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Abstract

We test the AdS/CFT correspondence by computing the partition function of some N = 2 quiver

Chern-Simons-matter theories on three-sphere. The M-theory backgrounds are of the Freund-Rubin

type with the seven-dimensional internal space given as Sasaki-Einstein manifolds Q1,1,1 or V 5,2.

Localization technique reduces the exact path integral to a matrix model, and we study the large-N

behavior of the partition function. For simplicity we consider only non-chiral models which have

a real-valued partition function. The result is in full agreement with the prediction of the gravity

duals, i.e. the free energy is proportional to N3/2 and the coefficient matches correctly the volume

of Q1,1,1 and V 5,2.

PACS numbers: 11.15-q,11.25.-w
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I. INTRODUCTION

We have seen remarkable progress made about M2-brane dynamics recently. It is now

well established that N = 6 Chern-Simons gauge field theory (ABJM model) with U(N)k×

U(N)−k correctly describes M2-branes at orbifold singularity C4/Zk [1]. But as usual with

AdS/CFT correspondence, many of the checks with maximally possible duality relation

strongly depend on the symmetry, and for a more convincing and challenging test, one

would like to study models with less supersymmetries.

Indeed, there have been a number of works which put forward new, more nontrivial

duality relations regarding M2-branes [2–12]. The richest and still challenging category is

probably N = 2 models. The dual geometry is usually of Freund-Rubin type, i.e. AdS4×X7

where X7 is a seven-dimensional manifold satisfying the Sasaki-Einstein property. One can

use the machinary of toric geometry [13], brane tiling [14], crystals [15] etc., but we are yet

to have a complete understanding even with the more tractable class of toric Sasaki-Einstein

manifolds. Most of the earlier works just checked that (a particular branch of) the vacuum

moduli space coincides with the gravity side, and studied the chiral ring structure perhaps

including some nonperturbative states involving baryonic operators.

The situation has changed recently, mainly due to important progresses on the field

theory side. One is the computation of supersymmetric indices, where one can certainly

check beyond the chiral ring. Indeed, some of the models which showed precise vacuum

moduli space turned out to give wrong indices and are ruled out. For more details, see [16–

22]. The other route is the computation of exact partition function on three-sphere, and it

is the aim of this paper to present calculation of the partition function for some AdS4/CFT3

proposals with four supercharges.

It has been known for a long time that in M2-brane dynamics the number of degrees of

freedom scale as N3/2, where N is the number of M2-branes. First of all, using localization

technique it is shown that the partition function on three-sphere can be expressed as a

matrix integral [23]. Using an exact resolvent it was first confirmed in a beautiful paper

[24] that the free energy has the right behavior of N3/2. For more details and related works,

readers are referred to [25–28].

For more general models, we do not have the luxury of an exact resolvent, but a powerful

numerical and analytic method have been proposed in [29]. In that procedure, the matrix
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integral is approximated using saddle point method. The saddle point equations are turned

into an auxiliary first-order coupled differential equations which quickly give the information

on the behavior of roots. In [29] the authors were interested in tri-Sasakian geometry and

N ≥ 3 quiver Chern-Simons models. For the models studied in [29], the free energy exhibits

nice N3/2 behavior and the coefficient is consistent with the volume of seven-dimensional

internal space through the well-known AdS/CFT dictionary

F = N3/2

√
2π6

27Vol(X7)
. (1)

In these models with N ≥ 3, all the fields are equipped with canonical conformal di-

mension and R-charge, i.e. ∆ = R = 1/2. But in N = 2 theories in general the fields

can acquire anomalous dimensions. The problem of putting general superconformal N = 2

theories on three-sphere and computing the partition function has been solved in [30, 31].

More concretely, it is shown that chiral multiplets with an arbitrary R-charge can couple to

gauge fields and curvature of S3 in a way preserving OSp(2|2)× SU(2). This symmetry is

a half of the superconformal group in addition to the isometry of S3, SU(2)× SU(2).

Quoting eq.(1.2) of [30], the partition function is given as

Z =

∫ ∏
Cartan

du eiπTru2detAd(sinh(πu))
∏
Ri

detRi(e
`(1−∆i+iu)), (2)

where ∆i is the conformal dimension of i-th chiral multiplet in gauge group representation

Ri. The function `(z) is known as double sine function, see for more details [32, 33].

One can in principle try to compute Z for all the Chern-Simons dual proposals. When

we started working with them, we have found that chiral-models which give complex-valued

Z are rather difficult to deal with. We do not have the full understanding of how the roots

condense in large-N limit yet. On the other hand, it turns out that simpler non-chiral

models with two-nodes produce dependable but still nontrivial results. In other words, we

can verify the free energy agrees with (1) in large-N limit.

In this paper we study three AdS4/CFT3 examples. In Sec.II we study the first example

which is dual to V 5,2, where the gauge theory comes with adjoint representation. In Sec.III

we study models involving chiral multiplets in fundamental representations. One is dual

to Q1,1,1, and the last example provides an alternative description of V 5,2. We give a brief

discussion on our results in Sec.IV.
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FIG. 1: The quiver diagram for Chern-Simons dual of AdS4 × V 5,2

Note added: There are two papers on the arxiv which have significant overlap with this

article. As this paper was being typed, we became aware of a work [34] and we coordinated

the release of the paper. Later we received [35], which provides a comprehensive analysis

for non-chiral N = 2 models. In particular, the F-theorem in [35] clarifies a misconception

on Z-extremization in the original version of this paper.

II. QUIVER WITH ADJOINT MATTERS: V 5,2

In this section we consider the dual field theory for V 5,2 geometry. This geometry is a

direct higher-dimensional generalization of conifold. The cone over V 5,2 is a singular space

defined as

z2
1 + z2

2 + z2
3 + z4

4 + z2
5 = 0, zi ∈ C. (3)

Obviously this geometry has U(1)R×SO(5) isometry. V 5,2 is an example of non-toric Sasaki-

Einstein manifolds. According to AdS/CFT, M-theory in AdS4 × V 5,2 is dual to a strongly

coupled three-dimensional N = 2 conformal field theory.

The dual as a quiver Chern-Simons system is proposed in [10], see Fig.1. The gauge

group is U(N) × U(N) with Chern-Simons levels (k,−k). The matter fields include six

chiral multiplets in total: Aa, a = 1, 2 in (N, N̄) representation, Ba, a = 1, 2 in (N̄ ,N), and

we also have one chiral multiplet in the adjoint representation for each gauge group, called

Φ1,Φ2. The vacuum moduli space provides an abelian orbifold V 5,2 when one chooses the

following cubic superpotential

W = Tr(Φ3
1 + Φ3

2 + εij(Φ1AiBj + Φ2BiAj)). (4)

For a study of this duality relation using rotating membrane solutions, see Ref.[36].

It is straightforward to write down the formula for the partition function using the recipe

given in [30, 31], with arbitrary R-charges or equivalently the conformal dimensions of the
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matter fields. From the symmetry of our system, it is obvious that the bifundamental fields

have the same R-charges, and we will call it ∆b. The two adjoint fields Φ1,Φ2 should also

come with the same R-charge ∆a. Now if we designate a Cartan subgroup for U(N) ×

U(N) using eigenvalues λi, λ̃i, i = 1, · · · , N , the partition function is given by the following

integral.

Z =
1

(N !)2

∫ N∏
i=1

dλidλ̃i
(2π)2

exp

[
ik

4π

∑
i

(λ2
i − λ̃2

i )

]∏
i<j

(
2 sinh

λi − λj
2

)2
(

2 sinh
λ̃i − λ̃j

2

)2

×
∏
i,j

exp

[
`(1−∆a + i

λi − λj
2π

) + `(1−∆a + i
λ̃i − λ̃j

2π
)

]

×
∏
i,j

exp

[
2`(1−∆b + i

λi − λ̃j
2π

) + 2`(1−∆b − i
λi − λ̃j

2π
)

]
. (5)

The function `(z) was used in [30, 31] to express a one-loop determinant for a chiral

multiplet with a generic value of R-charge. As an infinite product, it is defined as

exp `(z) =
∞∏
n=1

(
n+ z

n− z

)n
. (6)

More concretely it can be expressed as [30]

`(z) = −z ln(1− e2πiz) +
i

2

(
πz2 +

1

π
Li2(e2πiz)

)
− iπ

12
. (7)

Although it is not immediately seen from this expression, from the definition as infinite

product it is clear ` is an odd function, and also `(z) ∈ R if z ∈ R.

For the manipulation of the integrand for Z, we find the following relation of `(z) very

useful. If z = x+ iy with y ∈ R, we can derive

`(x+ iy) + `(x− iy) = `(x+ iy)− `(−x+ iy)

= −2πx|y|+
∞∑
n=1

e−2πn|y|
[

2x cos(2πnx)

n
−
(

2|y|
n

+
1

πn2

)
sin(2πnx)

]
. (8)

Let us check the convergence of multiple indefinite integrals in (5). First of all, the Chern-

Simons part with k dependence is highly oscillatory, but in itself the integral is convergent,

since for instance
∫∞
−∞ sinx2 =

√
π/2. Recall that we are doing the integration along real-

axis. The remaining part in the integrand with sinh is exponentially growing, and the

part with ` is exponentially decaying, as we send λ or λ̃ to infinity. Suppose we take one
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particular eigenvalue λi to infinity, and keep others finite. Then the integrand, apart from

the oscillating part, behaves like

exp [(N − 1)(∆a + 2∆b − 2)λi] (9)

Then it is obvious that the integration in (5) is divergent if ∆a+2∆b > 2. When ∆a+2∆b < 2

it is absolutely convergent, and we expect Z becomes smaller as we make R-charges smaller

and smaller. We are interested in the marginal case of ∆a + 2∆b = 2 in this paper, but will

make some comments about ∆a + 2∆b < 2 case later.

We are interested in the behavior of Z in the leading order as N →∞. We will employ

the saddle point approximation and take the large-N limit, closely following the procedure

described in [29]. The saddle points are determined by setting the following quantities to

zero. In the following F is related to Z by Z =
∫
e−F .

∂F

∂λi
= − ik

2π
λi −

∑
j 6=i

coth
λi − λj

2

+
∑
j

[
2m(1−∆b,

λi − λ̃j
2π

) +m(1−∆a,
λi − λj

2π
)
]
, (10)

∂F

∂λ̃i
=

ik

2π
λ̃i −

∑
j 6=i

coth
λ̃i − λ̃j

2

−
∑
j

[
2m(1−∆b,

λi − λ̃j
2π

)−m(1−∆a,
λ̃i − λ̃j

2π
)
]
. (11)

In order to avoid too much clutter we introduced a shorthand notation

m(x, y) ≡ − i

2π
(`′(x+ iy)− `′(x− iy))

=
y sin 2πx− x sinh 2πy

cos 2πx− cosh 2πy
. (12)

where we used

`′(z) = −πz cot(πz). (13)

From the saddle point equations above, one easily notices that the saddle point equations

are invariant under (i) (λi, λ̃i) → −(λi, λ̃i), and (ii) (λi, λ̃i) → (λ̃∗i , λ
∗
i ). The implication is

that the root distribution is symmetric with respect to the origin, and λi is the complex

conjugate of λ̃i.
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FIG. 2: These two figures show saddle points for V 5,2 theory with different R charges, from our

numerical analysis. The roots are plotted with black and blue dots for N = 20 and 100, respectively.

The real value of the roots scales as
√
N . The imaginary of part of the roots is bounded by ±∆bπ,

which are represented by green lines.

A practical method to find the saddle points is to treat the eigenvalues λi, λ̃i as functions

of time t, and solve an auxiliary coupled ordinary differential equations (ODE)

dλi
dt

=
∂F

∂λi
,

dλ̃i
dt

=
∂F

∂λ̃i
. (14)

By choosing the initial conditions λi(0), λ̃i(0) appropriately, the eigenvalues as functions of

t converge rapidly as t → ∞. Obviously the fixed points λi(∞), λ̃i(∞) would give us the

roots of saddle point equation. This method was utilized by the authors of Ref.[29] to study

the large-N behavior of partition function for N = 3 Chern-Simons quiver theories. We find

this technique is dependable for the non-chiral models we deal with in this paper, and we

closely follow the procedure in [29].

We put the coupled ODE on computer and have obtained the roots. They condense and

make a cut, and the roots for some different values of R-charges are displayed on complex

plane in Fig.2. We first note that the distribution is symmetric under (λi, λ̃i) → −(λi, λ̃i),

and in fact it always holds that λ∗i = λ̃i. This is of course not unexpected, considering the

symmetry of the integral mentioned earlier.

As we analyze the numerical data for different values of N , we find that the real part of

λ scales as Nα with α ≈ 1/2, and the imaginary part stays within the same interval of order

1. This behavior is qualitatively the same as the case of ABJM model reported in [29], and
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we also write

λi = Nαxi + iyi. (15)

For convenience, we assume we have re-arranged the roots so that xi < xj if i < j. As N

goes to infinity, xi, yi become continuously distributed over an interval.

Another notable feature of Fig.2 is that the range of Im(λi) changes for different values

of R-charge. This can be understood if we go back to the saddle point equations (10),(11).

Let us look at the following term from the second line of (10).

∑
j

m(1−∆b,
λi − λ̃j

2π
). (16)

With (15), for j = i this expression contains

m(1−∆b, iyi/π) =
i

π

y sin(2π(1−∆b))− π(1−∆b) sin(2y)

cos(2π(1−∆b))− cos(2y)
, (17)

which is divergent at y = π∆b. At this point the roots feel infinite force, and the roots

cannot cross this boundary. This argument is verified in Fig.2.

Now we take the large-N limit of F analytically. We first write F = Fext + Fint, where

Fext describes the Gaussian part with a single summation over the eigenvalues, and Fint

describes the interaction of the eigenvalues with a double summation. Juggling with the

summation indices, we can rewrite Fint in the following way.

Fint = −
∑
i<j

{
ln eλj−λi + ln eλ̃j−λ̃i + 2 ln(1− eλi−λj) + 2 ln(1− eλ̃i−λ̃j)

+`(1−∆a + i
λj − λi

2π
)− `(−1 + ∆a + i

λj − λi
2π

)

+`(1−∆a + i
λ̃j − λ̃i

2π
)− `(−1 + ∆a + i

λ̃j − λ̃i
2π

)

+2`(1−∆b + i
λ̃j − λi

2π
)− 2`(−1 + ∆b + i

λ̃j − λi
2π

)

+2`(1−∆b + i
λj − λ̃i

2π
)− 2`(−1 + ∆b + i

λj − λ̃i
2π

)
}

+
∑
i

{
2`(1−∆a) + 2`(1−∆b + i

λi − λ̃i
2π

) + 2`(1−∆b − i
λi − λ̃i

2π
)
}
. (18)

It turns out that the terms within the double summation give O(N2−α) contribution,

and the single summation part in the last line of (18) is subleading as O(N). Now for the

terms involving the function ` for lines 2-5 of (18), we can make use of the relation (8) .
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One discovers that the linear terms such as ln eλj−λi + ln eλ̃j−λ̃i in the first line get exactly

canceled by similar terms from the matter fields, if we impose

∆a + 2∆b = 2. (19)

This is essentially the same asymptotic property we discussed around Eq.(9). It is certainly

consistent with the superpotential (4), since Tr(ABΦ) should have R-charge 2. In fact,

considering everything in (4) one easily sees we should set ∆a = ∆b = 2/3, if we are to

relate this system to V 5,2. But we will just assume (19) and leave ∆b undetermined in the

following computation.

Now the rest of the summand is given as a series expansion, and we move on to take

large-N limit. We introduce a continuous variable s instead of summation indices i, j,

s = i/N, 0 < s < 1. (20)

Then a summation is transformed into an integral,

1

N

N∑
i=1

F (i/N)→
∫ 1

0

F (s)ds =

∫ x∗

−x∗
F (s(x))ρ(x)dx, (21)

where x∗ = Max(xi) and ρ(x) = ds
dx

.

Ignoring the terms in the last line of (18), we obtain

Fint = −N2

∫ x∗

−x∗
ρ(x)dx

∫ x

−x∗
ρ(x′)dx′

∞∑
n=1

[
− 2

n

(
en(λ(x′)−λ(x)) + en(λ̃(x′)−λ̃(x))

)
+ e−n(λ(x)−λ(x′))

(
φa cos(nφa)

πn
−
(
λ(x)− λ(x′)

πn
+

1

πn2

)
sin(nφa)

)
+ e−n(λ̃(x)−λ̃(x′))

(
φa cos(nφa)

πn
−

(
λ̃(x)− λ̃(x′)

πn
+

1

πn2

)
sin(nφa)

)

+ 2e−n(λ̃(x)−λ(x′))

(
φb cos(nφb)

πn
−

(
λ̃(x)− λ(x′)

πn
+

1

πn2

)
sin(nφb)

)

+ 2e−n(λ(x)−λ̃(x′))

(
φb cos(nφb)

πn
−

(
λ(x)− λ̃(x′)

πn
+

1

πn2

)
sin(nφb)

)]
. (22)

where we defined a shorthand notation φa ≡ 2π(1−∆a), φb ≡ 2π(1−∆b).

Eq.(22) looks complicated, but if we integrate by parts repeatedly we can obtain an
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expansion in terms of 1/Nα. Consider for instance∫ x

−x∗
dx′e−n(λ(x)−λ(x′))F (x′)

=

∫ x

−x∗
dx′e−nN

α(x−x′)e−in(y(x)−y(x′))F (x′)

=
1

nNα

[
e−nN

α(x−x′)−in(y(x)−y(x′))F (x′)
]x′=x
x′=−x∗

+O(1/N2α)

=
1

nNα
F (x) +O(1/N2α). (23)

The above approximation is valid if in F (x), x’s do not appear with a factor of Nα. For

instance the density function ρ(x) satisfies this criterion. In this way we can remove the

integration over x′ in (22), and arrive at an expression

Fint = N2−α
∫ x∗

−x∗
dxρ(x)2f(2y(x)), (24)

where the computation leads to

f(2y(x)) = 4
∞∑
n=1

{
1

n2
− φa

2πn2
cos(nφa) +

1

πn3
sin(nφa)

− φb
πn2

cos(nφb) cos(2ny) +
2y

πn2
sin(nφb) sin(2ny) +

2

πn3
sin(nφb) cos(2ny)

}
(25)

One can sum this expression using Fourier series of simple linear or quadratic functions.

The answer can have a discontinuity at y = φb/2 in principle, but rather miraculously, the

discontinuities cancel out and we obtain the following simple result.

f(2y) =
1

π
φb((2π − φb)2 − 4y2), −π < y < π. (26)

Apart from the fact that the intercept at y = 0 is a function of R-charge assignment, f(2y)

being a quadratic function is exactly the same as the result of ABJM model in large-N limit

reported in [29].

For the extremization of the whole action we also consider the external force described

by the Gaussian part. It is given as

Fext = −i k
4π

N∑
i=1

(λ2
i − λ̃2

i )

=
kN1+α

π

∫ x∗

−x∗
dxxρ(x)y(x) (27)
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FIG. 3: These figures show the density of roots ρ(x) for V 5,2. The dots are numerical data and

the red lines show the analytical predictions.

Comparing Fext against Fint, it is clear the sum should be extremized when α = 1/2, which

is consistent with numerical analysis.

Taking into account the constraint that the total number of roots is N , we have the

following expression

F = N3/2

[
k

π

∫
dxxρ(x)y(x) +

∫
dxρ(x)2f(2y(x))− µ

2π

(∫
dxρ(x)− 1

)]
, (28)

where µ is a Lagrange multiplier. In fact this is identical to Eq.(16) of [29], and holds in

general for any non-chiral models with two nodes we will consider in this paper. It is easy

to solve the equation of motion, and one finds the density function is constant while y(x) is

linear, i.e.

ρ(x) =
µ

4φb(2π − φb)2
, y(x) =

k(2π − φb)2

2µ
x . (29)

One can check if ρ(x) is really a piece-wise constant function or not, with numerical data.

It is indeed the case, as one can see in Fig.3.

Then F is expressed as a function of x∗,

F = N3/2
[φb(2π − φb)2

2πx∗
+

k2x3
∗

24πφb

]
. (30)

The extremization point is easily found, and with the corresponding imaginary part it is

x∗ =

√
2φb(2π − φb)

k
, y∗ =

1

2
(2π − φb) = π∆b. (31)

Here we see that Max(Im(y)) is indeed bounded by π∆b, in consistent with our wall of

infinite force argument around Eq.(17).
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Finally the answer for free energy is

F = k1/2N3/2

√
2φb(2π − φb)3

3π
. (32)

Now if we substitute the natural value ∆a = ∆b = 2/3, the free energy becomes

F =
16π

27
k1/2N3/2, (33)

and it is certainly consistent with the general formula with the volume of V 5,2 given in [10]

Vol(V5,2) =
27π4

128
. (34)

III. QUIVER WITH FUNDAMENTAL MATTER: Q1,1,1 AND V 5,2

A. Q1,1,1

Our second example is a toric homogeneous Sasaki-Einstein manifold Q1,1,1. This space

is a U(1) fibration over CP1 ×CP1 ×CP1, so the isometry group is U(1)R × SU(2)3. There

are several proposals for the field theory duals of AdS4 × Q1,1,1 background. A four-node

quiver is proposed for a specific abelian orbifold Q1,1,1/Zk in Ref.[37], which also studied

a closely related geometry, Q2,2,2 = Q1,1,1/Z2. These models are chiral, and although it

is straightforward to write the integral formula for their partition functions, we found it

difficult to perform both numerical and analytic computations.

We consider instead a non-chiral model proposed in [11, 12]. Like our previous example,

this theory is closely related to ABJM model. In addition to the bifundamental fields Ai, Bi,

one adds a pair of (anti)-fundamental representation fields to each gauge group node. The

quiver diagram is given in Fig.4. In addition to the ordinary quartic superpotential of ABJM

model, one adds cubic terms

W = εijεkl TrAiBkAjBl +Q1A1Q̃1 +Q2A2Q̃2. (35)

It is argued that this theory gives C(Q1,1,1) when the bare Chern-Simons levels vanish.

Unlike our previous example V 5,2 in the last section, even if we are using the fact R(W ) = 2

we cannot determine the R-charges completely. Using the SU(2) × SU(2) symmetry, we

may set R(Qi) = ∆f , R(Q̃i) = ∆f̃ , D(Ai) = ∆A, and D(Bi) = ∆B. Using the fact W

is a marginal operator, we may expect ∆f + ∆f̃ + ∆A = 2∆A + 2∆B = 2. If we assume

12



FIG. 4: The quiver diagram for Chern-Simons dual of AdS4 ×Q1,1,1

the bifundamental fields retain the canonical conformal dimension 1/2, we would get ∆A =

∆B = 1/2,∆f = 3/4.

We can write down the partition function as follows.

Z =
1

(N !)2

∫ N∏
i=1

dλidλ̃i
(2π)2

∏
i<j

(
2 sinh

λi − λj
2

)2
(

2 sinh
λ̃i − λ̃j

2

)2

×
∏
i,j

exp

[
2`(1−∆A + i

λi − λ̃j
2π

) + 2`(1−∆B − i
λi − λ̃j

2π
)

]

×
∏
i

exp

[
2`(1−∆f − i

λi
2π

) + 2`(1−∆f̃ + i
λ̃i
2π

)

]
. (36)

One can easily check this expression is real-valued, and satisfy the following property.

Z(∆A,∆B,∆f ,∆f̃ ) = Z(∆A,∆B,∆f̃ ,∆f ) . (37)

Let us now check the convergence of this integral. As we take one of λi to infinity while

keeping all others finite, we see the leading behavior is

exp [{(N − 1)(∆A + ∆B − 1)− 2(1−∆f )}λi] . (38)

Then clearly for large N the integral is divergent for ∆A + ∆B > 1. ∆A + ∆B = 1 is the

marginal case we are interested in, and then the convergence depends on the value of ∆f :

We have convergence if ∆f < 1. And it is the same with λ̃ and ∆f̃ .

With the saddle point equation, one can check that λ∗i = λ̃i if we assume ∆f = ∆f̃ . In

order to simplify the following analysis, we will assume this is the case from now on. The

root distribution from the numerical results are given in Fig.5.
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FIG. 5: The distribution of roots for Q1,1,1 theory with different R charges. The roots are plotted

with black and blue dots for N = 20 and 100, respectively. The real part of the roots scales as
√
N . The maximum values of imaginary part of λ are bounded by π∆B, which are represented by

green lines.
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FIG. 6: These figures show the density function ρ(x) for Q1,1,1. The dots are numerical data and

the red lines show the analytical predictions.

Now we turn to the analytic computation. Taking the continuum limit, we first note that

the linear terms cancel if ∆A+∆B = 1. We assume this is true, and after some manipulation

similar to Sec.II, we arrive at

F = N3/2

[∫ x∗

−x∗
dxρ(x)2f(2y(x)) + 2

∫ x∗

−x∗
dx

(
1−∆f −

y(x)

2π

)
ρ(x)|x|

]
. (39)

The interaction part is described by

f(2y) = π2 − (2y + 2πq)2 (40)

where we set for convenience ∆A = 1/2− q,∆B = 1/2 + q.

14



Now solving the functional variation equation, we obtain

y =
π2|x|

(2− 2∆f + q)4π|x| − 2µ
− qπ, ρ =

µ− (2− 2∆f + q)2π|x|
4π3

(41)

Unlike the previous example, the density function is not constant, and this analytic calcu-

lation is supported by numerical results. See Fig.6.

Then we fix µ from the normalization condition
∫
ρ(x)dx = 1, and find the extremal

point of F as a function of x∗. Finally, the free energy as a function of ∆f , q is

F = N3/2

√
2π(5− 4∆f + 2q)

3
√

3− 2∆f + q
. (42)

If we substitute ∆A + 2∆f = 2, which is consistent with superpotential Eq.(35),

F = N3/2 4π

3
√

3
. (43)

This matches nicely with the volume of Q1,1,1, which can be found for instance in [38].

Vol(Q1,1,1) =
π4

8
. (44)

Note that, unlike the previous example of V5,2, the right value of F does not uniquely

determine the R-charge values for all matter fields.

B. V 5,2

We already studied a Chern-Simons-matter theory which describes V 5,2 in Sec.II. It is

possible to devise another dual field theory using matter fields in fundamental representation

[11, 12]. One starts with pure super-Yang-Mills theory without Chern-Simons terms, with

gauge group U(N). There are three chiral multiplets X, Y, Z in adjoint representation, and

we consider adding k fundamentals Qa and antifundamentals Q̃a, with a = 1, · · · , k.

The superpotential is given as

W = TrX[Y, Z] +
k∑
a=1

Q̃a(X
2 + Y 2 + Z2)Qa. (45)

If we are to use this superpotential, the R-charge is obviously 2/3 for adjoint fields, and 1/3

for (anti)-fundamental fields. The vacuum moduli space correctly reproduces C(V 5,2)/Zk
[11, 12].
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FIG. 7: The quiver diagram for Chern-Simons dual of AdS4 × V 5,2

The matrix integral is written as

Z =
1

N !

∫ N∏
i=1

dλi
2π

∏
i<j

(
2 sinh

λi − λj
2

)2∏
i,j

exp

[
3`(1−∆a + i

λi − λj
2π

)

]
×
∏
i

exp

[
k`(1−∆f + i

λi
2π

) + k`(1−∆f̃ − i
λi
2π

)

]
, (46)

where ∆a is the R-charge of adjoint fields X, Y, Z, and ∆f = R(Q),∆f̃ = R(Q̃). This

expression is always real-valued.

Let us again consider the convergence of the integral. As we send one particular λi to

infinity while keeping other variables finite, the leading contribution comes from the first

line, and the integrand behaves

exp
[{

(3∆a − 2)(N − 1)− k(2−∆f −∆f̃ )/2
}
λi
]

(47)

So it is obvious that for ∆a > 2/3, the integral in (5) is divergent. As ∆a becomes smaller,

Z should decay faster and faster. We are basically interested in the large-N limit with

∆a = 2/3, and perform the computation with an arbitrary R-charge for quarks, i.e. ∆f =

∆f̃ ≡ 1− 2h. Note that, once we set ∆a = 2/3, the integral is convergent for h > 0.

One can proceed in the same way as before, and from the saddle point equation it is

clear that the roots are actually real-valued. The linear terms like ln eλi−λj get canceled by

similar terms from adjoint fields, since ∆a = 2/3.

As the eigenvalues are real-valued at the saddle point, the free energy only contains the

density function ρ, and the equation of motion in the continuum limit is much simpler than

previous examples. From numerical computation we have λi = Nαxi and α ≈ 1/2. Analytic

computation shows α = 1/2 in the same way as before.

The interaction part comes from the gauge field contribution and the matter fields in

adjoint representation. They are of double-summation form and turn into a multiple inte-

gration, but in the large-N limit we can remove one integration by partial integration and
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FIG. 8: The left figure shows saddle points for flavored V 5,2 theory with N = 100 and R charge

∆a = 2/3 and ∆f = ∆f̃ = 1/3. All roots are real. The right figure shows the density function

ρ(x). The dots are numerical data and the red line shows the analytical predictions. This show

that numerical data and analytical prediction ρ(x) = 3(4π − 3|x|)/(16π2) are same.

evaluating at the boundary. The final result turns out to be

Fint =
16π2N2−α

27

∫ x∗

−x∗
dxρ(x)2. (48)

Now the quark fields Q, Q̃ give single-summation expression in F , and in fact they play a

similar role as the Chern-Simons terms. In the large-N limit the leading contribution is

Ffund = 2hkN1+α

∫ x∗

−x∗
dxρ(x)|x|. (49)

Now we set α = 1/2 and introduce a Lagrange multiplier to write

F = N3/2

[∫
dx

16π2

27
ρ(x)2 + 2hk

∫
dxρ(x)|x| − µ

2π

(∫
dxρ(x)− 1

)]
(50)

From the equation of motion, the density function is obtained

ρ(x) =
27(µ− 4hkπ|x|)

64π3
. (51)

Note that it is a piece-wise linear function. This fact is confirmed by numerical results, see.

Fig.8. Now we can determine µ from the normalization of ρ(x). The total free energy as a

function of x∗ is

F = N3/2

(
hkx∗ −

9h2k2x3
∗

32π2
+

8π2

27x∗

)
(52)

The final solution for free energy extremized with respect to x∗ is

F =
16π

9
√

3
(hk)1/2N3/2. (53)
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Now if we use the superpotential and set ∆f = ∆f̃ = 1/3 or h = 1/3, this is the same as

(33) and consistent with the volume of V 5,2 and AdS/CFT.

IV. DISCUSSION

We have provided a test of AdS4/CFT3 correspondence for three N = 2 models in

this paper. The dual geometries are Q1,1,1 and V 5,2, which are both relatively simple,

homogeneous Sasaki-Einstein manifolds. The partition function is calculated in large-N

limit, and in the leading order the free energy with appropriate R-charge assignment shows

nice agreement with the predictions of AdS/CFT. Compared with the study involving just

the chiral ring structure, our result renders very strong support to the credibility of the dual

field theories.

For explicit computations, we first used symmetry argument and marginality of the matrix

integral to reduce the number of independent R-charges, and expressed Z as a function of

remaining R-charges. We can then read off a condition for cancellation of linear terms from

the integrand, like ∆A+∆B = 1 in the Q1,1,1 model. If this condition does not hold, the linear

terms with double summation survive and in fact dominate the action. For ∆A + ∆B < 1,

the integral is convergent and this corresponds to a rather more conventional matrix model

integral. The roots exchange usual log |λi − λj| type interaction, and the real parts as well

as the imaginary parts are bounded within a finite interval, as N →∞.

We have checked this prediction numerically. For the Q1,1,1 model we have studied here,

numerically fitting the data for N = 20, 40, · · · , 120, we have obtained α = 0.569391 for

∆A = ∆B = 1/2, and α = 0.104406 for ∆A = ∆B = 1/4. This makes the free energy

scale as N2 below the line of marginality. In Fig.9 we have illustrated this fact using our

numerical data. At a point on the marginal line, ∆A = ∆B = 1/2, F ∼ N3/2 as we have

argued already. But away from it, for instance at ∆A = ∆B = 1/4, the numerical result

gives F ∼ N2. If one goes over the line of marginality, with larger R-charges, then Z →∞

or F → −∞ as we have argued already.

After imposing conditions on R-charges using symmetry and the marginal convergence of

Z, we have performed analytic computation and found expressions for F/N3/2 as a function

of the remaining R-charges. For the examples considered in this paper, if we make full use

of the marginality of the superpotential in the dual field theory, F/N3/2 agrees exactly with
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FIG. 9: These figures how free energy scales with respect to N for different R charges for Q1,1,1

model. The graphs are log-log plots. The blue dots are numerical data and the red lines are fitting

lines. We took data for N = 20, 40, 60, 80, 100, 120, 140, 160.

the prediction of AdS/CFT Eq.(1).

In [30], the author put forward an interesting argument that the partition function as a

function of conformal dimensions is extremized at the correct values. In the large-N limit

we are interested in here, Z itself converges to zero and one needs to consider a refinement of

Z-extremization using F = − limN→∞(lnZ/N3/2) instead. This is addressed in [35] 1, where

it is shown that the free energy in the large-N limit for strongly coupled N = 2 non-chiral

quiver Chern-Simons is consistent with F -extremization theorem.

To check F -extremization, one should consider R-charge assignments consistent with the

marginality of superpotential, and then F should be extremized by the correct values of the

remaining freely-adjustable R-charge values. Our result is in harmony with F -theorem. In

fact, when we use both symmetry argument and marginality of superpotential, all R-charge

values are either completely determined (for V 5,2 models) or F has no dependence on the

remaining choice of R-charge values (for flavored Q1,1,1 model).

In order to see the extremization more clearly, for instance with our first example we

need to calculate more generally Z(∆A,∆B,∆Φ1 ,∆Φ2) just using marginality of W , i.e.

Z(∆A,∆B = 4/3 −∆A,∆Φ1 = 2/3,∆Φ2 = 2/3). But it is obvious that this function of ∆A

1 We thank D. Jafferis who pointed out erroneous statements on Z-extremization in earlier versions of this

paper.
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should be extremized at ∆A = 2/3, due to symmetry argument.

In this paper we studied only non-chiral Chern-Simons quivers with real-valued partition

function. For chiral models such as the triangular quiver for M3,2 model [3, 4], it is more

difficult to identify the behavior of roots and perform analytic calculation if we apply the

same method used here. We hope to be able to report definite answers for chiral model

proposals in future publications.
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