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Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and
function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we
analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-
osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed,
and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene
coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2–8) and 7 modules
related to the late differentiation stage (days 10–18). Gene ontology and KEGG pathway enrichment analysis revealed that the
mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72
mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our
findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic
differentiation in mice.

1. Introduction

Ossification is a tightly regulated process which is performed
by specialized cells called osteoblasts differentiated from
mesenchymal progenitors. The osteoblast differentiation
process is regulated by several key factors and signaling path-
ways. Runt-related transcription factor 2 (Runx2) is the mas-
ter switch in the commitment of mesenchymal progenitors to
osteoblast lineage [1]. Runx2 is affected by several upstream
regulators such as the Wnt/Notch system, Sox9, Msx2, and
hedgehog signaling as well as by cofactors such as Osx and
Atf4 [1–4]. A few paracrine and endocrine factors, including
bone morphogenetic proteins (BMP) and parathyroid hor-
mone, serve as coactivators. Vitamin D and histone deacety-
lase enzymes coordinate this process more finely [1].

Long noncoding RNAs (lncRNAs) are a class of RNA
transcripts longer than 200 nucleotides, lacking open reading
frames and protein-coding possibilities [5]. Tens of thou-
sands of lncRNAs have been identified in mammalian
genomes in recent decades [6]. Recently, in many studies,
lncRNA has emerged as an important regulator in a variety
of biological processes, such as epigenetic regulation, chro-
matin remodeling, genomic imprinting, transcriptional con-
trol, and pre-/posttranslational mRNA processing [7–11].
In terms of osteogenesis, several lncRNAs have been found
to act as key regulators. One such example is maternal expres-
sion gene 3 (MEG3) regulating the expression of Bmp4,
Runx2, and Osx in human mesenchymal stem cells [12, 13].
Antidifferentiation ncRNA (ANCR) inhibits Runx2 expres-
sion in association with the enhancer of zeste homolog 2

Hindawi
International Journal of Genomics
Volume 2018, Article ID 7691794, 13 pages
https://doi.org/10.1155/2018/7691794

http://orcid.org/0000-0003-0286-5297
http://orcid.org/0000-0001-6896-9748
http://orcid.org/0000-0002-5085-6988
https://doi.org/10.1155/2018/7691794


(EZH2); thus, downregulation of ANCR promotes osteoblast
differentiation through modulation of EZH2/Runx2 [14].

In order to fully understand the lncRNA biology includ-
ing its role in osteogenesis, it is necessary to characterize the
expression pattern of lncRNA during osteoblast differentia-
tion. In this study, we analyzed RNA-sequencing datasets
obtained at nine different time points in the osteoblast differ-
entiation of preosteoblasts isolated from neonatal mouse
calvaria, using various bioinformatic approaches. We focused
on identifying differentially expressed lncRNAs and mRNAs
throughout the process and finding potential markers
that exhibited significant changes in expression during the
osteoblast differentiation.

2. Materials and Methods

2.1. RNA-Seq Data Processing and Analysis of Differential
Gene Expression. We analyzed the RNA-Seq data generated
by Kemp et al. [15] (GSE54461, nine time points: 2, 4,
6, 8, 10, 12, 14, 16, and 18 days of osteoblast differentia-
tion). All sequencing reads were aligned to the mouse
genome reference (mm10) using the GSNAP alignment
tool [16]. Ensembl release 74 annotations were used to
measure gene expression. In the case of lncRNAs, NON-
CODE v4 (http://www.noncode.org) annotations were used.
Since NONCODE v4 annotations were based onmm9mouse
genome assembly, the positions of lncRNAs of NONCODE
were converted from mm9 to mm10 using the LiftOver
utility in UCSC. To assess gene expression, RPKM (reads
per kilobase of exon per million mapped reads) values were
calculated [17]. Hierarchical clustering of genes expressed
in samples at the nine time points was performed using the
flashClust R package. To establish the differences in gene
expression patterns among nine time points of osteoblast
differentiation, we performed differential gene expression
analysis using the R package DESeq [18]. The false discovery
rate (FDR) was controlled by adjusting p values using the
Benjamini–Hochberg algorithm. Differentially expressed
genes were defined as those with FDR less than 5% with an
absolute value of fold change≥ 2. Similar differential expres-
sion analyses were performed for lncRNAs.

2.2. Time Series Analysis of Differential Gene Expression. R
package DESeq [18] and edgeR [19] were employed to
identify genes that were differentially expressed across the
differentiation time period to a significant extent, designated
as time series genes. We selected time series genes that
displayed significant differential expression with FDR< 5%
in both DESeq and edgeR, absolute fold change≥ 2 (between
day 2 and at least one other time point), and maximum
RPKM≥ 3 across the time series. Details of the methods for
each package are described in the supplementary methods.
Similarly, time series expression tests were conducted for
lncRNAs. Using the RPKM of each time series gene and
lncRNA, principal component analysis (PCA) was per-
formed with the aid of the “prcomp” module in R.

2.3. Time Series Gene Clustering. The time series genes iden-
tified were clustered using the R package Mfuzz [20] that

performs soft clustering based on the fuzzy c-means algo-
rithm. The advantage of soft clustering is that the algorithm
clearly reflects the strength of association of an individual
gene with a cluster. Average RPKM values (triplicates at each
time point) of individual genes were employed as input
values for Mfuzz clustering. The number of clusters was set
to 12 and the fuzzifier coefficient, M, to 1.5. Heat maps of
the clusters were drawn using the R module “heatmap.2” in
the “gplots” package [21].

2.4. Weighted Gene Coexpression Network Analysis. Gene
coexpression network analysis was performed using the R
package “WGCNA” [22]. Details of the methods for con-
structing gene coexpression network analysis are described
in the supplementary methods.

2.5. Gene Ontology (GO) Term and KEGG Pathway
Enrichment Analysis. GO terms of each gene were obtained
from Ensembl BioMart and KEGG pathways from the
KEGG PATHWAY database. Details of the procedure to
conduct the enrichment analysis are described in the supple-
mentary methods.

2.6. Analysis of Motif Enrichment. MEME Suite 4.12.20
[23] and the HOmo sapiens COmprehensive MOdel COl-
lection (HOCOMOCO) v11 mouse transcription factor
database [24] were used for the identification of motifs
in the promoter regions on the lncRNAs identified as
potential markers. Details of the procedure to perform
the motif enrichment analysis are described in the supple-
mentary methods.

3. Results and Discussion

For convenience, the analysis results of mRNA and lncRNAs
were described separately. The overall expression pattern was
described first, followed by time series analysis, generation of
modules by weighted gene coexpression network analysis,
and identification of markers for osteoblast differentiation
(Supplementary Figure 1).

3.1. Expression Profile of mRNA during Osteoblast
Differentiation. A total of 12 to 33 million reads (at each time
point) were processed and mapped against mouse genome
reference (mm10) sequence, and uniquely mapped reads
(89.01–90.74% of the total reads) were used for further anal-
ysis (Table 1). Based on Ensembl release 74 annotations, a
total of 28,582 genes had at least one read for whole RNA-
Seq datasets. By hierarchical clustering [25], two distinct
clusters were generated for the early (2, 4, 6, and 8 days)
and late (10, 12, 14, 16, and 18 days) differentiation stages
(Figure 1(a)). As expected, the number of differentially
expressed genes increased with time (Figure 1(b)).

Comparing the expression of individual genes at dif-
ferent time points using all possible combinations, 46%
of themapped genes (13,130 out of 28,582) were differentially
expressed over time (fold-change difference≥ 2, FDR< 0.05).
For example, a comparison of gene expression between
the two time points selected in the early and late stages
(day 2 and day 18) is shown in Figure 1(c). A total of 7238
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genes were differentially expressed between days 2 and 18
(4431 upregulated and 2807 downregulated on day 18). GO
and KEGG pathway analyses revealed that genes upregulated
on day 18 were strongly associated with osteogenesis pro-
cesses, such as “extracellular matrix binding,” “positive regu-
lation of bone mineralization,” “collagen type I,” “elevation of
cytosolic calcium ion concentration,” “bone mineralization
involved in bone maturation,” and “positive regulation of
Wnt receptor signaling pathway” (Supplementary Table 1).
On the other hand, genes downregulated on day 18 were
associated with cell proliferation processes, such as “cell
division,” “G1/S transition of mitotic cell cycle,” “regula-
tion of cell cycle,” “M phase of mitotic cell cycle,” and
“DNA replication and response to DNA damage stimulus”
(Supplementary Table 2).

3.2. Dynamic Changes of mRNA Expression over Time of
Osteoblast Differentiation. During the differentiation pro-
cess, several genes are dynamically expressed via complex
regulatory mechanisms. To characterize temporal gene
expression changes and patterns, we identified genes that

were differentially expressed across the time course of osteo-
blast differentiation. A number of rules were applied to estab-
lish significant differential expression of genes at different
time points: (1) statistical significance of temporal gene
expression changes assessed via edgeR and DESeq methods
(FDR< 0.05), (2) absolute fold change between day 2 and at
least one other time point≥ 2, and (3) maximum RPKM
across the time series≥ 3.

In total, 4058 genes were significantly differentially
expressed during osteoblast differentiation. They were asso-
ciated with osteogenesis processes, such as “extracellular
matrix organization,” “osteoblast proliferation,” “osteoblast
differentiation,” “positive regulation of osteoblast differentia-
tion,” and “actin cytoskeleton and bone mineralization.”
Principal component analysis (PCA) of these genes revealed
that 95% of the variations in gene expression could be
explained by the first two principal components (PCs)
(Supplementary Figure 2) and that the PCs dominantly
separate the datasets according to differentiation stage
(days 2–8 versus days 10–18) (Figure 1(d)). To evaluate the
osteoblast differentiation stages in the current dataset, we
have checked the expression level of the twelve mature oste-
oblast markers (Bglap, Ibsp, Dmp1, Col13a1, Pthr1, Lifr,
Bambi, Dlx3, Hnf1a, Phex, Ptgis, and Cdo1) described in
Kalajzic et al. [26]. The nine genes, except three genes (Pthr1,
Bambi, and Hnf1a), exhibited very similar expression pat-
terns and showed the highest expression at day 18, which
indicate that the cells at day 18 were mature osteoblasts
(Supplementary Figure 3).

Osteoblasts undergo several stages before maturation and
mineralization of bone matrix. Differentiation of osteoblasts,
both in vitro and in vivo, is divided into three stages: (1) cell
proliferation, (2) matrix maturation, and (3) matrix mineral-
ization [27]. Here, we examined differences in gene expres-
sion patterns at the early and late osteoblast differentiation
stages. Based on the current study, gene expression profile
analysis demonstrated that osteoblast differentiation could
be clearly subdivided into two stages. The early stage corre-
sponded to “cell proliferation” based on the Stein and Jane
definition [27]. However, we could not separate the late dif-
ferentiation stage into “matrix maturation” and “matrix min-
eralization” stages based on the hierarchical clustering and
PCA analysis. In addition, the division of osteoblast differen-
tiation into two stages (early and late stages) is observed in
the time series gene clustering analysis and weighted gene
coexpression network analysis described below.

3.3. Clustering Analysis of Time Series Genes. Differentially
expressed genes identified by time series analysis were clus-
tered according to their expression profiles (RPKM values)
using the fuzzy c-means algorithm implemented in R Mfuzz
package. Genes with similar time-specific expression patterns
were clustered into 12 groups, each containing 191–570
genes (Figure 2(a)). Eight among the 12 clusters (clusters 2,
3, 4, 5, 6, 8, 11, and 12) showed high expression patterns
at the early osteoblast differentiation stage. Functional
enrichment analysis for each cluster showed that these 8
clusters were highly enriched for genes related to cell pro-
liferation processes. On the other hand, genes included in

Table 1: RNA-Seq read mapping summary.

SRA ID Sample
Total
reads

Uniquely
mapped reads

% of
uniquely
mapped
reads

SRR1146385 B6_2_rep1 20,605,665 18,353,730 89.07

SRR1146386 B6_2_rep2 21,204,511 18,881,462 89.04

SRR1146387 B6_2_rep3 21,196,674 18,867,579 89.01

SRR1146388 B6_4_rep1 21,042,912 18,976,744 90.18

SRR1146389 B6_4_rep2 21,636,813 19,507,642 90.16

SRR1146390 B6_4_rep3 21,628,526 19,496,233 90.14

SRR1146391 B6_6_rep1 22,012,993 19,750,118 89.72

SRR1146392 B6_6_rep2 22,652,935 20,316,973 89.69

SRR1146393 B6_6_rep3 22,656,580 20,317,497 89.68

SRR1146394 B6_8_rep1 16,068,544 14,395,620 89.59

SRR1146395 B6_8_rep2 16,509,407 14,785,805 89.56

SRR1146396 B6_8_rep3 16,498,155 14,769,672 89.52

SRR1146397 B6_10_rep1 11,685,016 10,532,491 90.14

SRR1146398 B6_10_rep2 12,016,157 10,826,863 90.10

SRR1146399 B6_10_rep3 12,016,476 10,827,771 90.11

SRR1146400 B6_12_rep1 32,109,724 29,035,678 90.43

SRR1146401 B6_12_rep2 33,017,225 29,851,897 90.41

SRR1146402 B6_12_rep3 32,970,446 29,805,326 90.40

SRR1146403 B6_14_rep1 22,996,425 20,867,104 90.74

SRR1146404 B6_14_rep2 23,630,602 21,437,833 90.72

SRR1146405 B6_14_rep3 23,616,942 21,422,044 90.71

SRR1146406 B6_16_rep1 26,956,212 24,189,458 89.74

SRR1146407 B6_16_rep2 27,696,210 24,846,901 89.71

SRR1146408 B6_16_rep3 27,659,416 24,807,073 89.69

SRR1146409 B6_18_rep1 22,811,796 20,549,338 90.08

SRR1146410 B6_18_rep2 23,478,940 21,148,934 90.08

SRR1146411 B6_18_rep3 23,452,037 21,114,152 90.03
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the remaining 4 clusters (1, 7, 9, and 10) showed high
expression patterns at the late osteoblast differentiation
stage. These clusters included several genes associated with
functional roles in osteogenesis, such as “extracellular matrix
organization,” “osteoblast differentiation,” “metabolic pro-
cess,” “collagen fibril organization,” “Wnt-protein binding,”
and “skeletal system development.”

We focused on clusters 1, 7, 9, and 10, each containing
511, 570, 243, and 297 genes with high expression patterns
in the late differentiation stage (Figure 2(b)). Assessment of
individual genes within the clusters showed that several are
involved in osteogenesis. For example, cluster 1 contained
Fgfr2 that plays an essential role in skeletal development
[28], cluster 7 contained Bmp4 that promotes formation of
the bone and cartilage by stimulating differentiation pro-
cesses of osteoblasts [29], and cluster 9 contained Fgf18 that
has been shown to stimulate the proliferation of cultured

mouse primary osteoblasts [30]. Expression levels of Fgfr2,
Bmp4, and Fgf18 were particularly high between 12 and 18
days of the osteoblast differentiation process.

We determined the common function among the three
clusters through GO and KEGG enrichment analysis. As
shown in Table 2, the statistically significant GO terms
in the clusters 1, 7, and 9 were “collagen metabolism,”
“subset of extracellular matrix,” “regulation of osteoblast
differentiation,” and “Wnt signaling” which is known to
be involved in the regulation of osteoblast lineage cells
[31]. The enriched pathways in the KEGG analysis in
the clusters 1, 7, and 9, were “cell adhesion,” “cytokine-
cytokine receptor interaction,” and “PPAR signaling path-
way” which is functionally associated with bone metabo-
lism [32]. In the case of the cluster 10, “extracellular
matrix” is the only statistically significant GO/KEGG term.
This indicates that the genes belonging to the three clusters
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Figure 1: Global expression patterns of genes at the nine time points of osteoblast differentiation. (a) Hierarchical clustering of the
transcriptome over the time period of osteoblast differentiation. All known genes with RPKM values≥ 3 were used for analysis. (b)
Number of genes showing up- or downregulation during osteoblast differentiation (fold change≥ 2 or ≤0.5, FDR< 0.05). (c) Volcano plot
showing differentially expressed genes in red and blue. The x- and y-axes represent the magnitude of fold changes (log2 transformed) and
adjusted p value (−log2) by Benjamini-Hochberg correction, respectively. FC = fold change (d18/d2). (d) Principal component analysis
(PCA) of 4058 time series gene expression profiles for different samples (three replicates at each time point of osteoblast differentiation).
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Figure 2: Clustering analysis of time series genes during osteoblast differentiation. (a) Soft clusters of 4058 time series gene expression data
using Mfuzz. The numbers on the x-axis (time, 1~9) correspond to the nine time points of osteoblast differentiation (days 2, 4, 6, 8, 10, 12, 14,
16, and 18). (b) Heat maps and representative gene expression profiles (RNA-Seq) of four major clusters. The color key indicates gene
expression values.
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(1, 7, and 9) are highly correlated with the late osteoblast
stage but the cluster 10 is less correlated with the late osteo-
blast stage. Hence, together with the coexpression network
analysis described below, we used the genes belonging to
the three clusters (1, 7, and 9 except 10) to find biomarkers
of osteoblast differentiation.

3.4. Construction of a Gene Coexpression Network. Gene
coexpression patterns may provide information on gene
networks or pathways related to different biological phenom-
ena. We constructed a coexpression network of genes using
time series gene expression data. The weighted gene coex-
pression network analysis (WGCNA) generated a total of
16 network modules (Figure 3(a)). The eigengenes for all 16
modules were calculated and the correlations between eigen-
genes and differentiation stages evaluated (Figure 3(b)).
Genes belonging to 9 modules (midnight blue, purple,
red, tan, brown, turquoise, black, blue, and green) were
enriched with GO and KEGG pathways associated with
the early osteoblast stage (days 2–8), such as “cell prolifera-
tion” and “osteoblast differentiation processes.” Meanwhile,
genes belonging to the remaining 7 modules (cyan, salmon,
magenta, green yellow, pink, yellow, and gray) were enriched
with GO and KEGG pathways associated with the late osteo-
blast stage (days 10–18), such as “cell adhesion” and “osteo-
clast differentiation.”

Notably, the genes belonging to the cyan and salmon
modules exhibited high trait association correlation (r > 0 6),
and they were enriched with the following KEGG path-
ways and GO terms, besides “cell adhesion” and “osteoclast
differentiation,” as mentioned above: PPAR signaling, subset
of extracellular matrix, calcium metabolism, glucose homeo-
stasis, cell signaling, and regulation of bone mineralization.
This indicates that these two modules are strongly associated
with late osteoblast differentiation (day 18). Thus, from the
two modules (cyanide and salmon), we extracted 36 and 62

hub genes, respectively, with high connectivity (MM> 0.9),
and these genes were used to find biomarkers for osteoblast
differentiation as described below.

3.5. Identification of Markers Associated with Osteoblast
Differentiation. We combined the results from gene cluster-
ing analysis and gene coexpression networks to determine
novel biomarkers for osteoblast differentiation. Focusing on
the late osteoblast differentiation stage, we considered genes
belonging to clusters 1, 7, and 9 as well as the hub genes
belonging to the cyan and salmon modules, as described
above. We set the following cut-off values for biomarker can-
didates: absolute value of fold changes between early differ-
entiation (average expression from samples of days 2–8)
and late differentiation (average expression from samples of
days 10–18) must be >2 and at least one of the samples
should have an RPKM value> 5 for the gene.

We identified a total of 72 genes as potentially useful
marker candidates for osteoblast differentiation (Supplemen-
tary Table 3). Functions associated with these genes include
“regulation of bone mineralization (GO:0030500),” “extra-
cellular matrix (GO:0031012),” “collagen (GO:0005581),”
“collagen binding (GO:0005518),” and “cell adhesion
(GO:0007155)” (Supplementary Table 4). Extracellular
matrix, including collagen, is important for bone matrix con-
struction [33], and cell adhesion affects cell-matrix interac-
tions and further cell differentiation [34, 35].

Examples of genes associated with each function are as
follows. Potential markers associated with “regulation of
bone mineralization” are Ifitm5, Bglap, and Bglap2. Potential
markers that are functionally associated with extracellular
matrix included Abi3bp, Mfap4, Rarres2, Dcn, Dpt, Cilp,
and Sod3 as well as the well-known gene Itgbl1 (integrin,
beta-like 1; with EGF-like repeat domains) (Figure 4(a)).
Dcn (decorin) is also known as a skeletal-related gene [36].
We identified C1qa, Marco, C1qc, Adipoq, and C1qb as

Table 2: Enriched GO terms and KEGG pathways of cluster 1, 7, and 9 genes.

Cluster Gene ontology p value KEGG pathway p value

Cluster 1

Wnt-activated receptor activity <0.0001 ECM-receptor interactions 0.0007

Collagen type I <0.0001 Focal adhesion 0.0022

Calcium ion binding 0.0001

Osteoblast differentiation 0.0003

Wnt-protein binding 0.0003

Cluster 7

Collagen binding <0.0001 Cytokine-cytokine receptor interactions 0.004

Positive regulation of cell-substrate adhesion <0.0001
Extracellular region <0.0001
Extracellular matrix <0.0001

Positive regulation of osteoblast differentiation 0.0001

Cluster 9

Collagen <0.0001 PPAR signaling pathway <0.0001
Biomineral tissue development <0.0001 Osteoclast differentiation 0.001

Regulation of bone mineralization <0.0001 Adipocytokine signaling pathway 0.006

Extracellular region <0.0001 Cytokine-cytokine receptor interactions 0.0089

Extracellular space <0.0001
Cluster 10 Extracellular matrix <0.0001

6 International Journal of Genomics



Module color

0.2

0.4

0.6

0.8

1.0
H

ei
gh

t

(a)

−0.24
(0.2)

−0.32
(0.1)
−0.3
(0.1)

−0.34
(0.08)

−0.32
(0.1)

−0.31
(0.1)

−0.32
(0.1)

−0.25
(0.2)

−0.25
(0.2)

−0.9
(1e-10)
−0.69

(7e − 05)
−0.48
(0.01)

−0.21
(0.3)

−0.14
(0.5)

−0.3
(0.1)

−0.11
(0.6)

−0.28
(0.2)

−0.81
(3e − 07)

−0.77
(3e − 06)

−0.4
(0.04)

−0.15
(0.4)

−0.026
(0.9)

−0.7
(63-05)

−0.3
(0.1)

−0.15
(0.5)

−0.27
(0.2)

−0.41
(0.04)

−0.093
(0.6)

−0.12
(0.5)

0.54
(0.003)

0.61
(7e − 04)

0.65
(2e − 04)

0.63
(4e − 04)

0.56
(0.002)

0.29
(0.01)
0.46

(0.01)
0.43

(0.02)
0.04

(0.04)
0.4

(0.04)
0.28
(0.2)

0.42
(0.03)

0.39
(0.04)

0.24
(0.2)

0.26
(0.2)

0.46
(0.02)

0.45
(0.02)

0.45
(0.02)

0.36
(0.06)

0.12
(0.5)

0.47
(0.01)

0.3
(0.1)

0.037
(0.9)

0.42
(0.03)

0.19
(0.3)

0.11
(0.6)

0.33
(0.09)

0.23
(0.2)

0.17
(0.4)

0.23
(0.3)

0.34
(0.08)

0.18
(0.4)

0.31
(0.1)

0.62
(6e − 04)

0.48
(0.01)

−0.011
(1)

−0.15
(0.4)
−0.17
(0.4)

0.64
(0.8)

0.3
(0.1)

0.44
(0.02)

0.028
(0.9)

0.13
(0.5)

0.33
(0.1)

0.19
(0.3)
0.37

(0.05)
0.33

(0.09)
0.25
(0.2)

0.2
(0.3)

0.16
(0.4)

0.17
(0.4)

0.15
(0.5)

0.24
(0.2)
0.17
(0.4)

0.23
(0.02)

0.28
(0.3)

0.3
(0.1)

−0.19
(0.3)

0.12
(0.3)

0.25
(0.2)

0.48
(0.1)

0.23
(0.2)

0.26
(0.2)

0.23
(0.3)

−0.0073
(1)

0.016
(0.9)

−0.083
(0.7)
−0.24
(0.2)
−0.2
(0.3)

0.0087
(1)

0.11
(0.6)
0.087
(0.7)

−0.07
(0.2)

−0.33
(0.09)

−0.39
(0.05)

−0.26
(0.2)

−0.36
(0.06)

0.31
(0.1)

−0.27
(0.2)

−0.36
(0.07)

−0.36
(0.07)

−0.3
(0.1)

−0.32
(0.1)

−0.31
(0.1)

−0.31
(0.1)

−0.3
(0.1)

−0.03
(0.1)

−0.22
(0.3)

−0.41
(0.03)

−0.21
(0.3)

−0.17
(0.4)

−0.29
(0.1)

−0.33
(0.09)

−0.14
(0.5)

−0.38
(0.05)

−0.099
(0.6)

−0.16
(0.4)

−0.26
(0.2)

−0.36
(0.06)

0.64
(3e − 04)

0.8
(42-07)

0.094
(0.6)

0.13
(0.5)

0.032
(0.1)
0.13
(0.5)

0.22
(0.3)

−0.44
(0.02)

−0.47
(0.01)

−0.48
(0.01)

−0.36
(0.06)

−0.28
(0.2)

−0.45
(0.02)

−0.57
(0.02)

−0.67
(1e − 04)

−0.37
(0.05)

1

0.5

1

−0.5

−1

Module

MEmidnightblue

Module-trait relationships

MEpurple

MEred

MEtan

MEbrown

MEturquoise

MEblack

MEblue

MEgreen

MEcyan

MEsalmon

MEmagenta

MEgreenyellow

MEpink

MEyellow

MEgrey

Day 2 Day 3 Day 6 Day 8 Day 10 Day 12 Day 14 Day 16 Day 18

Number of genes
31

112
236
90

660
819
148
716
280
42
76

113
110
129
480
16

4058

Midnight blue
Purple
Red
Tan
Brown
Turquoise
Black
Blue
Green
Cyan
Salmon
Magenta
Greenyellow
Pink
Yellow
Grey
Total

(b)

Complement activation, classical pathway
Integral to membrane

Collagen
Lipid metabolic process

Elevation of cytosolic calcium ion concentration

< 0.0001
< 0.0001
0.0002
0.0006
0.0008

Complement and coagulation cascades
Osteoclast differentiation

< 0.0001
0.0019

Glucose homeostasis
Lipoprotein particle binding

Adiponectin-mediated signaling pathway
Biomineral tissue development

Positive regulation of insulin secretion
Regulation of bone mineralization

Extracellular space
cGMP-mediated signaling

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
0.0002
0.0005

Adipocytokine signaling pathway
PPAR signaling pathway

Glycerophospholipid metabolism
Cell adhesion molecules (CAMs)

< 0.0001
0.0001
0.0012
0.0115

Module Gene ontology p value KEGG pathway p value

Cyan

Salmon

(c)

Figure 3: WGCNA analysis of 4058 time series gene expression data at the nine time points of osteoblast differentiation. (a) Hierarchical
cluster trees depict coexpression modules identified using WGCNA. (b) A heat map plot of module-trait association. Each row
corresponds to the module eigengene, the first principal component of a module. Each column corresponds to trait, the nine time points
of osteoblast differentiation (days 2, 4, 6, 8, 10, 12, 14, 16, and 18). Each cell contains the corresponding correlation value and p value (left
panel). Each of the sixteen modules contains between 16 and 819 genes (right panel). (c) Functional annotations of cyan and salmon
modules. Gene ontology (GO) and KEGG pathway terms and corresponding p values are shown.
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collagen-related genes and identified Abi3bp, Srgn, and Dcn
as genes related to “collagen binding.” Markers associated
with “cell adhesion” included genes such as Cd36, Fbln7,
Mfap4, Ibsp, and Dpt. In addition, Marco (macrophage
receptor with collagen structure), Ntrk2 (neurotrophic tyro-
sine kinase receptor type 2), and Mfap4 (microfibrillar-asso-
ciated protein 4) were identified as novel potential markers
(Figure 4(b)). Although we identified potentially useful
marker candidates for osteoblast differentiation, our study
does have limitations. Since we rigorously filtered out 4058
time series genes based on the clustering analysis and
WGCNA analysis (trait correlation and hub genes), the
current method did not identify the known biomarkers
(Fgfr2, Bmp4, and Fgf18) described in the clustering analysis.
In addition, because the candidates were mainly identified
based on the bioinformatic observations, their biological
relevance would need to be further investigated at the
cellular and molecular levels experimentally.

3.6. Expression Profiles of lncRNAs during Osteoblast
Differentiation. The NONCODE (v4) database was used
for lncRNA annotations, and at least one read was mapped

onto 37,431 lncRNAs during osteoblast differentiation.
Hierarchical clustering was performed based on the expres-
sion profiles in each sample. Upon application of similar
approaches for known Ensembl genes to lncRNAs, we iden-
tified that 54% of the total lncRNAs (20,167 out of 37,431)
were differentially expressed across the stages of osteoblast
differentiation. Similar to the expression profile of mRNA
described above, the expression patterns of lncRNAs were
different between the early differentiation stage (2–8 days)
and the late differentiation stage (10–18 days) (Figure 5(a)).
The number of differentially expressed lncRNAs tended to
increase with time (Figure 5(b)).

3.7. Dynamic Changes in lncRNAs during Osteoblast
Differentiation. Examination of the temporal expression
changes of lncRNAs revealed that levels of 3948 out of
37,431 lncRNAs were dynamically altered over the course
of osteoblast differentiation. In PCA analysis using 3948 time
series lncRNAs, 97% of the variations in lncRNA expression
patterns could be explained by the first two principal compo-
nents (PCs) (Figure 5(c)). Some of the 3948 time series
lncRNAs highlighted were associated with osteogenic

Dcn Itgbl1

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Day 16

Day 18

(a)

Marco Mfap4Ntrk2

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Day 16

Day 18

(b)

Figure 4: Expression patterns of five genes upregulated during late osteoblast differentiation stages. (a) Expression profiles of two known
genes, Dcn (left panel) and Itgbl1 (right panel). (b) Expression profiles of three novel biomarker candidates, Marco (left panel), Ntrk2
(middle panel), Mfap4 (right panel).
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function such as “actin cytoskeleton organization,” “extra-
cellular matrix organization,” “Wnt signaling pathway,”
“embryonic skeletal system morphogenesis,” “Notch sig-
naling pathway,” and “collagen fibril organization.”

3.8. Clustering Analysis of Time Series lncRNAs. Using R
package Mfuzz [20], differentially expressed 3948 time series
lncRNAs were divided into 12 clusters, and each cluster
contained 142–595 lncRNAs (Figure 6(a)). The lncRNAs
contained in 5 clusters (2, 3, 6, 9, and 11) were highly
expressed in early osteoblast differentiation stage. Functional
annotation analysis showed that these clusters are associ-
ated with “regulation of cell proliferation,” “actin cytoskel-
eton organization,” and “cell-cycle-related processes.” The
remaining seven clusters (1, 4, 5, 7, 8, 10, and 12) included
lncRNAs that displayed a higher expression in the late osteo-
blast differentiation stage and related to “cell adhesion,” “cell
differentiation,” “collagen fibril organization,” “Wnt signal-
ing pathway,” and “phosphorylation processes.”

3.9. Identification of lncRNAs Associated with Osteoblast
Differentiation. Expression patterns of lncRNAs belonging
to cluster 5 were not only very similar but also signifi-
cantly increased over time, especially between 10 and 18
days. Thus, we focused on cluster 5 to find the lncRNAs
markers associated with late differentiation of osteoblasts.
Cut-off values were set for lncRNAs (Figure 6(b), upper
panel), as in the procedures in novel biomarker identification
for known genes.

In total, 89 lncRNAs were identified as potentially use-
ful markers for osteoblast differentiation (Supplementary
Table 5). GOenrichment analysis for these lncRNAs disclosed
significant enrichment of “cell adhesion (GO:0007155)” and
“Wnt signaling pathway (GO:0016055),” which is important
in the differentiation and/or function of osteoblasts [31].
For examples, NONMMUG016555, NONMMUG038646,
NONMMUG007704, NONMMUG001799, NONMMUG
005875, NONMMUG002249, NONMMUG012067, NON-
MMUG035551, NONMMUG015487, and NONMMUG
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Figure 5: Global expression patterns of lncRNAs at the nine time points of osteoblast differentiation. (a) Hierarchical clustering of lncRNAs
across the stages of osteoblast differentiation. (b) Number of lncRNAs showing up- or downregulation during osteoblast differentiation (fold
change≥ 2 or ≤0.5, FDR< 0.05). (c) Principal component analysis (PCA) of 3948 time series lncRNA expression profiles for different samples
(three replicates for each time point of osteoblast differentiation).
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Figure 6: Clustering analysis of time series lncRNAs during osteoblast differentiation. (a) Soft clusters of 3948 time series lncRNAs generated
by Mfuzz. The numbers on the x-axis (time, 1–9) correspond to the nine time points of osteoblast differentiation (days 2, 4, 6, 8, 10, 12, 14, 16,
and 18). (b) Heat map of cluster 5. The color key indicates gene expression values (top left panel). Enriched GO terms and corresponding
p values in cluster 5 are shown (top right panel). Gene expression profiles of two representative lncRNAs, NONMMUG033994 (bottom left
panel) and NONMMUG037688 (bottom right panel), visualized in the bottom panel. ∗NONCODE v4 database ID.
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035553 are related to “cell adhesion.” NONMMUG038646,
NONMMUG016590, and NONMMUG001799 are related
to “Wnt signaling pathway (GO:0016055).” In addition,
we identified novel candidate lncRNA markers, and two
examples are presented in Figure 6(b) (bottom panel).

Next, to see whether the identified lncRNAs could be
regulated by common regulation factors, we searched the
sequence motifs in the promoter regions (the upstream
1000 bp nucleotide sequences of lncRNAs) of the 89
lncRNAs with background controls generated from all NON-
CODE lncRNA promoter regions. We performed the motif
enrichment analysis using MEME Suite package [23] and
the HOCOMOCO v11 mouse transcription factor database
[24] to detect known transcription factor binding motifs
that are significantly enriched within the promoter region.
A total of five significant motifs were identified (Table 3).
The most significant enriched motif (WT1_MOUSE.H11-
MO.1.A) was the Wilms tumor protein (Wt1) transcription
factor binding motif. Recently, it was shown that Wt1 was
expressed during development in the limb tissue of E11.5 to
E16.5 mice and the loss of the Wt1 expression affected a
reduction of non-haematopoetic MSC cells in the E18.5
hindlimb [37]. These findings suggest that Wt1 may play
a functional role in the bone development. The second most
significant enriched motif (EGR2_MOUSE.H11MO.0.A)
was early growth response 2 (Egr2) transcription factor
binding motif. Chandra et al. previously suggested that
EGFR-induced Egr2 expression is crucial for osteoprogenitor
maintenance and new bone formation [38]. Further research
on the multiple layers of regulatory mechanisms, including
lncRNA expression and transcription regulations, will be
required to fully understand the role of these lncRNAs during
bone development.

4. Conclusions

We employed public RNA-Seq data (NCBI GEO accession
number GSE54461) to profile mRNA and lncRNA expres-
sion and identified a series of biomarkers potentially associ-
ated with bone differentiation. Data from the current study
showed that a combination of bioinformatic approaches,
including (1) time series, (2) clustering, and (3) coexpression
network analyses, provides an effective means to identify
novel candidate markers associated with osteoblast differen-
tiation. Expression patterns of mRNA and lncRNA during
osteoblast differentiation were defined as two distinct stages
(early and late osteoblast differentiation). Functional annota-
tion showed that the members in the late stage are involved
in osteogenesis processes. Notably, common transcription

factor binding motifs were enriched in the identified lncRNA
markers. Our findings provide a valuable resource for
lncRNA study and understanding of the mechanism of
mouse osteoblast differentiation. Further research is needed
to determine the functions of lncRNA and mRNA identified
as potential markers in this study.
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