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a b s t r a c t 

As many-to-one traffic patterns prevail in data center networks, TCP flows often suffer from severe unfair- 

ness in sharing bottleneck bandwidth, which is known as the TCP outcast problem. The cause of the TCP 

outcast problem is the bursty packet losses by a drop-tail queue that triggers TCP timeouts and leads 

to decreasing the congestion window. This paper proposes TCPRand, a transport layer solution to TCP 

outcast. The main idea of TCPRand is the randomization of TCP payload size, which breaks synchronized 

packet arrivals between flows from different input ports. Based on the current congestion window size 

and the CUBIC’s congestion window growth function, TCPRand adaptively determines the proper level of 

randomness. With extensive ns-3 simulations and experiments, we show that TCPRand guarantees the 

superior enhancement of TCP fairness by reducing the TCP timeout period noticeably even in an envi- 

ronment where serious TCP outcast happens. TCPRand also minimizes the total goodput loss since its 

adaptive mechanism avoids unnecessary payload size randomization. Compared with DCTCP, TCPRand 

performs fairly well and only requires modification at the transport layer of the sender which makes its 

deployment relatively easier. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Data center applications such as MapReduce and network file

ystems create a many-to-one traffic pattern that is bursty and

arrier-synchronized. In such a traffic pattern, multiple TCP flows

rrive at different input ports of a bottleneck switch and compete

or the same outgoing queue. This makes those data center appli-

ations suffer from serious goodput decrease and bad flow comple-

ion time performance due to frequent TCP timeouts triggered by

ultiple packet losses. Such a phenomenon can lead to the well-

nown TCP incast [1] and outcast problems [2] . 

The TCP incast problem typically occurs when TCP senders and

 receiver are collocated on the same rack (or under one aggregate

witch) and all flows go out through the same shallow-buffered

witch [1,3–5] . TCP timeouts happen randomly among flows com-

eting for the outgoing port at a bottleneck switch. In contrast, the

CP outcast problem arises when the locations of the senders are
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ispersed across different racks. Specifically, the bottleneck switch

enalizes particular flows more often than others by consecutively

ropping more packets from those flows. Thus, the outcast prob-

em severely hurts TCP fairness—a crucial metric, especially for

arrier-synchronized workloads in data center networks. In such

orkloads, speeding up the slowest flow in a barrier is a key to en-

ance the performance since a barrier ends only after every flow

including the slowest one) in the barrier finishes. TCP outcast is

ttributed to burst arrivals of packets competing for the same out-

ut port and a severe imbalance in the number of incoming flows

er each input port at the bottleneck switch. Because inter-rack

ender placement begins to be taken into account in order to im-

rove fault tolerance in data centers [6] , it is of utmost importance

or data center administrators to have a viable solution to the out-

ast problem. 

Several solutions can be applied for the TCP outcast prob-

em. The link layer solutions require a modification to the current

witching architecture [7] or are not widely supported in today’s

witches [8] . Equal-length routing [2] , one of network layer solu-

ions, only works in non-oversubscribed networks. The cross-layer

olution [9] leverages the Explicit Congestion Notification (ECN) ca-

ability, which is becoming popular at the world largest data cen-
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Fig. 1. Fat-tree topology composed of switches ( C n : Core, A n : Aggregation, and E n : 

Edge) and end-nodes ( R : Receiver and S n : Sender). 

Fig. 2. The goodput of each flow sent from the 15 senders described in Fig. 1 . The 

flow sent from S 1 is the most outcast one and the flows from S 2 and S 3 are the 

second outcast ones. 

Fig. 3. Port blackout at a switch with fixed-size payloads. Synchronized packet ar- 

rivals make packets arriving at a particular port (port X in the figure) get discarded 

with high probability as the output queue is almost always full when they arrive. 

A [ p ] denotes an arrival time of packet p at the output queue. 
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ters. However, there still exist many data centers where all or ma-

jority of switches do not have ECN capability due to cost reason;

in fact the largest data centers in South Korea are an exemplar of

this reason. To help such data centers overcome the TCP outcast

problem efficiently, a transport layer solution can be viable since it

neither relies on any specific link layer supports nor assumes any

particular network topology. However, existing rate-based trans-

port layer approaches are not applicable to TCP outcast in data

centers because they require the precise control of inter packet

spacing time [10,11] which operating systems hardly guarantee and

are inappropriate [11] for a multi-hop environment. 

The contribution of this paper is a transport layer solution

called TCPRand to TCP outcast. TCPRand randomizes the TCP pay-

load size to break the bursty arrival times of back-to-back pack-

ets. By doing so, it prevents the outcast flow suffering from con-

secutive packet losses and consequently reduces TCP timeouts. At

the sender side, the proposed solution makes the TCP payload size

uniformly distributed between [ rMin , MSS]. However, it may in-

crease the packet header overhead due to the smaller payload size

and curtail the total goodput. To achieve high fairness without loss

of total goodput, it calculates rMin by adapting to the changes of

congestion window ( cwnd ). It is based on the observation that for

many-to-one applications (e.g., especially with a barrier synchro-

nization property [12] ) as cwnd of a flow is growing, the network

is more congested and the port blackout happens more frequently.

Hence, if cwnd of a flow increases, the scheme decreases rMin for

the flow. 

We use ns-3 [13] to evaluate TCPRand with a realistic topol-

ogy (i.e., fat-tree [14] ) and workloads of data center networks, and

show that TCPRand substantially improves TCP fairness and rarely

sacrifices flow completion times of flows, especially those of small

flows. In addition, we implement TCPRand by modifying the sender

side execution path of TCP protocol stack in the Linux kernel and

perform extensive experiments in our testbed. We demonstrate

that TCPRand reduces consecutive packet drops and TCP timeouts

significantly, and as a result, it improves TCP fairness substantially

with a small loss of the overall goodput and negligible additional

retransmission overheads. We also compare TCPRand with DCTCP

(i.e., the most popular solution with support of switch) and shows

that TCPRand increases fairness as close to 98% of DCTCP. 

The remainder of this paper is organized as follows. In

Section 2 , we briefly introduce the TCP outcast problem. Next, we

explain the effect of payload size randomization and why it is a

key technique to the outcast problem in Section 3 . Section 4 pro-

vides the details of TCPRand. We outline our evaluation setup in

Section 5 and evaluation results are presented in Sections 6 and

7 . Related works are discussed in Section 9 before we conclude in

Section 10 . 

2. The TCP outcast problem 

2.1. Overview 

The TCP outcast problem is observed easily in data center net-

works, where routers or switches are usually connected through

a multi-rooted and hierarchical topology such as fat-tree [14] and

senders and receivers are leaves of a topology. For instance in

Fig. 1 , there are 15 senders (i.e., S 1 –S 15 ) and a receiver (i.e., R ).

As many-to-one delivery applications emerge in such an environ-

ment, multiple flows arrive at different input ports of a receiver’s

ingress switch (i.e., E 1 ) and compete to enter the same outgo-

ing queue. If many flows and a few flows are arriving at two in-

put ports ( A 1 → E 1 and A 2 → E 1 ) and destined to the same output

port ( E 1 → R ), the latter (i.e., the outcast flows) loses the good-

put tremendously because TCP timeout is triggered more easily to

them. It is called the TCP outcast problem [2] , leading to a seri-
us TCP unfairness among flows. For instance, as shown in Fig. 2 ,

t even results in much higher goodput decrease in the flows with

 short RTT (i.e., from S 1 ) than in those with a long RTT (i.e., from

 4 –S 15 ) in a fat-tree topology. 

.2. Port blackout 

With excessive traffic flows, drop-tail queuing may drop a se-

ies of consecutive packets at each input port, and this is called

ort blackout [2] . We refer to [2] for more details on the phe-

omenon and here briefly explain it with an example depicted in

ig. 3 . The figure illustrates how the port blackout occurs at a bot-
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Fig. 4. An illustration of packet payload size randomization. The packet payload size 

randomization technique creates packets with smaller payload size than MSS, and 

breaks the synchronized arrivals of packets, thereby alleviating the impact of the 

port blackout phenomenon. In the figure, packet X 2 arrives earlier than Y 2 and finds 

the output queue is not full. Hence, X 2 is successfully inserted in the queue, as 

opposed to the result in Fig. 3 . A [ p ] denotes an arrival time of packet p at the output 

queue. 

r  

b

3

 

v  

c  

u  

l  

r  

p  

o  

(  

q

P  

 

e  

n  

w  

(  

w  

n  

c  

c  

a  

c  

(  

q

 

m  

e  

I  

a  

s  

m  

r  

d  

l  
leneck switch where a drop-tail queue management policy is ap-

lied and there exist two input ports (i.e., X and Y ) and one output

ort (i.e., Z ). We consider a case where the packets of TCP-based

ulk data transfer applications arrive at the switch through ports X

nd Y and leave it via port Z . 

In this setup, packets are almost of the same size (i.e., the size

f TCP/IP headers + MSS). Traffic is bursty and the inter-frame gap

etween packets is constant (e.g., 0.096 μs for a gigabit Ethernet

ccording to the IEEE 802.3 specification [15] ). This condition can

reate a situation where packets from port Y are always stored in

he output queue while packets from port X are always discarded.

his occurs because packet arrivals are almost synchronized and

ackets from port Y always arrive slightly ahead of competing

ackets from port X whenever one MSS worth of buffer space be-

omes available at the output queue. For instance, as shown in

ig. 3 , the arrival time of packet Y 1 (denoted as A [ Y 1 ]) is ahead of

hat of packet X 1 (i.e., A [ X 1 ]), A [ Y 2 ] < A [ X 2 ], and so forth. Suppose

hat less flows come from port X while more flows do from port

. Even though a series of packet drops happen fairly on ports X

nd Y by turns, throughput of flows from port X decreases more.

s a consequence, the TCP flows from port X are outcast; they ex-

erience more frequent TCP timeouts and lose the goodput more

ubstantially than those from port Y . This is the essence of the TCP

utcast problem [2] that has negative impacts on the TCP fairness

mong competing flows from different input ports. It even leads to

uch higher goodput decrease in flows with a short RTT than in

hose with a long RTT in a fat-tree topology. 

. Payload size randomization 

Addressing the TCP outcast problem requires to reduce the con-

ecutive packet losses at each input port, thereby preventing the

ort blackout, the main cause of TCP outcast. In this section, we

ntroduce a payload size randomization idea which breaks the

ursty and synchronized back-to-back packet arrivals and as a con-

equence mitigates the port blackout phenomenon. Then, through

n experiment, we quantitatively show that the randomization

ethod substantially mitigates the degree of the port blackout. 

.1. Avoiding concurrent packet arrivals 

The port blackout problem can be ameliorated by reducing con-

urrent packet arrivals at two input ports. At the transport layer,

his can be achieved by the rate-based approach but it is less prac-

ical (see Section 9 ). Our approach to the problem is rather to ran-

omize the size of each TCP payload. The intuition behind this is,

andomizing the size of TCP payload can induce randomness in the

rrival times of packets and it finally breaks the synchronized ar-

ival times of back-to-back packets at each input port. This can re-

uce the chance of having port blackout, and the initial random-

ess can be preserved all the way down to the receiver in multi-

op environments. 

Let us consider an example illustrated in Fig. 4 . In the exam-

le, X 1 is dropped because Y 1 arrives slightly before X 1 (i.e., A [ Y 1 ]

 A [ X 1 ]) when one MSS worth of buffer space is left at the out-

ut queue. Next, the payload size randomization technique creates

 case where the payload size of X 2 is smaller than that of Y 2 .

his results in the earlier arrival of X 2 than Y 2 (i.e., A [ X 2 ] < A [ Y 2 ]).

ence, X 2 is inserted to the output queue whereas Y 2 is dropped

c.f., the opposite phenomenon in Fig. 3 due to the port-blackout).

he technique again affects the dynamics of the arrival times of

 3 and Y 3 and this time lets Y 3 inserted to the queue and X 3 dis-

arded. Because the payload randomization technique effectively

reaks the synchronized arrivals of packets, packet drops occur
ather alternately across input ports; thus the frequency of the port

lackout phenomenon decreases. 

.2. Understanding the effect of payload size randomization 

To take a closer look at the port blackout phenomenon, we in-

estigate how much a series of packet drops from each input port

an be alleviated with the payload size randomization at a switch

nder congestion. Let Q (0 ≤ Q ≤ Q max ) be the output queue

ength. A packet drop occurs at a drop-tail queue if a packet ar-

ives when Q = Q max . To quantitatively measure the effect of the

ayload size randomization, we focus on the enqueue probability

f two packets X 2 and Y 2 after Y 1 is enqueued and X 1 is dropped

see Fig. 4 ). More formally, the probability of packet pkt to be en-

ueued at A [ pkt ], is acquired by: 

 q ( pkt ) = 1 − P (Q = Q max at A [ pkt ]) (1)

Based on the notion of Eq. (1) , we experimentally measure the

nqueue probabilities of (i) X 2 , (ii) Y 2 , (iii ) both X 2 and Y 2 , and (iv)

either X 2 nor Y 2 while randomizing payload sizes. To do so, we

rite an offline test code generating two virtual back-to-back flows

from X and Y ). We randomly select a payload size of each packet

ithin the range of [ rMin , MSS]. We vary the degree of random-

ess by changing rMin from 1B to 1,448B at the interval of 1B. We

onstruct a simple experimental setup as follows: First, nodes are

onnected with 1Gbps links. Second, there are two input ports X

nd Y , and one output port Z . Third, back-to-back packets arrive

ontinuously at each input port and the inter-frame gap is 0.096 μs

i.e., 8B in a gigabit Ethernet). Last, Y 1 is enqueued to the output

ueue while X 1 is dropped. 

By tracing all the packet arrivals and departures since A [ Y 1 ], we

easure P q ( X 2 ) and P q ( Y 2 ). We conduct this test 10 0 0 times per

ach rMin . Fig. 5 shows the four types of probabilities of interest.

f the regular TCP (i.e., the payload size is not randomized at all

nd rMin = 1,448B) is used, X 2 never be enqueued. Of course, this

imple experimental result may not hold in real network environ-

ents since the packet arrival time can be distorted due to some

andom factors (e.g., variations in sending patterns or other unpre-

ictable random behaviors) [2,16] and TCP does not generate end-

ess bursty traffic unlike we did for the test. However, Fig. 5 clearly
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Fig. 5. Enqueue probability of X 2 and Y 2 at congestion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Adaptive selection of � based on CUBIC’s cwnd . 
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indicates why the port blackout is hard to be prevented with the

regular TCP at a drop-tail queueing switch. 

As rMin decreases (i.e., from the right of the x-axis to the left

in Fig. 5 , P q ( X 2 ) increases and P q ( Y 2 ) decreases. P q ( X 2 ) and P q ( Y 2 )

approach to 0.63 and 0.58, respectively when rMin = 1B. One in-

teresting observation is that the enqueue probability of both X 2 

and Y 2 also increases by decreasing rMin . However, the payload

size randomization can make both X 2 and Y 2 dropped (e.g., with

the probability of 0.11 when rMin = 1B). Nevertheless, the advan-

tages far outweigh this disadvantage since the probability of con-

secutive packet drops reduces significantly by the randomization

mechanism. 

Another implication from the above result is that it is unneces-

sary to reduce rMin overmuch. There are two reasons. First, the en-

queue probability of X 2 grows up more slowly as rMin approaches

to 1B. Second, the lower rMin , the larger the header overhead. It

results in bandwidth waste. 

4. Proposed scheme: TCPRand 

In this section, we focus on the design of our proposed scheme

that we call TCPRand . Before sending a packet, TCPRand determines

its payload size via generating a uniform random number in the

range of [ rMin , MSS]. Since rMin is a configurable variable (1 ≤
rMin ≤ MSS), we can diversify randomly generated payload sizes

by selecting one rMin value. However, it is unclear what value to

set. Moreover, the degree of port blackout can vary depending on

several factors such as background traffic, changes in traffic pat-

terns, etc. Due to these reasons, we consider a scheme that can

adaptively select rMin value and effectively react to changes in

such factors. Our design choice for the adaptation method lies not

only in maximizing the fairness, but also in minimizing the loss of to-

tal goodput in any circumstances . We design our adaptation method

on top of TCP CUBIC [17] , the default congestion control algorithm

in Linux. 

4.1. Modeling adaptive selection of rMin in CUBIC 

We focus on CUBIC’s cwnd growth function for designing an

adaptive rMin selection method as variation in cwnd value can be

indicative of the probability of packet loss, which is a necessary

condition of the port blackout. 

Let us first take a look at how the CUBIC’s window growth func-

tion (i.e., cwnd (t)), depicted in Fig. 6 (a), works. We classify a CUBIC

epoch into 4 stages and present our adaptive rMin selection strat-

egy for each stage based on its functional characteristics. 

Stage 1) Fast growth of cwnd (when cwnd < W max ): At the ini-

tial phase of a CUBIC epoch, the cwnd grows very fast. The ratio-

nale here is that the fast cwnd growth is unlikely to cause a packet

drop since the cwnd is already reduced by a factor of β just before
he start of this epoch. Therefore, as Strategy 1 , we propose to not

educe rMin aggressively. 

Stage 2) Slow growth of cwnd (when cwnd < W max ): CUBIC

lows down the growth of cwnd as approaching to W max since

acket losses occurred at W max previously. The CUBIC’s heuristic

ndicates that the probability of packet loss is increasing fast at

his stage. To counter the port blackout actively, Strategy 2 is to

educe rMin aggressively. 

Stage 3) Slow growth of cwnd (when cwnd ≥ W max ): If the

wnd grows past W max , CUBIC enters a max probing phase [17] .

t the beginning of the max probing phase, the cwnd grows slowly

o find out a new maximum point nearby as the CUBIC’s heuristic

xpects that the probability of packet loss becomes higher when

wnd ≥ W max . Thus, as Strategy 3 , rMin must decrease aggres-

ively again to prevent the port blackout. 

Stage 4) Fast growth of cwnd (when cwnd ≥ W max ): If no

acket loss is detected for some period of time after stage 3, CUBIC

erforms a fast increase of cwnd since it guesses the new maxi-

um is far away. Thus, Strategy 4 is to not reduce rMin actively at

his stage. 
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Fig. 7. Abstracted subset topology of fat-tree in Fig. 1 . 
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.2. Adaptive algorithm to calculate rMin 

We adopt the proposed strategies discussed in Section 4.1 and

ropose the TCPRand’s adaptation method ( Algorithm 1 ) to calcu-

ate rMin before sending a packet. 

lgorithm 1 Adaptation method to select rMin . 

: Input: ω, τ , cwnd , μ, σ 2 , θ
: if τ ≤ cwnd ≤ ω then 

: x = 

cwnd − α

W max − α
/* normalized distance from α */ 

: �( x , μ, σ 2 ) = 
1 

2 

( 

1 + 

1 √ 

π

∫ x −μ

σ
√ 

2 

−
(

x −μ

σ
√ 

2 

) e −t 2 d t 

) 

: rMin = max(MSS × (1 − �( x , μ, σ 2 )), θ ) 

: else 

: rMin = MSS 

: end if 

1) How to decide rMin? 

rMin is calculated based on �( x, μ, σ 2 ), which is the normal

istribution CDF 1 shown in Fig. 6 (b). As the first parameter of �,

 is a normalized distance between cwnd and α as shown at the

ine 3 of Algorithm 1 . For instance, if cwnd = W max , x = 1. The

econd and third parameters of �, (i.e., μ and σ 2 ) are the mean

nd the variance, respectively and they are configurable. rMin is

etermined by the line 5 of Algorithm 1 based on � and the other

arameter θ , which is the lower bound of rMin . We set θ = 200B

o prevent too much goodput degradation and to keep reasonable

airness (see the tradeoff between fairness and goodput depending

n rMin in Fig. 8 ). 

The normal distribution CDF supports our strategy for each of

he 4 stages well as follows. Assume that μ = 1. At stage 1, �

ncreases very slowly and it leads to the gradual reduction of rMin

s Strategy 1 . At stage 2, � increases fast and finally converged

o 0.5; it causes the fast reduction of rMin as Strategy 2 . At stage

, � grows quickly so that the reduction of rMin is still fast as

trategy 3 . At stage 4, � grows leisurely and leads to the slow

eduction of rMin as Strategy 4 . 

2) When to turn TCPRand on/off? 

Trigger point: Based on Strategy 1 , we activate TCPRand only

hen the τ ≤ cwnd . The trigger point τ shown in Fig. 6 (a) is ac-

uired by: 

= W max − W max − α

ντ
(2) 

here ντ is a scale factor tuning τ . If ντ = 1, τ = α. If ντ → ∞ , τ
 W max . 

End point: With Strategy 4 , TCPRand can also set the end point

, as shown in Fig. 6 (a). TCPRand is deactivated if cwnd grows

bove ω, which is set by: 

 = W max + 

W max − α

νω 
(3) 

here νω is a scale factor tuning ω. If νω → 0, ω → ∞ . If νω =
 , ω = 2 × W max − α. Preventing ω from growing too much is

seful to avoid unnecessary payload size randomization in case

f large cwnd (e.g., when the competing flows finish). Note that

qs. (2) and (3) are implemented at line 2 in Algorithm 1 . 
1 To reduce the � calculation overhead (not trivial) at kernel, we pre-calculated 

for various input parameters and stored the result in a table. Thus, � is acquired 

y a simple table lookup. 

t  

o  

f  

o  

p

. Evaluation setup 

We evaluate the proposed solution in two ways: ns-3 simulator

nd real testbed. We first describe our evaluation environments,

numerate parameters for TCPRand, and finally outline evaluation

etrics before presenting our results in Sections 6 and 7 . 

.1. NS-3 simulation environment 

We incorporate TCPRand with the packet-level simulator ns-3

o experiment it in a full-blown topology (i.e., fat-tree [14] ) of a

ata center network as shown in Fig. 1 . We choose ns-3 because

t enables high performance simulation. We adopt most of the

onfiguration parameters suggested in [2] (including link capacity

 = 1 Gbps), TCP minRTO value ( = 2 ms), MSS value ( = 1460B), rout-

ng policy, etc.). The processing delay of each switch is set to 25 ms

s suggested in [18] . We integrate TCPRand to both NewReno and

UBIC whose source is available at [19] . In the remainder of the

aper, CUBIC and TCP are interchangeably used unless otherwise

entioned. 

.2. Testbed environment 

To make our testbed realistically reflect a fat-tree topology

shown in Fig. 1 ), we use a topology illustrated in Fig. 7 . All the

achines, on which TCPRand is running, are equipped with an

ntel Core i7-3770K CPU @3.50 GHz, 32GB of main memory and

ntel 82,579 Gigabit Ethernet NIC. We use two different types of

witches: Cisco catalyst 2970 which adopts the simple drop-tail

ueue management policy and HP 5900 which supports ECN capa-

ility and enables us to run DCTCP for comparison with TCPRand.

e implement TCPRand by modifying the TCP output engine in

he Linux kernel 3.2.39. All the offload options including TCP seg-

entation offload (TSO), generic segmentation offload (GSO) and

eneric receive offload (GRO) are disabled because they use the of-

oad engine in NIC and make TCPRand not work as expected. We

valuate the impact of disabling the options in Section 7 . 

TCPRand randomizes the payload size, which in most cases be-

omes smaller than MSS, and as a result it may generate more

ackets compared to the regular TCP. Due to its unique character-

stics, we consider the following factors that can affect the perfor-

ance of TCPRand as follows: 

Appropriate Byte Counting (ABC): Even though TCP output en-

ine in Linux increases cwnd based on the number of acks (which

orks well with the MSS-sized payload), by enabling ABC [20] op-

ion, cwnd increases based on the “bytes” asked. In Linux kernels,

BC is implemented only in Reno but we also implement it in CU-

IC to observe its effects. However, for the scenarios where TCP

utcast happens (e.g., many flows and a few flows are arriving at

wo input ports and destined to the same output port), the use

f ABC did not change the overall test result. It is because the ef-

ect of ABC is far smaller than that of the port blackout in the TCP

utcast scenarios. Thus, in this paper, we only show the results ex-

erimented without ABC. 
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Nagle’s algorithm and congestion control: To observe how

TCPRand cooperates with different congestion control mechanisms,

we choose Reno, BIC and CUBIC [17] and test them with or without

the Nagle’s algorithm [21] . However, for the TCP outcast scenarios,

there is no noticeable difference among the six combinations since

the port blackout overwhelms their effect. Thus, we only address

the case with CUBIC and the Nagle’s algorithm since CUBIC is the

default congestion management protocol in Linux today and most

bulk transfer applications enable the Nagle’s algorithm. 

SACK: By default, SACK is enabled for the fast recovery from

multiple packet losses in today’s Linux. However we also conduct

experiments without SACK to see its role in TCP outcast scenarios

when combined with TCPRand. 

5.3. TCPRand Parameters 

TCPRand has four parameters (i.e., σ 2 , μ, ντ , νω ), thus al-

lowing many possible combinations of these parameters. For in-

stance, we can vary parameter values as follows: σ 2 = {0.2, 1, 5},

μ = {1, 0}, ντ = { ∞ , 1}, νω = {0, 1}. A larger σ 2 causes faster

growth of � when x < μ but � grows slowly when x ≥μ. With a

smaller μ, more aggressive increase of � can be observed. τ = α
if ντ = 1 , while τ = W max if ντ → ∞ . ω = 2 × W max − α if νω = 1 ,

while ω → ∞ if νω = 0 . Out of many configurations possible, we

conduct evaluation with the three sets of configurations denoted

in the form of ( σ 2 , μ, ντ , νω ). One configured as (1, 1, 1, 1) repre-

sents a moderate setting, which is our default setting. The other is

set as (1, 1, ∞ , 1) which represents the most conservative setting.

The third is the most aggressive setting that is configured as (1, 0,

1, 0). Unless otherwise mentioned, we use the default setting while

we mix and match the configurations when necessary. 

5.4. Evaluation metrics 

We are primarily interested in evaluating TCPRand with two

key metrics: fairness and goodput across both real testbed and

simulation cases. We shortly define each of them next. 

Fairness: We use Jain’s fairness index [22] defined as follows:

F airness (g 1 , g 2 , · · · , g n ) = 

(∑ n 
i =1 g i 

)2 

n × ∑ n 
i =1 g 

2 
i 

(4)

where g i is the average goodput of flows sent by S i . Note that in

the ideal case, fairness index is 1. 

Goodput: As typically defined, we obtain goodput by dividing

the amount of application-level data by the total time taken until

the completion of its delivery. Total goodput is the sum of all flows’

goodputs. 

In addition to the two key metrics discussed above, we also

show other interesting metrics such as flow completion time (FCT)

(which is especially important for short flows), consecutive packet

losses, timeouts (in terms of frequency and period) and flow con-

vergence trend (to show the stability of TCPRand flows compared

to TCP ones). 

6. NS-3 simulation results 

We evaluate TCPRand in an ns-3 environment. First, the evalua-

tion focus lies on the two metrics (i.e., fairness and goodput) while

we vary network conditions such as switch queue size ( Q max ) and

the amount of background traffic. Second, we measure the time-

outs, the main cause of TCP outcast, in two different aspects: fre-

quency and period. Third, we show how tolerable TCPRand is to

TCP outcast varying the number of competing flows. Fourth, we

conduct simulation with data center workloads [23] to show that

TCPRand in general supports flows with different sizes well. 
.1. Fairness and goodput analysis 

A total of 15 senders ( S 1 –S 15 ) generate one TCP flow per sender

o receiver R in the fat-tree topology in Fig. 1 . We check how

CPRand mitigates the TCP outcast problem. In doing so, we an-

lyze how TCPRand interacts with varying the maximum length

 Q max , expressed as the number of packets) of the drop-tail queue

nd background traffic values. Specifically, each sender simultane-

usly generates a flow for 10 s. Each flow sent from sender S n is

enoted by F n . Thus, in the fat-tree, E 1 is the most bottlenecked

witch and F 1 is the most outcast flow since F 1 competes with

 2: 15 for the output queue at E 1 . 

We additionally plot the results of TCPRand with static set-

ings (i.e., fixed rMin ) alongside TCPRand (denoted as CTD in Fig. 8 )

o demonstrate why the adaptive rMin selection method is better

han configuring rMin statically. We also compare TCPRand with

CTCP, a representative cross-layer protocol for data center net-

orks whose congestion control mechanism requires additional

witch support including random early marking and Explicit Con-

estion Notification (ECN). We does this comparison in order to shed

ight on how close the performance of a pure transport layer solution

ike TCPRand can be to that of a cross-layer approach like DCTCP. For

CTCP, we set a marking threshold to 0 . 2 × Q max as proposed and

sed for 1 Gbps link in [9] . 

.1.1. Impact of Q max on fairness and goodput 

To see the effect of Q max to TCPRand, we set Q max =
 20 , 60 , 100 } in the unit of packet. Notations for transport schemes

re given in the caption of Fig. 8 . As shown in Fig. 8 (a), the reg-

lar TCP (i.e., N and C) suffers from the unfairness caused by the

CP outcast. As decreasing rMin statically, the outcast flows recover

uickly and the fairness index approaches to 1 regardless of Q max .

owever, more aggressive reduction of rMin triggers more loss of

otal goodput as shown in Fig. 8 (b) (goodput ratio normalized to

hat of N or C). For instance, given Q max = 100, as rMin decreases,

he fairness of CTx increases (0.976, 0.991 and 0.996 with CT200,

T100 and CT50, respectively). However, there are consistent de-

reases in goodput of CTx: (0.855, 0.85 and 0.835 with CT200,

T100 and CT50, respectively). 

Overall, DCTCP shows good balance between fairness and good-

ut. DCTCP can minimize packet drop itself by keeping the queue

ength short with the help of switch’s ECN capability, whereas

CPRand promotes fair packet drops among flows through the pay-

oad size randomization. Little difference in total goodput between

UBIC and DCTCP (see DCTCP bars at Q max = 60 or 100 in Fig. 8 (b))

s because CUBIC flows fully utilize the link capacity at an ag-

regated level and so do DCTCP flows. However, when Q max = 20 ,

CTCP loses the goodput considerably (i.e., 0.936). It is because the

arking threshold (i.e., 4 = 0 . 2 × 20 ) is too small for senders to in-

rease its cwnd high enough to acquire full goodput by the DCTCP

ongestion control algorithm. 

.1.2. Impact of background traffic on fairness 

For this simulation, given 15 senders, we make each sender

dditionally generate, to the receiver, 10, 20 and 30 Mbps UDP

BR traffic, accounting for 150, 300 and 450 Mbps aggregate back-

round traffic, respectively. Fig. 8 (c) shows the effect of background

raffic to the fairness where Q max = 20 . We clearly observe that

CPRand always achieves higher fairness than the regular TCP.

owever, the larger the background flows, the smaller the addi-

ional fairness gain of TCPRand to the regular TCP. Note that in

his simulation, the payload size of the background flow is not

andomized. Thus the effect of the payload size randomization to

he port blackout is restricted more as the amount of background

raffic increases. However, even with the largest background traf-

c (i.e., 450Mbps), TCPRand still achieves a noticeable fairness im-
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Fig. 8. Effect of Q max and background traffic. N: NewReno, NTx: NewReno + 

TCPRand( rMin = × bytes), C: CUBIC, CTx: CUBIC + TCPRand( rMin = × bytes), CTD: 

CUBIC + Adaptive TCPRand with ( σ 2 , μ, ντ , νω ) = (1, 1, 1, 1) and DCTCP. 
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Fig. 9. The effect of TCPRand to timeouts. F 1 , avg( F 2: 3 ) and avg( F 4: 15 ) in legend 

indicate the timeout statistics from the 2-hop flow (the most outcast flow), an av- 

erage of 4-hop flows ( F 2 and F 3 ) and an average of 6-hop flows (from F 4 to F 15 ) in 

Fig. 1 , respectively. 
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rovement. DCTCP also achieves high fairness (i.e., 0.887) under

he same background traffic condition. 

.2. Timeout 

To investigate the exact reason of the fairness increase caused

y TCPRand, we measure two metrics regarding timeout: frequency

nd period. Note that the former indicates the number of timeouts

riggered while the latter does the total amount of time halted by

he timeouts. Using the results from the simulation performed in

ection 6.1 , we compare the timeout frequency and timeout period

f TCPRand (i.e., CTD) to the regular TCP (i.e., CUBIC) in Fig. 9 . 

Timeout frequency: Since TCPRand generates (smaller but)

ore packets than TCP, it causes more packet losses than TCP. As

hown in Fig. 9 (a), when the Q max is small (i.e., 20), this prop-

rty makes all TCPRand flows (regardless of the senders’ loca-

ions on the topology in Fig. 1 ) experience more timeouts than

CP ones. However, as Q max increases, TCPRand reduces the time-
ut frequency more than TCP. For instance when Q max = 100 , all

CPRand flows experience even less timeouts than TCP ones. It

urns out that the shuffle effects triggered by TCPRand at bottle-

eck queue further decreases consecutive packet losses (the main

ause of timeout) at each input port. 

Timeout period: More importantly, compared to TCP, TCPRand

lways reduces the timeout period of the outcast flow ( F 1 ) regard-

ess of Q max (see Fig. 9 (b)). This result may look contradictory to

hat is shown in Fig. 9 (a). For instance, when Q max = 20 , TCPRand

ncreases the timeout frequency of F 1 by a factor of ∼ 3 but de-

reases the timeout period of F 1 by half compared to TCP. This is

ecause TCPRand reduces the consecutive timeouts, and hence keeps

TO small. In other words, consecutive timeouts trigger the expo-

ential backoff to the retransmit timer; preventing them makes

t possible to drastically decrease the timeout period. TCPRand is

ffective in preventing such consecutive timeouts for the outcast

ow, thus decreasing its overall timeout period. Furthermore, as

 max increases (i.e., Q max ≥ 60), TCPRand reduces the timeout pe-

iod of all the flows even including the non-outcast ones ( F 4 –F 15 ). 

.3. Influence of different number of senders 

To understand how TCPRand operates at the bottleneck queue

nder a varying number of senders, we use a larger fat-tree that

omprises of 8-port switches. A 8-ary fat-tree topology consists of

0 switches and 128 hosts. We make a 2-hop flow compete with
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Fig. 10. Goodput of CUBIC and TCPRand flows when a 2-hop flow competes with 

different number of 6-hop flow(s) in 8-ary fat-tree topology where there are 128 

servers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. FCT of TCPRand and DCTCP normalized to that of CUBIC for different work- 

loads and traffic loads per flow size group. Sizes of short, mid and long flows are 

[0, 100 KB), [100 KB, 10 MB), and [10MB, ∞ ), respectively. 

F  

f  

(  

f

 

B  
the different numbers of 6-hop flows. 2 Note that given a receiver,

there are all 112 6-hop senders in the topology. In the simulation,

Q max is set to 100. 

Fig. 10 shows how TCPRand affects the goodput of a 2-hop and

6-hop flow(s). From the figure, we first observe that the 2-hop flow

acquires more goodput than the 6-hop flow(s) when the number of

the 6-hop flow(s) is ≤ 2. This is because in general TCP throughput

is proportional to the inverse of RTT [24] . However, as the number

of the 6-hop flows increases, the 2-hop CUBIC flow starts to suffer

from TCP outcast as shown in Fig. 10 (a). On the other hand, the

goodputs of TCPRand flows agree to their fair share of bandwidth

well regardless of the number of 6-hop flows, and the TCP outcast

problem is successfully mitigated even in a larger topology (see

Fig. 10 (b)). 

6.4. Analysis with real data center workloads 

Since TCPRand tends to keep the payload size less than MSS,

it may increase flow completion time (FCT), in particular that of

short flows, which in general originates from latency-sensitive ap-

plications. To answer that question, we trace the effect of TCPRand

to FCT using two realistic data center workloads (i.e., web search

and data mining) [23] that consist of a mix of short and long flows.
2 For simplicity, we do not generate 4-hop flows for this simulation. 

s  

f  

1  
low arrivals follow a Poisson process, and the sender and receiver

or each flow are chosen randomly among all the 16 end-nodes

i.e., R and S 1 –S 15 in Fig. 1 ). The flow arrival rate (i.e., load in the

abric) is varied from 0.2 to 0.8 as suggested in [23] . 

Fig. 11 shows the FCT of TCPRand and DCTCP normalized to CU-

IC per flow size group. Regarding TCPRand, two trends are ob-

erved while DCTCP in general is efficient in decreasing FCT. First,

or short flows, TCPRand does not increase FCT (i.e., average and

00 percentile) noticeably in both web search and data mining
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Fig. 12. Fairness and total goodput of TCPRand, CUBIC and DCTCP under the testbed 

with the topology in Fig. 7 , respectively. The 4-tuple in legend corresponds to ( σ 2 , 

μ, ντ , νω ) of TCPRand. (1, 0, 1, 0) is the most aggressive setting while (1, 1, ∞ , 1) is 

the most conservative configuration. We use two different types of switches (Cisco 

Catalyst 2970 and HP 5900) to confirm that TCPRand is effective to TCP outcast 

in various hardware settings. Note that HP 5900 is ECN-capable and thus allows 

DCTCP experiments. 
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i  

o  

i  
orkloads. It is because many short flows are extremely small in

eal (especially in data mining) workloads and many of them fin-

sh before TCPRand performs the aggressive reduction of rMin . Sec-

nd, under high traffic load (i.e., Load = 0.8), the CUBIC (especially

ong) flows often suffer from timeouts, whereas TCPRand is in gen-

ral effective in suppressing timeouts. Hence, long TCPRand flows

n general achieve shorter FCTs than CUBIC flows under high traffic

oad. Moreover, since the web search workload contains more long

ows than the data mining one and TCPRand reduces the time-

ut period of that long flows, the 100 percentile FCT (especially of

ong flows) of TCPRand under high traffic load decreases as shown

n Fig. 11 (c). 

. Experimental results 

We now evaluate TCPRand in a real testbed. The main purpose

f this evaluation in the testbed is to confirm that TCPRand in

ractice improves fairness without compromising goodput in the

resence of TCP outcast. Next, we conduct microscopic analysis to

hed light on how several aspects (packet drops, timeouts, and re-

ransmissions) in TCP congestion control are affected by TCPRand. 

We construct a testbed which simplifies the fat-tree topology

n Fig. 1 but still preserves its essential nature for creating TCP

utcast. The testbed topology is shown in Fig. 7 . This topology al-

ows us to create many TCP outcast cases with different combi-

ations of ( N 1 , N 2 , N 3 ) where N 1 , N 2 and N 3 are the number of

ows generated by S 1 , S 2 and S 4 , respectively in Fig. 7 . In fact, we

ested TCPRand in many TCP outcast events and found in all cases

CPRand achieves similar fairness and goodput. Thus, out of them,

e choose two combinations: (i) ( N 1 = 2, N 2 = 4, N 3 = 26) for mim-

cking the observation in [2] that more flows come from distant

enders while less flows come from close senders in the fat-tree

nd (ii) ( N 1 = 26, N 2 = 4, N 3 = 2) as the opposite of case (i) to

how that TCPRand can solve the TCP outcast problem even in un-

sual situations. 

.1. Fairness and goodput analysis 

Fairness: Fig. 12 (a) and (b) show that regardless of ( σ 2 , μ, ντ ,

ω ) configurations, TCPRand always achieves a higher fairness in-

ex than CUBIC. While not shown for brevity, we measure the fair-

ess with many other combinations of the configuration param-

ters and observe that higher fairness is in general achieved as

onfigurations become more aggressive (i.e., with smaller μ and τ ,

r larger ω) in randomizing the payload. Even with the most con-

ervative setting (1, 1, ∞ , 1), TCPRand still obtains 16–41% higher

airness than CUBIC. Moreover, regardless of the configuration pa-

ameters or switch types, TCPRand always guarantees 0.9 or higher

airness index in all the scenarios we experimented. In addition,

e also observe that TCPRand’s fairness index is comparable to

CTCP’s in Fig. 12 (b). 

Loss of total goodput: If μ = 1 , TCPRand always keeps the ad-

itional loss of total goodput to CUBIC low ( < 1% in Fig. 12 (c) and

 4% in Fig. 12 (d)). Although we do not show the exact picture for

revity, even for the case where TCP outcast does not happen (i.e.,

he same number of flows compete) and the total number of com-

eting flow is small (i.e., 3), TCPRand minimizes the total goodput

oss ( ∼ 1%) effectively. This indicates that even though TCPRand is

ainly designed to pursue more fairness for TCP outcast scenar-

os, it causes only a trivial amount of additional total goodput loss

or non-outcast scenarios; this is possible since the proposed adap-

ive randomization scheme in Algorithm 1 avoids unnecessary pay-

oad size randomization. In the worst case, compared to CUBIC, the

dditional loss of total goodput is marginal ( ∼ 2.3% in Fig. 12 (c)

nd ∼ 4.7% in Fig. 12 (d)). This level of goodput loss can be ac-

eptable as well because most many-to-one applications that are
arrier synchronized [12] may improve their job completion time

erformance by enhancing the goodput of the slowest TCP con-

ection rather than maximizing total goodput. The total goodput

f DCTCP is similar to that of CUBIC under the outcast scenarios

see Fig. 12 (d)). 

.2. Microscopic analysis on improved fairness 

To further understand what effects TCPRand brings to TCP flows

n detail, we conduct a microscopic analysis with a simplest topol-

gy exhibiting the TCP outcast problem. We do this in our testbed

nstead of ns-3 simulator since the testbed environment can best
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Fig. 13. The outcast flow’s packet drop distribution with SACK when M = 15 using 

Cisco Catalyst 2970. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The number of TCP timeouts and retransmissions when M = 15 (with Cisco 

Catalyst 2970). Note that no TCP timeout is observed with SACK. 
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reflect the microscopic behaviors caused by the temporal port

blackout that happens at an output queue of commodity hardware

switches. 

We use the same testbed shown in Fig. 7 where we only use

two senders ( S 1 and S 2 ) and one receiver ( R ). S 1 creates one flow

(denoted as F 1 ) to R and S 2 does M flows (from F 2 to F M+1 , denoted

as F 2: M+1 ) to the same R . We vary M where M = {5, 10, 15, 20, 25}.

Out of these five cases, we only present the most prominent results

that are observed when M = {5, 15, 25}. We disable the adaptive

rMin selection method and statically set rMin values. rMin of each

flow is set to 1,448, 1,0 0 0, 60 0 or 200 bytes to make our analy-

sis more tractable. For the measurements, we use iperf and run it

for 100 s per each case. All flows (i.e., F 1: M+1 ) start transmission

simultaneously 3 

Basically, SACK is enabled in our experiments as most modern

Linux distributions support SACK by default, but for a broader anal-

ysis, we also present results while disabling SACK as well. We ex-

amine consecutive packet drops, TCP timeouts, and packet retrans-

mission for the analysis. 

Consecutive packet drops: Fig. 13 shows the distribution of

packet drops that the outcast flow experiences with SACK option

when M = 15. For the experiment, both S 1 and S 2 use the same

rMin . As shown in Fig. 13 (a), as rMin decreases, the ratio of single-

isolated packet drops to the total packet drops increases. Omitted

for brevity, the largest increase is observed with the smallest rMin

(i.e., 200B) across all M’s. This indicates that more aggressive pay-

load size randomization prevents consecutive packet drops more
3 Note that we also conducted experiments by varying the arrival times of some 

flows and found no visible difference in the results. 

t  

s

i  

a  
ffectively. Fig. 13 (b) shows the detailed distribution of consecutive

i.e., 2 ∼ 5) packet drops. It is clearly observed that the frequency

f consecutive packet drops decreases dramatically (especially for

ore than two consecutive drops) as rMin decreases. When SACK

s off, the number of consecutive packet drops decreases consider-

bly up to M = 15, and stops decreasing as M further increases. 

TCP timeouts: Fig. 14 shows that TCPRand + SACK prevents the

utcast flow from experiencing any TCP timeout; although omit-

ed for brevity, only one configuration caused at most 4 timeouts

hen M = 25. On the other hand, disabling SACK shows two in-

riguing patterns in Fig. 14 (b). (i) TCPRand reduces the number of

CP timeouts enormously with smaller rMin values; when M = 15,

CP timeouts decrease from 204 ( rMin = 1,448, regular TCP) to 9

imes. (ii) However, when M grows to 25, TCPRand fails to reduce

CP timeouts noticeably. Even for the regular TCP, enabling SACK

ption greatly helps reduce the number of TCP timeouts (e.g., only

ne timeout when M = 25). This is because SACK makes a flow

ecover efficiently against multiple packet losses. However, there

till exists unfairness (as illustrated with Fig. 12 (b)) since the out-

ast flow must recover from multiple packet losses alone while the

on-outcast flows share the recovery burden among themselves. 

Packet retransmissions: Fig. 14 shows the number of packet

etransmissions of flows (represented by the left y-axis in each

raph). We make the following observations: 

First, when rMin of the non-outcast flows (i.e., F 2: 16 at S 2 ) is

xed, decreasing rMin of the outcast flow (i.e., F 1 at S 1 ) increases

he number of packets retransmitted by the outcast flow. For in-

tance, see in Fig. 14 (a) and (b) a configuration where rMin of F 2: 16 

s set to 1,0 0 0B: as rMin of F 1 reduces from 1,448B to 200B, F 1 has

n increasing number of retransmissions. This is because decreas-
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Fig. 15. Comparison of TCP, TCPRand and DCTCP in a TCP incast scenario ( Q max = 

100 and block size = 128KB). We use a simple star topology composed of 40 

senders, one receiver and a 1GbE switch among them. 
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Fig. 16. Flow convergence in terms of network bandwidth sharing. 

Fig. 17. Congestion window variation. 
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s  
ng rMin usually makes TCPRand generate more packets (smaller

han MSS) than the regular TCP. 

Second, when rMin of the outcast flow ( F 1 ) is fixed, reducing

Min of the non-outcast flows ( F 2: 16 ) tends to decrease the num-

er of packet retransmissions in F 1 . For example, from the solid

ine in Fig. 14 (a), compare points where ( rMin of F 1 , rMin of F 2: 16 )

re (1,0 0 0, 1,448), (1,0 0 0, 1,0 0 0), (1,0 0 0, 60 0) and (1,0 0 0, 20 0); we

learly observe a decreasing trend in the number of retransmis-

ions of F 1 . 

Third, Fig. 14 (a) and (b) show that the lack of selective acknowl-

dgement mechanism makes TCPRand of the outcast flow retrans-

it more packets. In contrast, when M < 15 (the graph is omit-

ed), we observe that TCPRand without SACK has the similar pat-

ern to that with SACK. 

The final observation is that in all cases, the outcast flow ( F 1 at

 1 ) does more packet retransmissions than the non-outcast flows

 F 2: 16 at S 2 ) as expected. 

Throughout the analysis, we find out that TCPRand in gen-

ral decreases the number of consecutive drops, TCP timeouts

nd packet retransmissions of the outcast flow. Another interesting

nding is that TCPRand alongside SACK option is most effective in

lleviating several adversary events to TCP performance. However,

ven with SACK, statically changing rMin value is insufficient to

ompletely address the TCP outcast problem, reassuring that our

daptive payload size randomization method is absolutely neces-

ary. 

. Further considerations 

.1. TCP incast 

TCP incast is another important problem which shares high

imilarity with TCP outcast problem. Hence, it is a natural ques-

ion to ask whether or not TCPRand adversely affects the TCP in-

ast problem. To answer that question, we perform a simulation to

ompare the goodput of CUBIC, TCPRand and DCTCP under a TCP

ncast scenario. In the simulation, the file size (or block size) is

28KB and Q max = 100 . 

Fig. 15 shows that DCTCP in general achieves better goodput

ain than the other two (CUBIC and TCPRand). This is mainly be-

ause DCTCP keeps queue length small (thus, mitigating packet

rop itself) whereas TCPRand only promotes fair packet drops. In

omparison with CUBIC, we find that TCPRand does not make the

CP incast problem worse than CUBIC. We also observe the similar

rends (the graph is omitted) with different parameter values such

s Q max and block sizes. 
.2. Flow convergence 

Since fair sharing of network bandwidth is one of the key char-

cteristics of TCP, it is important to check if the payload size ran-

omization process of TCPRand violates this property. Thus, we ex-

eriment how TCPRand flows converge on a simple testbed com-

osed of five senders (from each of which one flow is generated),

ne receiver and a 1GbE switch among them. Each flow starts

equentially with 30 s interval and have different durations (i.e.,

70 s, 210 s, 150 s, 90 s, and 30 s), respectively as done in [25] .

ig. 16 (a) and (b) show how TCP and TCPRand flows converge, re-

pectively. As shown in the figure, the convergence trends of TCP

nd TCPRand flows are quite similar, assuring that flow conver-

ence in TCPRand is comparable to that of TCP. 

.3. Congestion window variation 

To observe the effect of payload size randomization to the con-

estion window, we compare the congestion window variation of

UBIC and TCPRand in our testbed and show the result in Fig. 17 .

ach flow (i.e., Flows1 and 2) in Fig. 17 is generated from differ-

nt senders at the same time and destined to one receiver. As

hown in Fig. 17 (a), the congestion window variation of the two
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Table 1 

CPU overheads of CUBIC and TCPRand. 

No. of concurrent flows 

1 10 100 10 0 0 

CUBIC 4.6% 5.3% 7.9% 10.2% 

TCPRand 12.5% 16.1% 28.0% 42.2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

t  

n  

o  

a  

i  

a  

d  

l  

d  

r  

t  

t  

r

 

a  

p  

i  

q  

e  

b  

T  

k

 

p  

t  

t  

c  

f  

c  

s  

v  

d  

k  

h  

t  

e

1

 

T  

w  

d  

i  

a  

o  

t  

d  

t  

g  

w

A

 

w  

v  

o  

c  

n  

(  

t  

o  

t

CUBIC flows is rather synchronized, explaining why TCP is prone

to port blackout, the main cause of TCP outcast. However, the con-

gestion window of TCPRand shown in Fig. 17 (b) varies more asyn-

chronously, which evidently shows the reduction of port blackout

probability. 

8.4. CPU overhead 

By default in Linux, offload options such as TSO are enabled to

reduce CPU overhead if its NICs support them. On the other hand,

TCPRand requires to switch off those options, and thus can require

more CPU cycles. Here we measure the amount of CPU resources

used by TCPRand and compare it with that of CUBIC measured

while TSO is enabled. In our testbed, one CUBIC flow consumes

4.6% of the resources of one core, whereas one TCPRand flow con-

sumes 12.5%. As the number of concurrent flows increases, the

CPU overheads in both schemes grow linearly (see Table 1 ). For

instance, 100 flows make CUBIC and TCPRand consume 7.9% and

28.0% of the resources of one core, respectively. In an extreme case

where there exist 10 0 0 flows in a host, the CUBIC flows consume

10.2% and the TCPRand flows consume 42.2% of the resources of

one core. While TCPRand consumes more CPU resources than CU-

BIC, those amounts of CPU clock consumption may be acceptable

since commodity servers are equipped with multicore CPUs. 

9. Related work 

Link layer solutions: Random early detection (RED) [26] and

stochastic fair queueing (SFQ) [8] have been tested to solve the TCP

outcast problem. Prakash et al. [2] point out that RED shows RTT

bias while SFQ makes flows have throughput fairly and achieves

RTT fairness but uncommon in commodity switches. More impor-

tantly, a large-scale deployment of commodity off-the-shelf (COTS)

switches enables low cost construction of data center networks.

Unfortunately, these switches employ neither RED nor SFQ [2] .

It would be prohibitively costly to replace them with high-end

switches that are capable of exploiting these active queue manage-

ment strategies. Zhang et al. [7] propose a protocol that supports

bandwidth sharing by allocating switch buffer; the switch deter-

mines the size of the congestion window of its passing flow. How-

ever, all the switches in data centers must be modified for sup-

porting such a feature to make use of this solution. 

Network layer solutions: Equal-length routing [2] makes all

flows from senders routed up to the core switch regardless of the

senders’ locations. Then, all the flows take the same downward

path from the core to the destination which leads to RTT fairness.

It uses a detour path to increase the path similarity instead of the

shortest path. However, this approach causes performance degra-

dation if data center networks are oversubscribed. Furthermore, it

significantly lacks flexibility. 

Transport layer solutions: The rate-based delivery (e.g., TCP

pacing [10] and sending time randomization [12] ) has also been

considered as a solution to the TCP outcast problem. TCP pacing,

combined with the window based congestion control, avoids burst

delivery by giving some interval between the transmission times

of two consecutive packets and shows inverse RTT bias. However,

the TCP outcast problem still remains considerably in TCP pacing
2] . Chandrayana et al. propose a scheme randomizing the sending

imes by adjusting the inter-packet gap [11] . This, however, can-

ot retain the initial randomness created by the sender through-

ut the routing path mainly due to the bursty departure process

t the first bottleneck queue. This makes the approach ineffective

n a multi-hop environment. Moreover, the rate-based delivery has

 severe practical limitation because it is practically infeasible to

o (sub-)microsecond level packet spacing [27] (e.g., in 1/10Gbps

ink), quite strictly required to get better randomness effects in

ata center networks (where RTT < 1 ms [5] ). Even though a high

esolution timer (e.g., hrtimer in Linux) is available, operating sys-

ems hardly guarantee the precise control of inter-packet spacing

ime. Furthermore, frequent timer interrupts lead to a large inter-

upt handling overhead [5] . 

Hybrid solution: Alizadeh et al. propose DCTCP [9] , which is

 cross-layer (i.e., link layer + transport layer) approach. In com-

arison with DCTCP, we observed that DCTCP is effective to mit-

gate the TCP outcast problem by controlling a congested port’s

ueue length properly. However, DCTCP must leverage random

arly marking and Explicit Congestion Notification (ECN) capa-

ility, which are not yet widely supported by most commodity

oR switches especially in small and medium data centers to our

nowledge. 

Per-packet scheduling: There have been several recent pro-

osals on per-packet scheduling [23,28–30] . These new datacen-

er transports are known to achieve near-optimal flow completion

imes. Hence, they are likely to mitigate effectively pathological

ongestion collapses such as TCP incast and outcast. However, a

orklift upgrade is inevitable, meaning that all of the datacenter

omponents (hosts and switches) should unanimously support one

uch scheme. Whereas this constraint may not be an issue in pri-

ate datacenters, it can be a challenging problem in public cloud

atacenters (e.g., Amazon EC2) where tenants can run different

inds of transport protocols in their virtual machines. On the other

and, pure transport approaches like TCPRand can be incremen-

ally deployed (e.g., application by application) for cloud datacenter

nvironments. 

0. Conclusion 

We proposed a payload size randomization scheme called

CPRand to address the TCP outcast problem in data center net-

orks. TCPRand is a pure transport layer solution, which is easily-

eployable and practical to the TCP outcast problem. Without rely-

ng on any special link layer support such as ECN, TCPRand guar-

ntees superior enhancement of TCP fairness by reducing the time-

ut period of the outcast flow. Furthermore, it rarely sacrifices the

otal goodput since TCPRand avoids unnecessary payload size ran-

omization. The flow convergence of TCPRand is also comparable

o that of TCP. We envision that integrating TCPRand into TSO en-

ine in NICs can reduce the CPU overhead, and leave it as future

ork. 
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