + z) + Tn f (x + y − z) + Tn f (x − y + z) + Tn f (y − x + z) − 4Tn f (x)
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− 4Tn f (y) − 4Tn f (z)‖ ≤ (2u(2m + 1) + 8u(−m) + u(−4m − 1))nφ(x, y, z) (2.11)

Fix m ∈ M. Indeed, if n = 0, then (2.11) is simply (2.3). So, fix n ∈ N and suppose that (2.11) holds for n.
Then

‖Tn+1f (x + y + z) + Tn+1f (x + y − z) + Tn+1f (x − y + z) + Tn+1f (y − x + z)
− 4Tn+1f (x) − 4Tn+1f (y) − 4Tn+1f (z)‖
= ‖2Tn f ((2m + 1)(x + y + z)) + 8Tn f (−m(x + y + z))
− Tn f ((−4m − 1)(x + y + z)) + 2Tn f ((2m + 1)(x + y − z))
+ 8Tn f (−m(x + y − z)) − Tn f ((−4m − 1)(x + y − z))
+ 2Tn f ((2m + 1)x − y + z) + 8Tn f (−m(x − y + z))
− Tn f ((−4m − 1)x − y + z) + 2Tn f ((2m + 1)(−x + y + z))
+ 8Tn f (−m(−x + y + z)) − Tn f ((−4m − 1)(−x + y + z))
− 4[2Tn f ((2m + 1)x) + 8Tn f (−mx) − Tn f ((−4m − 1)x)]
− 4[2Tn f ((2m + 1)y) + 8Tn f (−my) − Tn f ((−4m − 1)y)]
− 4[2Tn f ((2m + 1)z) + 8Tn f (−mz) − Tn f ((−4m − 1)z)]‖
≤ 2(2u(2m + 1) + 8u(−m) + u(−4m − 1))nφ((2m + 1)x, (2m + 1)y, (2m + 1)z)
+ 8(2u(2m + 1) + 8u(−m) + u(−4m − 1))nφ(−mx, −my, −mz)
+ (2u(2m + 1) + 8u(−m) + u(−4m − 1))nφ((−4m − 1)x, (−4m − 1)y, (−4m − 1)z)
≤ (2u(2m + 1) + 8u(−m) + u(−4m − 1))n+1φ(x, y, z)

for all x, y, z ∈ G.
Thus, by induction, we obtain that (2.11) holds for all x, y, z ∈ G and for all n ∈ N. Letting n → ∞ in (2.11),
we obtain that

Qm(x + y + z) + Qm(x + y − z) + Qm(x − y + z) + Qm(−x + y + z) = 4[Qm(x) + Qm(y) + Qm(z)] (2.12)

for all x, y, z ∈ G and m ∈ M such that

⃦⃦
f (x) − Qm(x)

⃦⃦
≤ εm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) .

Now, we prove that Qm = Qk for all m, k ∈ M. Let us fix m, k ∈ M and note that Qk satisfie (2.9) with m
replaced by k. Hence, by replacing (x, y, z) by ((2m + 1)x, −mx, −mx) in (2.12), we get TQj = Qj for j = m, k
and

‖Qm(x) − Qk(x)‖ ≤
εm(x)

1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) +
εk(x)

1 − 2u(2k + 1) − 8u(−k) − u(−4k − 1)

for all x ∈ G. It follows from the linearity of Λ and (2.7) that

‖Qm(x) − Qk(x)‖ = ‖TnQm(x) − TnQk(x)‖

≤ Λnεm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) +

Λnεk(x)
1 − 2u(2k + 1) − 8u(−k) − u(−4k − 1)

≤
(︀
2u(2m + 1) + 8u(−m) + u(−4m − 1)

)︀nAm(x) + (︀
2u(2k + 1) + 8u(−k) + u(−4k − 1)

)︀nAk(x),
where

Am(x) :=
εm(x)

1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1)
for all x ∈ G and n ∈ N. Letting n →∞, we get Qm = Qk =: Q. Thus we have⃦⃦

f (x) − Q(x)
⃦⃦
≤ Am(x), x ∈ G, m ∈ M
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and so we obtain (2.4).
In view of 2.12, it is easy to notice that Q is a solution of (1.3).
To prove the uniqueness of the mapping Q, let us assume that there exists a mapping Q′ : G → E which

satisfies (1.3) and the inequality ⃦⃦
f (x) − Q′(x)

⃦⃦
≤ ϕ(x), x ∈ G.

Then ⃦⃦
Q(x) − Q′(x)

⃦⃦
≤ 2ϕ(x), x ∈ G.

Further TQ′(x) = Q′(x) for all x ∈ G. Consequently, with a fixed m ∈ M

‖Q(x) − Q′(x)‖ = ‖TnQ(x) − TnQ′(x)‖
≤ 2Λnϕ(x)

≤ 2Λnεm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1)

≤ 2[2u(2m + 1) + 8u(−m) + u(−4m − 1)]nεm(x)
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1)

for all x ∈ G and n ∈ N. Letting n →∞, we get Q = Q′. The proof of the theorem is complete.

In a similar way, we can prove Theorem 5 if the inequality (2.3) is defined on G∖{0} := G0.

Theorem 5. Let (G, +) be an abelian group and E be a Banach space. Let f : G → E, φ : G30 → [0,∞) and
u : Z* = Z∖{0} → [0,∞) be functions satisfying the following three conditions

M := {m ∈ Z* : 2u(2m + 1) + 8u(−m) + u(−4m − 1) < 1} = ̸ ∅, (2.13)

φ(tx, ty, tz) ≤ u(t)φ(x, y, z) (2.14)

and

‖f (x + y + z) + f (x + y − z) + f (x − y + z) + f (−x + y + z) − 4[f (x) + f (y) + f (z)]‖ ≤ φ(x, y, z) (2.15)

for all x, y, z ∈ G0, t ∈ {2m + 1, −m, −4m − 1} and m ∈ M with f (0) = 0. Then there exists a unique mapping
Q : G → E satisfying (1.3) and ⃦⃦

f (x) − Q(x)
⃦⃦
≤ ϕ(x), (2.16)

where

ϕ(x) := inf
{︃

φ
(︀
(2m + 1)x, −mx, −mx

)︀
1 − 2u(2m + 1) − 8u(−m) − u(−4m − 1) : m ∈ M

}︃
for all x ∈ G0.

Corollary 1. Let (G, +) be a commutative group and E be a Banach space. Let f : G → E, φ : G3 → [0,∞) and
u : Z* = Z∖{0} → [0,∞) be functions and the conditions (2.1), (2.2) and (2.3) be valid. Assume that

inf{φ((2m + 1)x, −mx, −mx) : m ∈ M} = 0, (2.17)

lim
m→∞

(2u(2m + 1) + 8u(−m) + u(−4m − 1)) = 0 (2.18)

for all x ∈ G. Then f satisfies (1.3) on G.

Proof. Suppose that
inf{φ((2m + 1)x, −mx, −mx) : m ∈ M} = 0

for all x ∈ G. Hence from Theorem 4 we have ϕ(x) = 0 for all x ∈ G. Then f satisfies (1.3) on G.



Stability and hyperstability of a quadratic functional equation | 301

Remark 1. In Theorem 4, if

lim inf
m→∞

(2u(2m + 1) + 8u(−m) + u(−4m − 1)) = 0

(this is the case when, e.g., lim|m|→∞ u(m) = 0), then (2.1) holds and

ϕ(x) = inf
m∈M

φ((2m + 1)x, −mx, −mx)

for all x ∈ G.

Now we give some applications of Theorem 5 to some cases:

φ1(x, y, z) = θ‖x‖p · ‖y‖q · ‖z‖r , p + q + r < 0

and
φ2(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p), p < 0,

where φ(x, y, z) = φj(x, y, z) for j ∈ {1, 2}, θ ∈ R+, p, q, r ∈ R and x, y, z ≠ 0.

Corollary 2. Let E1 and E2 be a normed space and a Banach space, respectively. Assume S := (S, +) is a
subgroup of the group (E1, +), p, q, r ∈ R, p + q + r < 0 and θ ≥ 0. If f (0) = 0 and f : S → E2 satisfies

‖f (x + y + z) + f (x + y − z) + f (x − y + z) + f (y − x + z) − 4[f (x) + f (y) + f (z)]‖ ≤ θ‖x‖p‖y‖q‖z‖r

for all x, y, z ∈ S \ {0}, then f is a solution of (1.3) on S.

Proof. Let φ1(x, y, z) = θ‖x‖p · ‖y‖q · ‖z‖r and u(t) = |t|p+q+r in Theorem 5 where p, q, r ∈ R, p + q + r < 0
and t ∈ Z*. Then we observe that condition (2.14) is valid. Obviously, (2.17) and (2.18) hold and there exists
m0 ∈ N* such that

2|2m + 1|p+q+r + 8|m|p+q+r + |4m + 1|p+q+r < 1, m ≥ m0.

So we obtain (2.13), as well. Consequently, by Corollary 1, every mapping f : S → E2 fulfilling (2.15) satisfies
(1.3) on S.

Corollary 3. Let E1 and E2 be a normed space and a Banach space, respectively. Assume S := (S, +) is a
subgroup of the group (E1, +), p ∈ R, p < 0 and θ ≥ 0. If f (0) = 0 and f : S → E2 satisfies

‖f (x + y + z) + f (x + y − z) + f (x − y + z) + f (y − x + z) − 4[f (x) + f (y) + f (z)]‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ S \ {0}, then f is a solution of (1.3) on S.

Proof. Let φ2(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p) and u(t) = |t|p in Theorem 5 where p ∈ R, p < 0 and t ∈ Z*.
Then we observe that condition (2.14) is valid. Obviously, (2.17) and (2.18) hold and there existsm0 ∈ N* such
that

2|2m + 1|p + 8|m|p + |4m + 1|p < 1, m ≥ m0.

So we obtain (2.13), as well. Consequently, by Corollary 1, every mapping f : S → E2 fulfilling (2.15) satisfies
(1.3) on S.

We know that any norm that satisfies the parallelogram law is bound to have been originated from a scalar
product. The following corollary gives a characterization of the inner product space, which is one of the ap-
plications of Corollaries 2 and 3.

Corollary 4. Let X be a normed space and X0 = X∖{0}. Write

∆(x, y, z) =
⃒⃒⃒
‖x + y + z‖2 + ‖x + y − z‖2 + ‖x − y + z‖2 +‖y − x + z‖2 − 4[‖x‖2 + ‖y‖2 + ‖z‖2]

⃒⃒⃒
for all x, y ∈ X. Assume that one of the following two hypotheses is valid
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(i) supx,y,z∈X0
∆(x,y,z)

‖x‖p‖y‖q‖z‖r < ∞ for p + q + r < 0,

(ii) supx,y,z∈X0
∆(x,y,z)

‖x‖p+‖y‖p+‖z‖p < ∞ for p < 0.

Then X is an inner product space.

Proof. Write f (x) = ‖x‖2. Then fromCorollaries 2 and 3, we easily derive f which is a solution of the functional
equation (1.3). That implies ∆(x, y) = 0. Thus the norm ‖ · ‖ on X satisfies the parallelogram low:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

Therefore, X is an inner product space.

Corollary 5. Let G be a commutative group and E be a Banach space. Let φ : G3 → [0,∞) and u : Z* =
Z∖{0} → [0,∞) be functions and the conditions (2.1), (2.2), (2.17) and (2.18) be valid. If F : G3 → E is a
mapping such that F(x0, y0, z0) = ̸ 0 for some x0, y0, z0 ∈ G and⃦⃦

F(x, y, z)
⃦⃦
≤ φ(x, y, z)

for all x, y, z ∈ G, then the functional equation

g(x + y + z) + g(x − y + z) + g(y − x + z) + g(x + y − z) = F(x, y, z) + 4[g(x) + g(y) + g(z)], x, y, z ∈ G (2.19)

has no solution in the class of functions g : G → E.

Proof. Suppose that g : G → E is a solution to (2.19). Then (2.3) holds, and consequently, according to Corol-
lary 1, g satisfies (1.3) on G, which means that F(x0, y0, z0) = 0. This is a contradiction.

3 Conclusions
We have proved the Hyers-Ulam stability and the hyperstability of the quadratic functional equation

f (x + y + z) + f (x + y − z) + f (x − y + z) + f (−x + y + z) = 4[f (x) + f (y) + f (z)]

in the class of functions from an abelian group G into a Banach space.
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[17] Brzdȩk J., Remarks on hyperstability of the the Cauchy equation, Aequationes Math., 2013, 86, 255–267
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[19] Brzdȩk J., A hyperstability result for the Cauchy equation, Bull. Austral. Math. Soc., 2014, 89(1), 33–40
[20] Gselmann E., Hyperstability of a functional equation, Acta Math. Hungar., 2009, 124(1-2), 179–188
[21] Bahyrycz A., Piszczek M., Hyperstability of the Jensen functional equation, Acta Math. Hungar., 2014, 142(2), 353–365
[22] EL-Fassi Iz., Generalized hyerstability of a Drygas functional equation on a restricted domain using Brzdȩk’s fixed point
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