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Using 535� 106 B-meson pairs collected by the Belle detector at the KEKB eþe� collider, we measure

branching fractions of ð7:16� 0:10ðstatÞ � 0:60ðsystÞ � 10�4 for Bþ ! J=cKþ�þ�� and ð4:31�
0:20ðstatÞ � 0:50ðsystÞÞ � 10�4 for Bþ ! c 0Kþ�þ��. We perform amplitude analyses to determine

the resonant structure of the Kþ�þ�� final state in Bþ ! J=cKþ�þ�� and Bþ ! c 0Kþ�þ�� and

find that the K1ð1270Þ is a prominent component of both decay modes. There is significant interference

among the different intermediate states, which leads, in particular, to a striking distortion of the � line

shape due to the !. Based on the results of the fit to the Bþ ! J=cKþ�þ�� data, the relative decay

fractions of the K1ð1270Þ to K�, K!, and K�ð892Þ� are consistent with previous measurements, but the

decay fraction to K�
0ð1430Þ is significantly smaller. Finally, by floating the mass and width of the K1ð1270Þ

in an additional fit of the Bþ ! J=cKþ�þ�� data, we measure a mass of ð1248:1� 3:3ðstatÞ �
1:4ðsystÞÞ MeV=c2 and a width of ð119:5� 5:2ðstatÞ � 6:7ðsystÞÞ MeV=c2 for the K1ð1270Þ.
DOI: 10.1103/PhysRevD.83.032005 PACS numbers: 13.25.Hw, 13.25.Es, 14.40.Df

I. INTRODUCTION

The large number of B-meson decays observed at B
factories allows detailed studies of the intermediate-state
resonances involved in these decays. This paper analyzes
the structure of the Kþ�þ�� final state in the decays
Bþ ! J=cKþ�þ�� and Bþ ! c 0Kþ�þ��.1 Kaon ex-
citations that decay to a K�� final state are difficult to
distinguish based on the mass of the K�� system alone,
owing to their overlapping line shapes.2 In this analysis,
data are therefore fitted in the three dimensionsM2ðK��Þ,
M2ðK�Þ, and M2ð��Þ, which are the squared invariant
masses of the Kþ�þ��, Kþ��, and �þ�� systems,
respectively. An unbinned maximum-likelihood fit is per-
formed to extract maximal information from the data. The
fitting model accounts for interferences among different
intermediate states, as well as the spin-dependent angular
distributions of the final state. The large sample size,
combined with the clean environment afforded by the
presence of a J=c or c 0 in the final state, makes it possible
to distinguish the different kaon excitations that contribute

to the Kþ�þ�� final state. The results provide informa-
tion not only on intermediate-state interactions but also on
the structure of the kaon spectrum. By performing an
additional fit in which the mass and width of the
K1ð1270Þ are floated, we measure the mass and width of
the K1ð1270Þ.
Identifying the kaon excitations involved in Bþ !

J=cKþ�þ�� and Bþ ! c 0Kþ�þ�� can lead to a better
understanding of the underlying theory. For example, the
breaking of SUð3Þ flavor symmetry mixes the 13P1 and
11P1 states of the kaon system into the physical states
K1ð1270Þ and K1ð1400Þ as

K1ð1270Þ ¼ Kð13P1Þ sin�K þ Kð11P1Þ cos�K; (1)

K1ð1400Þ ¼ Kð13P1Þ cos�K � Kð11P1Þ sin�K; (2)

where �K is the 3P1-
1P1 mixing angle. The value of �K can

be related to the masses of the K1ð1270Þ and K1ð1400Þ, to
the strong decays of the K1ð1270Þ and K1ð1400Þ, and to
rates of weak decays to final states involving the K1ð1270Þ
and K1ð1400Þ [2–4]. The measurements presented here can
lead to a better determination of �K.
The data sample used in this study was produced by the

KEKB asymmetric-energy eþe� collider [5] and recon-
structed by the Belle detector [6]. It corresponds to an
integrated luminosity of 492 fb�1 accumulated at the
�ð4SÞ resonance and contains 535� 106 B �B meson pairs.

1Charge-conjugate modes are always implicit.
2In 2001, the Belle Collaboration measured the branching

fraction for Bþ ! J=cK1ð1270Þ with 2% of the data presented
here. The Kþ�þ�� final state in Bþ ! J=cKþ�þ�� was
found to be dominated by the K1ð1270Þ, and no other structure
was detected [1].
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II. THE BELLE DETECTOR

The Belle detector [6] is a large-solid-angle magnetic
spectrometer. A silicon vertex detector surrounds the inter-
action point and reconstructs decay vertices. A 50-layer
central drift chamber (CDC) provides charged-particle
tracking over the laboratory polar-angle region 17� � � �
150�, which corresponds to 92% of the solid angle in the
�ð4SÞ rest frame. A system of 1188 aerogel Cherenkov
counters (ACC) and an array of 128 time-of-flight counters
provide particle identification. An electromagnetic calo-
rimeter, comprising 8736 CsI(Tl) crystals, records the
energy deposited by photons, leptons, and hadrons. These
subdetectors are surrounded by a superconducting solenoid
3.4 m in diameter and 4.4 m in length, which produces a
1.5-T magnetic field parallel to the positron beam. An iron
flux return installed outside the coil is instrumented with
large-area resistive-plate counters to identify muons and
KL mesons. Monte Carlo (MC) simulations3 are used to
determine the acceptance of the detector for the processes
of interest.

III. EVENT SELECTION

Electron candidates are identified by combining infor-
mation from the CDC, electromagnetic calorimeter, and
ACC. Muon candidates are identified by extrapolating
charged-particle tracks from the silicon vertex detector
and CDC into the KL=� detector. To identify charged
hadrons, momentum measurements from the CDC are
combined with velocity information from the time-of-
flight counters, ACC, and CDC (dE=dx) [9]. The kaon
identification efficiency is above 80%, while the probabil-
ity of misidentifying a pion as a kaon is below 10%.

Low-momentum charged tracks that curl up in the CDC
can be reconstructed multiple times by the track finder. To
ensure that no track is included more than once, criteria
similar to those of Ref. [10] are used.4

In studying a mode that has a J=c or c 0 in the final state,
a key strategy is to reconstruct the J=c only in its decays to
eþe� or �þ��, and the c 0 only in its decays to eþe�,
�þ��, or J=c�þ��. Although this choice abandons all
but 12% of J=c ’s and 5% of c 0’s, it reduces continuum
backgrounds to a negligible level. The decays J=c !
�þ�� and c 0 ! �þ�� are reconstructed by combining
oppositely-charged muon candidates. The invariant-mass
distribution is then fitted, modeling the J=c and c 0 as
double Gaussians. Muon pairs are discarded unless they
have an invariant mass within�3� of the fitted J=c or c 0
mean, where � is the width of the narrower Gaussian.
Similarly, J=c ! eþe� and c 0 ! eþe� decays are re-

constructed by combining oppositely-charged electron
candidates. To account for energy losses due to final-state
radiation or bremsstrahlung in the detector, any photons
detected within 50 mrad of the initial direction of an
electron candidate are also included in the eþe�
invariant-mass calculation. Electron pairs are discarded
unless they have an invariant mass within the range ex-
tending from �4� to þ3� of the fitted J=c or c 0 mean.
This mass window is asymmetric about the mean so as to
include the radiative tails of the J=c and c 0, which are not
completely recovered by the photon addition.
Lepton track pairs that survive the mass requirements

are fitted to a common vertex, which is constrained within
errors to the measured interaction point. This vertex is then
fixed, and another fit is performed, constraining the dilep-
ton invariant mass to the nominal J=c or c 0 mass. Since
the observed widths of the J=c and c 0 are dominated by
measurement error, this procedure improves the mass reso-
lution of the B candidate.
To reconstruct c 0 ! J=c�þ�� decays, leptonic J=c

candidates are combined with a pair of oppositely-charged
tracks that satisfy pion-identification criteria. As the�þ��
invariant-mass distribution in c 0 ! J=c�þ�� decays is
known to peak at high values [12], the dipion invariant
mass is required to be greater than 0:4 GeV=c2. Unless
they have an invariant mass within �3� of the fitted c 0
mean, c 0 ! J=c�þ�� candidates are discarded.
To reconstruct B-meson candidates, each J=c or c 0

candidate is combined with a kaon candidate and two
oppositely-charged pion candidates. Kaon and pion candi-
dates are charged tracks that satisfy identification criteria
for kaons and pions, respectively, and have an impact
parameter with respect to the fitted dilepton vertex of
jdrj< 0:4 cm and jdzj< 1:5 cm.5 Any pion candidate
that is identified as the product of a K0

S ! �þ�� decay

is discarded.6

A. B-meson reconstruction

Two kinematic variables can be used to identify B
mesons. First, the reconstructed mass of a true B meson
is likely to fall near the nominal B mass. Second, as B
mesons are produced in the reaction

eþe� ! �ð4SÞ ! BþB�; (3)

the energy of each B in the �ð4SÞ frame is half the total
energy of the electron and positron beams in this frame.
Since beam-energy drifts can cause the mass of the �ð4SÞ

3Lists of four-vectors for a given decay chain are generated
using EvtGen [7]. The detector response is then simulated using
GEANT [8], combining randomly-triggered data with the simu-
lated events.

4See Ref. [11] for a detailed description of the event selection.

5The impact-parameter requirement is not applied to the pions
in c 0 ! J=c�þ��.

6To reconstruct K0
S ! �þ��, oppositely-charged pion candi-

dates are combined, and the K0
S selection criteria of Ref. [13] are

applied. Both pions are vetoed if their combined invariant mass
lies between 0:482 GeV=c2 and 0:510 GeV=c2, which corre-
sponds roughly to a region extending from �4� to þ3� around
the nominal K0

S mass.
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to vary, it is customary to recast these kinematic variables
in forms that are readily corrected for drifts in the beam
energy—namely, the energy difference �E and beam-
constrained mass Mbc:

�E ¼ E�ðBÞ � E�
beam; (4)

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
beam � P�2ðBÞ

q
: (5)

Here, P�ðBÞ is the momentum of the B candidate in the
�ð4SÞ frame, while E�

beam is half the energy of the �ð4SÞ
and is measured independently. For a correctly-
reconstructed B meson, �E peaks at zero, and Mbc peaks
at the nominal B mass.

In the case of a multiparticle final state such as
J=cKþ�þ�� or c 0Kþ�þ��, multiple B candidates
can pose a challenge. If a correctly-reconstructed B candi-
date includes a low-momentum pion, then an additional B
candidate can be formed by replacing that pion with a low-
momentum pion from the other B. As the exchange does
not significantly affect the energy or momentum of the B
candidate, both candidates can satisfy �E andMbc criteria.
Multiple candidates can spoil branching-fraction measure-
ments and distort observed mass spectra. To ensure that no
B decay is counted more than once, a best-candidate
selection is performed. First, B candidates are required to
have j�Ej< 0:2 GeV and Mbc > 5:27 GeV=c2. This
leaves 25% of Bþ ! J=cKþ�þ�� events and 34% of
Bþ ! c 0Kþ�þ�� events with multiple candidates; these
events have a mean multiplicity of 2.4 and 2.7, respectively.
If a given event has multiple B candidates with the same
final state, the charged tracks that make up each B candi-
date are fitted to a common vertex. The candidate whose
vertex fit has the smallest �2 is selected. According to MC
studies, this procedure identifies the correct B candidate in
approximately 55% of cases where there are multiple
candidates.

In the case of Bþ ! J=cKþ�þ��, the decay
Bþ ! c 0Kþ is vetoed by rejecting all B candidates that
have a J=c�þ�� invariant mass between 3:675 GeV=c2

and 3:695 GeV=c2.7 According to MC studies, 1.1% of
Bþ ! c 0Kþ events in which the c 0 decays to J=c�þ��
and the J=c decays to eþe� or �þ�� survive this veto.

B. Signal and sideband regions

Data distributions of �E for Bþ ! J=cKþ�þ�� and
Bþ ! c 0Kþ�þ�� are shown in Fig. 1. The signal is
modeled as a double Gaussian with a single mean, fixing
the width and relative height of the wider Gaussian to the
results of a MC fit. The background is modeled as a first-
order polynomial. Based on these fits, the signal region is
defined as

� 3��E <�E���E <þ3��E; (6)

where ��E is the mean of the signal peak, and ��E is the
width of the narrower Gaussian. The sideband region,
which is used to estimate the background under the signal,
is defined as

�0:13 GeV< �E���E <�0:05 GeV;

0:05 GeV< �E���E < 0:13 GeV:
(7)

The sideband normalization factor is given by

fB ¼
R
signal pbkgd�ER

sideband pbkgd�E
; (8)

where pbkg is the polynomial representing the background.

The fraction of signal-region events that are background is
estimated as

nB ¼ B

S
fB; (9)

where S and B are the numbers of events in the signal and
sideband regions, respectively.

IV. COORDINATE TRANSFORMATIONS

The data in the sideband region are used to model the
background in the signal region. Figure 2, which shows the
distribution ofMðK��Þ forBþ ! J=cKþ�þ�� events in
the signal and sideband regions, reveals a problem: signal
and sideband data have different end points in MðK��Þ.
Plotting �E versus MðK��Þ reveals the cause of the

discrepancy. As Fig. 3 demonstrates, the kinematically
allowed range of MðK��Þ depends on �E. While the
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FIG. 1 (color online). Data �E distributions for Bþ !
J=cKþ�þ�� (top) and Bþ ! c 0Kþ�þ�� (bottom). The
curves show the results of the fits described in the text.
Dashed and dotted lines indicate the signal and sideband regions,
respectively.

7The small contribution from Bþ ! Xð3872ÞKþ is not vetoed.
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minimum value of MðK��Þ is MðK��Þmin¼MKþ2M�,
the maximum value, which is attained when both the
Kþ�þ�� system and the J=c are at rest in the
B-candidate’s rest frame, varies with�E asMðK��Þmax ¼
�EþMB �MJ=c . Here, MK, M�, MB, and MJ=c stand

for the nominal masses of the subscripted particles.
Transforming MðK��Þ as follows removes its depen-

dence on �E:

M0ðK��Þ ¼ MðK��Þmin

þ ½MðK��Þ �MðK��Þmin�

�MðK��Þ0max �MðK��Þmin

MðK��Þmax �MðK��Þmin

: (10)

Here, MðK��Þ0max ¼ MB �MJ=c is the value of

MðK��Þmax at �E ¼ 0. Figure 4 shows �E versus the

transformed coordinate M0ðK��Þ. While the minimum
value of MðK��Þ is unaffected by the transformation,
the maximum value is changed such that the maximum
of M0ðK��Þ at any �E is equal to the maximum of
MðK��Þ at�E ¼ 0. The range ofMðK��Þ is compressed
for positive values of �E and stretched for negative values
of �E.8

Figure 5 shows M0ðK��Þ for events in the signal and
sideband regions. The problem of Fig. 2 has been solved:
the end points of the transformed signal and sideband
distributions match.
An important feature of the transformation is that it does

not change MðK��Þ at �E ¼ 0. Thus, although sideband
and signal regions are both transformed, the change is
minimal in the signal region.
Just as the range ofMðK��Þ depends on �E, the ranges

of MðK�Þ and Mð��Þ also depend on �E. To correct for
this dependence, transformations similar to Eq. (10) are
applied. The variable MðK�Þ is transformed as

M0ðK�Þ ¼ MðK�Þmin

þ ½MðK�Þ �MðK�Þmin�

�MðK��Þ0max �MðK��Þmin

MðK��Þmax �MðK��Þmin

; (11)
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FIG. 4 (color online). �E versus M0ðK��Þ for Bþ !
J=cKþ�þ�� data. The lines are defined as in Fig. 3.
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FIG. 3 (color online). �E versus MðK��Þ for Bþ !
J=cKþ�þ�� data. Dashed lines outline the signal region,
and dotted lines outline the sidebands. The solid lines indicate
the minimum and maximum values of MðK��Þ.
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FIG. 2 (color online). Invariant mass of the Kþ�þ�� system
in Bþ ! J=cKþ�þ�� data. Open and filled histograms show
events in the signal and normalized sideband regions, respec-
tively.

8Although correctly-reconstructed B mesons should have
�E ¼ 0 on average, systematic errors shift the observed mean
of the signal �E peak away from zero by 1–2 MeV. For
simplicity of presentation, this mean is assumed to be zero in
the equations of this section. In fact, just as the signal and
sideband regions are centered around the measured �E mean,
the transformations are also made about the measured �E mean.
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and the variable Mð��Þ is transformed as

M0ð��Þ ¼ Mð��Þmin

þ ½Mð��Þ �Mð��Þmin�

�MðK��Þ0max �MðK��Þmin

MðK��Þmax �MðK��Þmin

: (12)

Here, MðK�Þmin ¼ MK þM�, and Mð��Þmin ¼ 2M�.
Figures 6 and 7 show �E versus MðK�Þ and M0ðK�Þ. A
similar effect is observed for Mð��Þ and M0ð��Þ.

As Fig. 7 illustrates, transforming theMðK�Þ coordinate
distorts the shapes of the K�ð892Þ and D0 backgrounds.
This distortion must be taken into account in parametrizing
the background for the three-dimensional fits of Sec. VI
[i.e., in Eqs. (24) and (25)]. Modeling the distortion

is straightforward. First, the peak is described as a
Breit-Wigner or Gaussian in the untransformed coordinate,
MðK�Þ. Using Eq. (11), MðK�Þ is then written as a
function ofM0ðK�Þ and�E. The expression is numerically
integrated over the relevant range of�E to obtain the shape
of the peak as a function ofM0ðK�Þ. Figure 8 demonstrates
the transformation of the K�ð892Þ background shape.
The data also containK0

S and �
0 backgrounds, albeit less

prominently. The distortion of these peaks by the Mð��Þ
transformation is modeled by describing the K0

S as a

Gaussian and the �0 as a Breit-Wigner inMð��Þ, express-
ing Mð��Þ as a function of M0ð��Þ and �E with the help
of Eq. (12), and integrating this over the appropriate region
of �E.
As the main source of background in this analysis is

misreconstructed B-meson decays, the transformations
were checked by analyzing a generic-MC simulation of
�ð4SÞ decays to BþB� and B0 �B0, with all known decay
modes included. The MðK��Þ, MðK�Þ, and Mð��Þ dis-
tributions were found to display the same �E dependence
in MC simulation as in data. Excluding signal events from
the MC sample, the distributions of background events in
the signal and sideband regions were compared with and
without the transformations. The transformed sidebands
were found to reproduce the shape of the background in
the signal region more accurately than the untransformed
sidebands, especially at high MðK��Þ, MðK�Þ, and
Mð��Þ.9
Although some discrepancy was observed between the

background in the signal and sideband regions near the K0
S
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FIG. 5 (color online). Transformed invariant mass of the
Kþ�þ�� system in Bþ ! J=cKþ�þ�� data. Open and filled
histograms show events in the signal and normalized sideband
regions, respectively.
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9For details, see Ref. [11].

H. GULER et al. PHYSICAL REVIEW D 83, 032005 (2011)

032005-6



and � masses, this is mostly independent of the trans-
formation and is taken into consideration when calculating
systematic errors.

The transformations of Eqs. (10)–(12) were also applied
to Bþ ! c 0Kþ�þ��, with MJ=c replaced with Mc 0 . The

results of the checks were the same.
For simplicity, the variables M0ðK��Þ, M0ðK�Þ, and

M0ð��Þ are henceforth referred to as MðK��Þ, MðK�Þ,
and Mð��Þ, respectively.

V. TOTAL BRANCHING FRACTIONS

Branching fractions for B-meson decays to
J=cKþ�þ�� and c 0Kþ�þ�� final states are measured
using a background-subtraction technique.10 For each final
state, data events in the signal and sideband regions are
distributed into cubic bins in M2ðK��Þ, M2ðK�Þ, and
M2ð��Þ. The number of signal events observed in each
bin is calculated as

Ni ¼ Si � fBBi; (13)

where Si and Bi are the numbers of signal-region and
sideband-region events, respectively, that fall into the ith
bin, and fB is the sideband normalization factor given by

Eq. (8). The fraction of charged Bmesons that decay to the
final state in question can be expressed as

B ¼ 1

NB

X
i

Ni

"i
; (14)

where "i is the signal efficiency in bin i, and NB is the total
number of charged Bmesons in the data sample. Assuming
equal rates for �ð4SÞ ! BþB� and �ð4SÞ ! B0 �B0, NB is
equal to the number of B pairs produced, which is mea-
sured independently.
To determine the signal efficiency, we generate

10:7� 106 nonresonant B� decays to each of the two final
states of interest. We then reconstruct these signal-MC
events, applying the same event-selection requirements as
with data. We bin the generated events according to the
generated values of M2ðK��Þ, M2ðK�Þ, and M2ð��Þ,
and the reconstructed events according to the reconstructed
values of M2ðK��Þ, M2ðK�Þ, and M2ð��Þ. The effi-
ciency in each bin is the ratio of reconstructed to generated
events in that bin. Figure 9 shows the dependence of
the efficiency on the three variables. Figure 10 shows the
corresponding data distributions. The overall efficiency is
ð19:85� 0:01Þ%11 for Bþ ! J=cKþ�þ�� and ð6:58�
0:01Þ% for Bþ ! c 0Kþ�þ��. The number of efficiency-
corrected signal events observed is ð4:14� 0:06Þ � 104

for Bþ ! J=cKþ�þ�� and ð1:12� 0:05Þ � 104 for
Bþ ! c 0Kþ�þ��.
This method of measuring branching fractions automati-

cally corrects for efficiency variations over the phase
space. It also makes no assumptions as to the shape of
the signal in �E.

A. Systematic errors

The systematic error in the branching fractions is esti-
mated by adding in quadrature various contributions,
which are assumed to be uncorrelated. Where possible, a
correction is applied.
Since we use MC simulation to determine the signal

efficiency in Eq. (14), any discrepancy in signal-
reconstruction efficiency between data and simulation
will result in a systematic error. Based on studies of the
track-reconstruction efficiency, we include a systematic
error of 1.0% for each lepton track, 1.4% for each pion
track, and 1.2% for each kaon track, adding linearly. Based
on studies of the lepton-identification efficiency, which
show that the simulation underestimates the lepton-
identification efficiency, we apply a correction factor of
0:984� 0:019 for each electron track and 0:962� 0:031
for each muon track. Based on studies of the kaon identi-
fication efficiency, we include a systematic error of 1% for
Bþ ! J=cKþ�þ�� and 2% for Bþ ! c 0Kþ�þ��.
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FIG. 8 (color online). MðK�Þ (top) and M0ðK�Þ (bottom)
distributions of the K�ð892Þ peak in generic-MC sidebands.
The curve in the top plot is the result of a fit to a Breit-
Wigner plus a polynomial background. This curve is transformed
as described in the text and is then superimposed on the M0ðK�Þ
distribution in the bottom plot.

10Peaking backgrounds are not expected in these final states
and were not seen in generic-MC simulation.

11Throughout this paper, when a single error is presented, it is
statistical; when two errors are presented, the first is statistical,
and the second is systematic.
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The bin size of 0:15 GeV2=c4 is chosen based on the
dependence of the efficiency-corrected signal yield on the
bin size. The error associated with this choice is taken to be
the rms of the signal yield in the region between
0:1 GeV2=c4 and 0:2 GeV2=c4.

In the �E distributions for Bþ ! J=cKþ�þ�� and
Bþ ! c 0Kþ�þ�� nonresonant MC simulation, shown in
Fig. 11, a small polynomial background can be seen under
the peak. Since all the events in the MC sample include a
signal decay, this ‘‘background’’ is made up of misrecon-
structed signal events. Although these events are included
as signal in the efficiency calculation, they are removed by
the background-subtraction procedure. The fraction of sig-
nal that is subtracted in this way is found to be ð3:75�
0:91Þ% for Bþ ! J=cKþ�þ��, and ð5:7� 1:2Þ% for
Bþ ! c 0Kþ�þ��. The observed branching fractions
are corrected for this effect, and the associated uncertainty
is included as a systematic error.

To determine the sideband normalization factor fB in
Eq. (13), the data �E distribution is fitted as described in
Sec. III B. In this fit, the background under the signal is
parametrized as a first-order polynomial. To estimate the
error introduced by this assumption, a second fit is per-
formed, parametrizing the background as a second-order

polynomial. The fractional change in the signal yield is
taken as a systematic error.
Since the signal and sideband regions are defined based

on the results of fitting the data �E distribution, ��E and
��E in Eqs. (6) and (7) are varied within the fit errors.
In the MC sample used for determining the efficiency,

J=c ’s from the signal B are forced to decay to eþe�
or �þ��, and c 0’s from the signal B are forced to decay
to eþe�, �þ��, or J=c�þ��. Thus, to obtain
branching fractions for Bþ ! J=cKþ�þ�� and Bþ !
c 0Kþ�þ��, the branching fractions measured using
Eq. (14) are divided by previously-measured values [14]
of these J=c and c 0 decay rates. The uncertainties of these
previous measurements are included as a systematic error.
Finally, the error in NB is 1.3%. Table I lists the compo-

nents of the systematic errors.

B. Results

The measured branching fractions are

BðBþ ! J=cKþ�þ��Þ ¼ ð7:16� 0:10� 0:60Þ � 10�4

BðBþ! c 0Kþ�þ��Þ¼ð4:31�0:20�0:50Þ�10�4:
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(right).

H. GULER et al. PHYSICAL REVIEW D 83, 032005 (2011)

032005-8



As a cross-check, we also measure a branching fraction
for Bþ ! c 0Kþ, using a similar method but reversing the
c 0 ! J=c�þ�� veto in the reconstruction of Bþ !
J=cKþ�þ��. This branching fraction is

B ðBþ ! c 0KþÞ ¼ ð6:65� 0:17� 0:55Þ � 10�4;

which is consistent with the previously-measured value of
ð6:48� 0:35Þ � 10�4 [14].
Our Bþ ! J=cKþ�þ�� branching-fraction measure-

ment represents a significant improvement over previous
measurements [14]. It is consistent with Ref. [15]
but inconsistent with Ref. [16] at the 3:4-� level. Our
Bþ ! c 0Kþ�þ�� branching-fraction measurement is
also a significant improvement over the previous measure-
ment [17].

VI. AMPLITUDE ANALYSES

To study the resonant structure of the Kþ�þ�� final
state in Bþ ! J=cKþ�þ�� and Bþ ! c 0Kþ�þ��, we
perform amplitude analyses. Using an unbinned
maximum-likelihood method, we simultaneously fit the
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data in the three dimensions M2ðK��Þ, M2ðK�Þ, and
M2ð��Þ.

A. Fitting technique

Signal-region data are fitted by maximizing12 the log-
likelihood function, which is given by

‘ð ~aÞ ¼ X
i

lnpð ~xi; ~aÞ; (15)

where the sum is over the events in the signal region, ~xi
is the vector of coordinates for a given event (i.e.,
~x � ½M2ðK��Þ;M2ðK�Þ;M2ð��Þ�), ~a is the vector of
parameters with respect to which ‘ is maximized, and p
is the probability-density function (PDF) that is used to
model the observed distribution.

The distribution of events in the signal region is
modeled as

pð ~x; ~aÞ ¼ nB
pBð ~xÞR
pBð ~xÞd3x

þ nS
pSð ~x; ~aÞR
pSð ~x; ~aÞd3x

; (16)

where pB and pS describe the observed shapes of the
background and signal, respectively. The constants nB
and nS are the background and signal fractions in the signal
region; the former is given by Eq. (9), and the latter is
1� nB.

13

The observed signal distribution pS is expressed as

pSð ~x; ~aÞ ¼ "ð ~xÞ�ð ~xÞsð ~x; ~aÞ; (17)

where " is the detector efficiency, � is the phase-space
density, and s is the raw signal function.

Using nonresonant MC simulation, we have measured
the detector resolution to be approximately 3–4 MeV=c2 in

each of the three coordinates MðK��Þ, MðK�Þ, and
Mð��Þ. Since this is smaller than the width of any reso-
nance included in the fits, we neglect the effect of detector
resolution on line shapes.
The following five sections describe the methods fol-

lowed in performing the integrals of Eq. (16) and in
obtaining the functions pBð ~xÞ, "ð ~xÞ, �ð ~xÞ, and sð ~x; ~aÞ in
Eqs. (16) and (17).

B. Normalization procedure

The integrations of Eq. (16) are performed numerically,
using Simpson’s rule. A step size of 0:010 GeV2=c4

for Bþ ! J=cKþ�þ�� and 0:005 GeV2=c4 for Bþ !
c 0Kþ�þ�� is used in each dimension.14 The three-
dimensional region of integration can be determined by
noting that the minimum and maximum values of
M2ðK��Þ are given by

M2ðK��Þmin ¼ ðMK þ 2M�Þ2; (18)

M2ðK��Þmax ¼ ðMB �Mc Þ2; (19)

whereMB,MK,M�, andMc are the nominal values of the

subscripted particles. For a given value of M2ðK��Þ, the
minimum and maximum values of M2ð��Þ are

M2ð��Þmin ¼ ð2M�Þ2; (20)

M2ð��Þmax ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2ðK��Þ
q

�MK

�
2
: (21)

For givenM2ðK��Þ andM2ð��Þ, the minimum and maxi-
mum values of M2ðK�Þ are

TABLE I. Components of the systematic error in the branching-fraction measurements, ex-
pressed as a percentage of the branching fraction.

Component Bþ ! J=cKþ�þ�� Bþ ! c 0Kþ�þ�� Bþ ! c 0Kþ

MC statistics 0.18 0.19 1.12

Tracking efficiency 6.0 8.7 6.0

Lepton-ID efficiency 5.1 5.1 5.0

Kaon-ID efficiency 1.0 2.0 1.0

Binning 0.13 0.19 0.26

Oversubtraction 0.95 1.3 0.95

Background shape 1.6 1.3 0.19

Signal/Sideband regions 0.35 4.4 0.27

J=c or c 0 branching fraction 0.71 1.9 0.67

NB 1.3 1.3 1.3

12Standalone MINUIT [18] is used for all maximizations in this
section.
13The background fraction nB is corrected for the oversubtrac-
tion effect described in Sec. VA.

14The larger step size is necessary for Bþ ! J=cKþ�þ��
because of the larger phase space, which significantly increases
the CPU time required for the integration.
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M2ðK�Þmax
min ¼ 1

2

�
M2ðK��ÞþM2

Kþ2M2
��M2ð��Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð2M�=Mð��ÞÞ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðK��Þ�ðMKþMð��ÞÞ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðK��Þ�ðMK�Mð��ÞÞ2

q �
:� (22)

Figure 12 shows the calculated kinematic boundaries for
Bþ ! J=cKþ�þ��, along with the observed distribu-
tions of sideband data, for a slice in M2ðK��Þ.

Events that do not fall within the calculated boundaries
are excluded from the fits. Because of the coordinate trans-
formations of Sec. IV, such events are rare: 36 of the 12 913
sideband events and 3 of the 10 594 signal-region events
for Bþ ! J=cKþ�þ��, and 3 of the 2230 sideband
events and none of the 1176 signal-region events for Bþ !
c 0Kþ�þ�� fall outside the boundaries.

C. Background functions

To determine the three-dimensional shape of the back-
ground in the signal region [i.e., pBð ~xÞ in Eq. (16)], an
unbinned maximum-likelihood fit is performed on the
sideband-region data. The log-likelihood function to max-
imize is given in this case by

‘Bð ~aBÞ ¼
X
j

ln
pBð ~xj; ~aBÞR
pBð ~x; ~aBÞd3x

; (23)

where the sum is over the events in the sideband region.
The maximization is performed by varying the parameters
~aB, which are then fixed at their optimal values in fitting the
signal region.
The background is modeled as the sum of a combinato-

rial term and a set of noninterfering resonances. For Bþ !
J=cKþ�þ��,

pBð ~x; ~aBÞ¼
�X5
i¼0

axiTiðxÞ
�
�
�X1
j¼0

ayjTjðyÞ
�

�
�X2
k¼0

azkTkðzÞ
�
þe�2x½aK�ð892ÞBWK�ð892ÞðyÞ

þa�BW�ðzÞþaDGDðyÞþaKS
GKS

ðzÞ�; (24)

and for Bþ ! c 0Kþ�þ��,

pBð ~x; ~aBÞ ¼
�X3
i¼0

axiTiðxÞ
�
þ e�2x½aK�ð892ÞBWK�ð892ÞðyÞ

þ a�BW�ðzÞ�: (25)

In Eqs. (24) and (25), Tn represents an nth-order
Chebyshev polynomial. The variables x, y, and z stand
for M2ðK��Þ, M2ðK�Þ, and M2ð��Þ, respectively, and
are defined over the intervals

xmin ¼ ðMK þ 2M�Þ2; xmax ¼ ðMB �Mc Þ2;
ymin ¼ ðMK þM�Þ2; ymax ¼ ðMB �Mc �M�Þ2;
zmin ¼ ð2M�Þ2; zmax ¼ ðMB �Mc �MKÞ2:

The peak functions BWK�ð892Þ, GD, GKS
, and BW� are

obtained as described in Sec. IV. Each peak function
Pð ~xÞ is normalized over the kinematically-allowed phase
space to satisfy

1 ¼
Z

e�2xPð ~xÞd3x: (26)

The factor of e�2x that modulates the peak functions was
found empirically to produce a good fit to the sideband
data.15

Table II lists the fitted parameters of the background
functions. The statistical error in each parameter is defined
as the change in that parameter required to reduce the log
likelihood by 1=2. The fitted functions, normalized to the
total number of events in the fit, are shown projected onto
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FIG. 12 (color online). Scatter plot ofM2ðK�Þ versusM2ð��Þ
for M2ðK��Þ between 4:0 GeV2=c4 and 4:5 GeV2=c4 in side-
band data for Bþ ! J=cKþ�þ��. Blue and red curves show
the calculated boundaries corresponding to the low and high
edge, respectively, of the plotted M2ðK��Þ region.

15Since there are more low-energy particles than high-energy
particles, the background peaks are more pronounced at low
M2ðK��Þ. Combining a K�ð892Þ with a random pion, for
example, will tend to produce a low value for M2ðK��Þ.
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the three axes along with the sideband data in Fig. 13.
Figures 14 and 15 show M2ðK�Þ and M2ð��Þ projections
for slices in M2ðK��Þ.
As a measure of goodness of fit, a �2 variable is calcu-

lated by distributing the data into cubic bins that are
0:1 GeV=c2 wide on each side. The normalized PDF,
with the parameters set to their best-fit values, is integrated
over each bin and multiplied by the total number of events
in the fit to determine the number of events expected in the
bin. Adjacent bins are combined until each bin has at least
6 data events. A �2 variable for the multinomial distribu-
tion is then calculated as [19]

�2 ¼ 2
XNbins

i

ni ln

�
ni
pi

�
; (27)

where Nbins is the total number of bins used, ni is the
number of observed events in a given bin, and pi is the
number expected in that bin based on the PDF.
If the expected distribution pi were obtained by a binned

maximum-likelihood fit of the data distribution ni, the
number of degrees of freedom associated with this �2

TABLE II. Fitted values of the background-function parame-
ters [Eqs. (24) and (25)].

Parameter Bþ ! J=cKþ�þ�� Bþ ! c 0Kþ�þ��

ax0 1.0 (fixed) 1.0 (fixed)

ax1 �1:5901� 0:0048 �1:238� 0:036
ax2 0:9423� 0:0086 0:480� 0:045
ax3 �0:4737� 0:0087 �0:221� 0:021
ax4 0:1778� 0:0067
ax5 �0:0488� 0:0033
ay0 1.0 (fixed)

ay1 0:088� 0:021
az0 1.0 (fixed)

az1 �0:022� 0:022
az2 0:129� 0:018
aK�ð892Þ 0:0353� 0:0065 0:0161� 0:0062
aD 0:0007� 0:0011
aKS

0:0061� 0:0023
a� 0:086� 0:012 0:0352� 0:0099
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FIG. 13 (color online). Results of sideband fits for Bþ ! J=cKþ�þ�� (left) and Bþ ! c 0Kþ�þ�� (right). Data (points) and fits
(histograms) are shown projected onto the three axes. The red histograms show the overall background functions. The combinatorial
components are shown in gray, while the K�ð892Þ, �, KS, and D backgrounds are shown in blue, magenta, cyan, and green,
respectively. The K�ð892Þ and � peaks are broader in Bþ ! c 0Kþ�þ�� than in Bþ ! J=cKþ�þ�� because the distortion shown
in Fig. 8 is larger in the former mode.

H. GULER et al. PHYSICAL REVIEW D 83, 032005 (2011)

032005-12



)4/c2) (GeVπ(K2M
0.5 1 1.5 2 2.5 3 3.5 4

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

20

40

60

80

100

120

4/c2) < 1.46 GeVππ(K2 < M4/c20.60 GeV

)4/c2) (GeVππ(2M
0.5 1 1.5 2 2.5

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0
20
40
60
80

100
120
140
160
180
200
220

4/c2) < 1.46 GeVππ(K2 < M4/c20.60 GeV

)4/c2) (GeVπ(K2M
0.5 1 1.5 2 2.5 3 3.5 4

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0
20
40
60
80

100
120
140
160
180
200

4/c2) < 2.32 GeVππ(K2 < M4/c21.46 GeV

)4/c2) (GeVππ(2M
0.5 1 1.5 2 2.5

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

50

100

150

200

250

4/c2) < 2.32 GeVππ(K2 < M4/c21.46 GeV

)4/c2) (GeVπ(K2M
0.5 1 1.5 2 2.5 3 3.5 4

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

20

40

60

80

100

120

140

4/c2) < 3.18 GeVππ(K2 < M4/c22.32 GeV

)4/c2) (GeVππ(2M
0.5 1 1.5 2 2.5

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0
20
40
60
80

100
120
140
160
180
200

4/c2) < 3.18 GeVππ(K2 < M4/c22.32 GeV

)4/c2) (GeVπ(K2M
0.5 1 1.5 2 2.5 3 3.5 4

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

20

40

60

80

100
4/c2) < 4.04 GeVππ(K2 < M4/c23.18 GeV

)4/c2) (GeVππ(2M
0.5 1 1.5 2 2.5

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

20

40

60

80

100

120

4/c2) < 4.04 GeVππ(K2 < M4/c23.18 GeV

)4/c2) (GeVπ(K2M
0.5 1 1.5 2 2.5 3 3.5 4

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

10

20

30

40

50

4/c2) < 4.90 GeVππ(K2 < M4/c24.04 GeV

)4/c2) (GeVππ(2M
0.5 1 1.5 2 2.5

4
/c

2
E

nt
rie

s 
/ 0

.0
40

 G
eV

0

10

20

30

40

50

60

70

4/c2) < 4.90 GeVππ(K2 < M4/c24.04 GeV

FIG. 14 (color online). Bþ ! J=cKþ�þ�� sideband data (points) and fit results (histograms) for slices in M2ðK��Þ. The fit
components are color coded as in Fig. 13.
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FIG. 15 (color online). Bþ ! c 0Kþ�þ�� sideband data (points) and fit results (histograms) for slices in M2ðK��Þ. The fit
components are color coded as in Fig. 13.
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would be reduced by the number of fit parameters Npar and

would be given by NDOF ¼ Nbins � Npar � 1. If, on the

other hand, the two distributions were not correlated by a
fit, the number of degrees of freedom would be NDOF ¼
Nbins � 1. Since, in this case, the distributions are related
by an unbinned maximum-likelihood fit, the true NDOF can
be expected to lie between these extremes [20].

For the Bþ ! J=cKþ�þ�� sideband-data fit, ‘B ¼
�21 484:6, while �2 ¼ 1709:5 with Nbins ¼ 1707 and
Npar ¼ 12. For the Bþ ! c 0Kþ�þ�� sideband-data fit,

‘B ¼ 822:7, while �2 ¼ 286:8 with Nbins ¼ 294 and
Npar ¼ 5.

D. Efficiency functions

The dependence of the detector efficiency on the kine-
matic variables [i.e., "ð ~xÞ in Eq. (17)] is obtained for three-
dimensional bins, 0:15 GeV2=c4 wide on each side, using
nonresonant signal-MC simulation as described in Sec. V
and illustrated in Fig. 9. The function is implemented as a
lookup table: the efficiency for a given data point is the
efficiency in the corresponding bin.

E. Phase-space densities

Four-body phase-space densities [i.e., �ð ~xÞ in Eq. (17)]
for Bþ ! J=cKþ�þ�� and Bþ ! c 0Kþ�þ�� are ob-
tained by using GENBOD [21] to generate final-state-
particle four-momenta that are weighted by the density of
states in phase space [22]. For each decay mode, 108 events
are generated. Event phase-space weights are distributed
into cubic bins inM2ðK��Þ,M2ðK�Þ, andM2ð��Þ, with a
bin width of 0:02 GeV2=c4. The phase-space density is
implemented as a lookup table: the value of �ð ~xÞ for a
given data point is the total phase-space weight in the
corresponding bin.16 In Fig. 16, the three-dimensional
histogram of phase-space weights is projected onto the
three axes, showing the distribution that signal events
would have in the absence of resonant effects.
Figure 16 does not indicate the functional form of �ð ~xÞ,

since the projection onto a single dimension effectively
integrates over the other two dimensions, and the region of
integration is the complicated one described in Sec. VI B.
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FIG. 16. Projections of the three-dimensional histogram of phase-space weights onto the three axes for Bþ ! J=cKþ�þ�� (left)
and Bþ ! c 0Kþ�þ�� (right).

16Boundary effects are insignificant.
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In Fig. 17, the same projections are performed over a
narrow slice in each of the other two dimensions, to
illustrate the dependence of the function �ð ~xÞ on each
variable.

F. Signal functions

The Kþ�þ�� final state is modeled as a nonresonant
signal plus a superposition of initial-state resonances R1.
The latter are assumed to decay through intermediate-state
resonances R2 as R1 ! aR2, R2 ! bc, where a, b, and c
are the final-state particles. Specifically, the function
sð ~x; ~aÞ of Eq. (17) is expressed as

sð ~x; ~aÞ � sð ~x; akÞ

¼ janrAnrð ~xÞj2 þ
X
J1

��������
X
J2

aJ1J2AJ1J2ð ~xÞ
��������

2

: (28)

Here, J1 and J2 stand for the spin-parity (J
P) of R1 and R2,

respectively. Resonances with different J1 are added in-
coherently, while those with the same J1 are added coher-
ently. The parameters varied in the fit are the complex
coefficients anr and aJ1J2 , collectively referred to as ak.

While the nonresonant signal is assumed to be constant
over the phase space,

Anrð ~xÞ ¼ 1; (29)

the resonant decay amplitudes AJ1J2 are expressed as

AJ1J2ð ~xÞ ¼ �J1J2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MR1

�R1

q
M2

R1
�m2

abc � iMR1
�R1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MR2

�R2
ðmbcÞ

q
M2

R2
�m2

bc � iMR2
�R2

ðmbcÞ
; (30)

where �R2
ðmbcÞ is the mass-dependent width

�R2
ðmbcÞ ¼ �R2

�
q

q0

�
2J2þ1

�
MR2

mbc

�
F2
R; (31)

and FR is the Blatt-Weisskopf barrier factor
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FIG. 17. Phase-space densities for selected regions, as a function of M2ðK��Þ, M2ðK�Þ, and M2ð��Þ, for Bþ ! J=cKþ�þ��
(left) and Bþ ! c 0Kþ�þ�� (right). In each case, the region selected is indicated above the plot.
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FR ¼ 1 for J2 ¼ 0;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2q20

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2q2

p for J2 ¼ 1;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3R2q20 þ R4q40

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3R2q2 þ R4q4

p for J2 ¼ 2: (32)

The meson radial parameter R is set to 1:5 ðGeV=cÞ�1. The
function �J1J2 describes the spin-dependent angular distri-

bution of the final state and is shown for various combina-
tions of J1 and J2 in Table III. Resonances with spin greater
than two are not included in the fitting model. In cases
where there is more than one covariant spin amplitude,
only the lowest spin is included.

In Eqs. (30)–(32) and Table III, the nominal masses of
the resonances R1 and R2 are denoted byMR1

andMR2
, and

the nominal widths by �R1
and �R2

. The angle � is between

a and b in the bc rest frame and can be expressed as

cos� ¼ mbc

4pqmabc

�
�
m2

ac �m2
ab þ

ðm2
abc �m2

aÞðm2
b �m2

cÞ
m2

bc

�
: (33)

The variable z is given by

z ¼ p=mabc: (34)

The breakup momentum p is the momentum of a or bc in
the abc rest frame

p2¼ðm2
abc�ðmaþmbcÞ2Þðm2

abc�ðma�mbcÞ2Þ
4m2

abc

; (35)

while q is the momentum of b or c in the bc rest frame

q2 ¼ ðm2
bc � ðmb þmcÞ2Þðm2

bc � ðmb �mcÞ2Þ
4m2

bc

; (36)

where the constant q0 is the value of q evaluated at
mbc ¼ MR2

.

Since the components of the signal function are not
individually normalized, it is not meaningful to compare
the moduli of the complex coefficients ak in Eq. (28). A
decay fraction is therefore calculated for each component
by integrating the component over the kinematically-
allowed region and dividing by the integral of the full
signal function

fk ¼
R
�ð ~xÞjakAkð ~xÞj2d3xR
�ð ~xÞsð ~x; ~aÞd3x : (37)

The integrations in Eq. (37) are performed as described in
Sec. VI B. Because of interference effects, decay fractions
for a given final state will not, in general, add up to unity.

G. Statistical errors

As with the sideband-region fits, the statistical uncer-
tainties in the fit parameters (i.e., moduli and phases) are
determined by the fitter: the error in a given parameter is
the change in that parameter that reduces the log likelihood
by 1=2. The statistical uncertainties in the decay fractions,
on the other hand, are more complicated. Since a given
decay fraction involves the integral of the full signal func-
tion, the error in a single decay fraction incorporates the
errors in all of the parameters. To determine the statistical
errors in the decay fractions, 1000 sets of correlated signal-
function parameters are drawn from Gaussian distributions
using the fitted parameter values and the error matrix.17

Decay fractions are calculated for each set of generated
parameters. The rms of the resulting distribution provides
an estimate of the statistical error in the decay fraction.

H. Systematic errors

Several sources of systematic error are considered, as
described below. They are added in quadrature to obtain
the systematic errors reported in Sec. VI I.

1. Background parametrization

A possible source of systematic error in the fits is the
fixed background fraction nB in Eq. (16). While the error in

TABLE III. Angular distribution of the Kþ�þ�� final state
for various combinations of initial and intermediate-state spin
parities. See Ref. [23] for derivation and conditions of applica-
bility.

J1 J2 �J1J2

Any
0þ

1
0�

0þ 1þ ð1þ z2Þcos2�
0� 1�

1þ 1�
1þ z2cos2�

1� 1þ

1þ 1þ
1� cos2�

1� 1�

1þ 2þ ð1þ z2Þ � ½1þ 3cos2�þ 9z2ðcos2�� 1=3Þ2�
1� 2�

2þ 1þ
3þ ð1þ 4z2Þcos2�

2� 1�

2þ 1�
1� cos2�

2� 1þ

2þ 2þ
1þ z2=9þ ðz2=3� 1Þcos2�� z2ðcos2�� 1=3Þ2

2� 2�

2þ 2�
1þ z2=3þ z2cos2�þ z4ðcos2�� 1=3Þ2

2� 2þ
17Correlated Gaussian distributions are generated using
CORSET and CORGEN [24].

STUDY OF THE Kþ�þ�� FINAL STATE IN . . . PHYSICAL REVIEW D 83, 032005 (2011)

032005-17



nB is small, the correction for the oversubtraction, de-
scribed in Sec. VA, lowers nB by 10.8% for Bþ !
J=cKþ�þ�� and by 11.4% for Bþ ! c 0Kþ�þ��.
The systematic error associated with this correction is
estimated conservatively as the change in each parameter
when the fits are performed with the uncorrected values
of nB.

There may be an additional systematic error if the
background in the signal region is not correctly parame-
trized by the shape determined by fitting the sidebands. As
noted in Sec. IV, generic-MC studies suggest that not
enough of the K0

S and � background peaks are removed

by the sideband subtraction. To estimate this error, a fit is
performed in which the coefficients of the background
peaks in Eqs. (24) and (25) are doubled.

2. Efficiency

To estimate the error introduced by binning the effi-
ciency information, the fits are repeated using bin sizes
of 0:10 GeV2=c4 and 0:20 GeV2=c4 for the efficiency. The
average absolute change in each parameter is the estimate
of the error.

Another possible source of error is that the MC simula-
tion may not faithfully reproduce the detector efficiency
for low-momentum particles. To test for such an effect, two
additional fits are performed. In the first fit, only charged
particles with a momentum greater than 200 MeV=c are
included. In the second fit, the jdrj and jdzj requirements
described in Sec. III are loosened from 0.4 cm to 0.8 cm,
and from 1.5 cm to 3.0 cm, respectively. The changes in
each parameter observed in these two fits are added in
quadrature to obtain an estimate of the error due to inac-
curacies in the efficiency estimation.

Using only the three variables M2ðK��Þ, M2ðK�Þ, and
M2ð��Þ in this analysis is equivalent to integrating over
variables that describe the relative momentum of the J=c
or c 0 with respect to the Kþ�þ�� system. In this inte-
gration, the terms corresponding to Kþ�þ�� states with
different initial-state spin-parity cancel out, producing
Eq. (28). This cancellation, however, is exact only if the
detector efficiency is flat over the extra variables. To
determine the effect of neglecting these variables, an addi-
tional set of fits is performed, in which the efficiency in
Eq. (17) is calculated as a function of the two angles
between the J=c or c 0 and the Kþ�þ�� system, rather
thanM2ðK��Þ,M2ðK�Þ, andM2ð��Þ. The resulting fitted
parameters are compared to those obtained by a fit in which
the efficiency is held constant.18 The absolute change in
each parameter is found to be small (less than 15% of the
statistical error) and is included in the systematic error.

3. Integration step size

To estimate the error introduced by the finite step size
used in the numerical integrals of Secs. IV and VIB, the
fits are repeated, using a step size of 0:005 GeV2=c4

for Bþ!J=cKþ�þ�� and 0:010 GeV2=c4 for Bþ!
c 0Kþ�þ��. The change in each parameter is an estimate
of the uncertainty associatedwith the numerical integration.

4. Modeling of the signal

The masses and widths of the resonances included in the
fits are listed in Table IV. To estimate the systematic error
associated with the uncertainties in these quantities, the fits
are repeated, varying each fixed quantity within its errors.
For each mass or width, the average absolute change in
each parameter is recorded. These average changes are
then added in quadrature.
In fitting the Bþ ! J=cKþ�þ�� data, the modulus

for K�
2ð1430Þ ! K�ð892Þ� is allowed to float. Relative

to this modulus, the moduli19 for K�
2ð1430Þ ! K� and

K�
2ð1430Þ ! K! are fixed based on previously-measured

relative branching fractions [14]. To estimate the associ-
ated systematic error, additional fits are performed, varying
these branching fractions within their uncertainties.

I. Results

Table V lists the values of the moduli and phases of the
complex coefficients ak of Eq. (28) obtained by fitting
signal-region data for Bþ ! J=cKþ�þ��, as well as
the corresponding values of the decay fractions, given by
Eq. (37). The fitted PDF is shown projected onto the three

TABLE IV. Masses, widths, and spin-parity values of the
resonances included in the fits. With the exception of the
Kð1600Þ parameters (discussed in Sec. VI J 3), all values are
from [14].

Resonance Mass (MeV=c2) Width (MeV=c2) JP

�0 775:49� 0:34 146:2� 0:7 1�
! 782:65� 0:12 8:49� 0:08 1�
f0ð980Þ0 980� 10 50� 50

10 0þ
f2ð1270Þ0 1275:1� 1:2 185:1� 2:9

2:4 0þ
K�ð892Þ0 896:00� 0:25 50:3� 0:6 1�
K1ð1270Þþ 1272� 7 90� 20 1þ
K1ð1400Þþ 1403� 7 174� 13 1þ
K�ð1410Þþ 1414� 15 232� 21 1�
K�

0ð1430Þþ 1425� 50 270� 80 0þ
K�

2ð1430Þþ 1425:6� 1:5 98:5� 2:7 2þ
K�

2ð1430Þ0 1432:4� 1:3 109� 5 2þ
Kð1600Þþ 1605� 15 115� 15 2�
K�ð1680Þþ 1717� 27 322� 110 1�
K2ð1770Þþ 1773� 8 186� 14 2�
K�

2ð1980Þþ 1973� 26 373� 68 2þ

18If the efficiency is calculated as a function of all five dimen-
sions, the accuracy of the result becomes dominated by the MC
statistics. 19The phases of the three submodes are allowed to float.
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axes, along with the data, in Fig. 18. Figure 22 shows
M2ðK�Þ and M2ð��Þ projections for slices in M2ðK��Þ.
The legend is presented in Fig. 19. In this fit, ‘ ¼
�10 575:4, while �2 ¼ 1475:9 with Nbins ¼ 1202 and
Npar ¼ 28.

Similarly, Table VI shows the fitted parameters for
Bþ ! c 0Kþ�þ�� signal-region data, as well as the cor-
responding decay fractions. Figure 20 shows the fitted PDF
and data projected onto the three axes, while Fig. 23 shows
M2ðK�Þ and M2ð��Þ projections for slices in M2ðK��Þ.
In this fit, ‘ ¼ 638:3, while �2 ¼ 180:1 with Nbins ¼ 168
and Npar ¼ 10.

Finally, the Bþ ! J=cKþ�þ�� signal-region data are
fitted again, this time floating the mass and width of the
K1ð1270Þ. The fitted mass and width are

MK1ð1270Þ ¼ ð1248:1� 3:3� 1:4Þ MeV=c2; (38)

TABLE V. Fitted parameters of the signal function for Bþ ! J=cKþ�þ��, along with the corresponding decay fractions.

J1 Submode Modulus Phase (radians) Decay fraction

1þ

Nonresonant Kþ�þ�� 1.0 (fixed) 0 (fixed) 0:152� 0:013� 0:028

K1ð1270Þ ! K�ð892Þ� 0:962� 0:058� 0:176 0 (fixed) 0:232� 0:017� 0:058

K1ð1270Þ ! K� 1:813� 0:090� 0:243 �0:764� 0:069� 0:127 0:383� 0:016� 0:036

K1ð1270Þ ! K! 0:198� 0:036� 0:041 1:09� 0:18� 0:18 0:0045� 0:0017� 0:0014

K1ð1270Þ ! K�
0ð1430Þ� 0:95� 0:16� 0:24 2:83� 0:18� 0:18 0:0157� 0:0052� 0:0049

K1ð1400Þ ! K�ð892Þ� 0:894� 0:066� 0:125 �2:300� 0:044� 0:078 0:223� 0:026� 0:036

1� K�ð1410Þ ! K�ð892Þ� 0:516� 0:090� 0:103 0 (fixed) 0:047� 0:016� 0:015

2þ

K�
2ð1430Þ ! K�ð892Þ� 0:663� 0:051� 0:085 0 (fixed) 0:088� 0:011� 0:011

K�
2ð1430Þ ! K� 0.371 (fixed) �1:12� 0:22� 0:29 0.0233 (fixed)

K�
2ð1430Þ ! K! 0.040 (fixed) 0:58� 0:51� 0:27 0.00036 (fixed)

K�
2ð1980Þ ! K�ð892Þ� 0:775� 0:054� 0:118 �1:59� 0:15� 0:14 0:0739� 0:0073� 0:0095

K�
2ð1980Þ ! K� 0:660� 0:048� 0:101 0:86� 0:22� 0:21 0:0613� 0:0058� 0:0059

2�

Kð1600Þ ! K�ð892Þ� 0:131� 0:021� 0:024 0 (fixed) 0:0187� 0:0058� 0:0050

Kð1600Þ ! K� 0:193� 0:017� 0:029 �0:27� 0:27� 0:18 0:0424� 0:0062� 0:0110

K2ð1770Þ ! K�ð892Þ� 0:122� 0:021� 0:026 2:22� 0:49� 0:37 0:0164� 0:0055� 0:0061

K2ð1770Þ ! K�
2ð1430Þ� 0:286� 0:043� 0:044 1:78� 0:39� 0:24 0:0100� 0:0028� 0:0020

K2ð1770Þ ! Kf2ð1270Þ 0:444� 0:069� 0:077 2:30� 0:37� 0:32 0:0124� 0:0033� 0:0022

K2ð1770Þ ! Kf0ð980Þ 0:113� 0:029� 0:024 1:83� 0:45� 0:53 0:0034� 0:0017� 0:0011
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FIG. 18 (color online). Results of signal-region fits for Bþ !
J=cKþ�þ��. Data (points) and fits (histograms) are shown
projected onto the three axes. The fit components are color coded
as shown in Fig. 19.
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FIG. 19 (color online). Legend for Figs. 18 and 20–24.
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�K1ð1270Þ ¼ ð119:5� 5:2� 6:7Þ MeV=c2: (39)

Table VII shows the fitted parameters, along with the
corresponding decay fractions. Figure 21 shows the fitted
PDF and data projected onto the three axes, while Fig. 24
shows M2ðK�Þ and M2ð��Þ projections for slices in
M2ðK��Þ. In this fit, ‘ ¼ �10 525:3, while �2 ¼ 1404:4
with Nbins ¼ 1202 and Npar ¼ 30.

A comparison of Tables V and VII reveals that in many
cases, the effect of floating the mass and width of the
K1ð1270Þ results in a substantial decrease of the systematic
error, which is somewhat offset by an increase in the
corresponding statistical error. In particular, the
K1ð1270Þ ! K�ð892Þ� decay fraction is especially sensi-
tive to the K1ð1270Þ mass and width.
In any fit involving many floating parameters, local

likelihood maxima can present a problem. To ensure that
the fit results are global maxima, 100 additional fits were
performed for each of the three cases, selecting random
starting values for the parameters. None of these fits
yielded better likelihoods than those presented above.
The local maxima encountered in the course of this test
are discussed in the Appendix.

J. Discussion

1. Signal components

In choosing the signal components to be included in the
fits, the data were used as a guide. As theK1ð1270Þ signal is
prominent in both Bþ ! J=cKþ�þ�� and Bþ !
c 0Kþ�þ�� data, the initial fits were done with only
K1ð1270Þ ! K�ð892Þ� and K1ð1270Þ ! K� on top of
the nonresonant component. Additional decay channels
were added successively until a reasonable level of agree-
ment between fit and data was obtained.
As a further guide, the decays B0 ! J=cKþ�� and

B0 ! c 0Kþ�� were reconstructed. The observed K�
mass spectra are shown in Fig. 25. Consistent with the
1þ spin-parity assignment of the K1ð1270Þ, no
K1ð1270Þ ! K� signal appears in these spectra. In both
modes, a small peak can be seen near 1:4 GeV=c2 in
MðK�Þ; this may have contributions from K�ð1410Þ or
K�

2ð1430Þ, as well as K�
0ð1430Þ. The absence of a

K�ð1680Þ peak in B0 ! J=cKþ�� is noteworthy,
although a precise statement would require an analysis of
the efficiency and phase space for these modes.20 In B0 !
c 0Kþ��, the kinematically-allowed MðK�Þ region does

TABLE VI. Fitted parameters of the signal function for Bþ ! c 0Kþ�þ��, along with the corresponding decay fractions.

J1 Submode Modulus Phase (radians) Decay fraction

Nonresonant Kþ�þ�� 1.0 (fixed) 0 (fixed) 0:253� 0:045� 0:102

1þ
K1ð1270Þ ! K�ð892Þ� 0:213� 0:037� 0:049 0 (fixed) 0:090� 0:024� 0:013
K1ð1270Þ ! K� 0:513� 0:070� 0:141 �0:66� 0:26� 0:11 0:215� 0:038� 0:045
K1ð1270Þ ! K! 0:048� 0:041� 0:022 �0:37� 1:21� 0:52 0:0017� 0:0033� 0:0013

1�
K�ð1680Þ ! K�ð892Þ� 0:67� 0:12� 0:15 0 (fixed) 0:106� 0:031� 0:017
K�ð1680Þ ! K� 1:17� 0:16� 0:32 1:27� 0:24� 0:15 0:241� 0:047� 0:050
K�ð1680Þ ! K! 0:233� 0:097� 0:047 �3:06� 0:43� 0:45 0:0119� 0:0106� 0:0061
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FIG. 20 (color online). Results of signal-region fits for Bþ !
c 0Kþ�þ��. Data (points) and fits (histograms) are shown
projected onto the three axes. The fit components are color
coded as shown in Fig. 19.

20A detailed analysis of B ! J=cK� and B ! c 0K� is be-
yond the scope of this work. A Dalitz analysis of the latter mode
was presented in Ref. [25].
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not allow any conclusions to be drawn about the presence
or absence of a low K�ð1680Þ tail.

2. Interference effects

The inclusion of interference among submodes sharing
the same initial-state spin-parity is essential to obtaining
good fits to the data. In particular, dramatic interference
effects are observed between K1ð1270Þ ! K�ð892Þ� and
K1ð1270Þ ! K�, as well as between K1ð1270Þ ! K� and
K1ð1270Þ ! K!.
Figure 27 shows scatter plots of signal-region Bþ !

J=cKþ�þ�� data over the three coordinates. Interference
between K1ð1270Þ ! K�ð892Þ� and K1ð1270Þ ! K� is
responsible for the weakening of the latter signal at
MðK�Þ>MK�ð892Þ. Although the four-body phase space

decreases with increasing MðK�Þ, this is not sufficient to
account for the abrupt falloff. To describe the data in this
region, the two modes must be added coherently.
Since the previously-measured [14] branching fraction

for K1ð1270Þ ! K! is small compared to that for
K1ð1270Þ ! K�, and since only 1.5% of !’s decay to
�þ��,21 one might expect K1ð1270Þ ! K! to play a
negligible role in this analysis. Nonetheless, since the !
is much narrower than the �, it significantly distorts the
observed � line shape through interference [27]. In Fig. 26,
the M2ð��Þ projections of Figs. 18, 20, and 21 are finely
binned to demonstrate this interference pattern, which is
accurately modeled by the PDFs.

TABLE VII. Fitted parameters of the signal function for Bþ ! J=cKþ�þ�� when the K1ð1270Þ mass and width are floated, along
with the corresponding decay fractions.

J1 Submode Modulus Phase (radians) Decay fraction

Nonresonant Kþ�þ�� 1.0 (fixed) 0 (fixed) 0:142� 0:013� 0:026

1þ

K1ð1270Þ ! K�ð892Þ� 0:882� 0:076� 0:090 0 (fixed) 0:168� 0:023� 0:012

K1ð1270Þ ! K� 2:14� 0:12� 0:27 �0:588� 0:084� 0:110 0:430� 0:018� 0:027

K1ð1270Þ ! K! 0:289� 0:043� 0:040 1:25� 0:16� 0:14 0:00758� 0:00216� 0:00076

K1ð1270Þ ! K�
0ð1430Þ� 1:09� 0:18� 0:24 2:93� 0:18� 0:16 0:0184� 0:0055� 0:0046

K1ð1400Þ ! K�ð892Þ� 0:746� 0:085� 0:089 �2:585� 0:100� 0:076 0:145� 0:029� 0:017

1� K�ð1410Þ ! K�ð892Þ� 0:736� 0:084� 0:098 0 (fixed) 0:089� 0:019� 0:010

2þ

K�
2ð1430Þ ! K�ð892Þ� 0:529� 0:064� 0:070 0 (fixed) 0:0525� 0:0120� 0:0070

K�
2ð1430Þ ! K� 0.296 (fixed) �0:61� 0:39� 1:07 0.014 (fixed)

K�
2ð1430Þ ! K! 0.032 (fixed) 1:41� 0:80� 0:25 0.00021 (fixed)

K�
2ð1980Þ ! K�ð892Þ� 0:756� 0:060� 0:119 �1:46� 0:23� 0:22 0:0659� 0:0073� 0:0088

K�
2ð1980Þ ! K� 0:685� 0:052� 0:106 1:15� 0:30� 0:20 0:0617� 0:0061� 0:0065

2�

Kð1600Þ ! K�ð892Þ� 0:147� 0:021� 0:026 0 (fixed) 0:0222� 0:0058� 0:0054

Kð1600Þ ! K� 0:171� 0:020� 0:023 �0:21� 0:29� 0:12 0:0312� 0:0065� 0:0040

K2ð1770Þ ! K�ð892Þ� 0:116� 0:020� 0:029 1:93� 0:52� 0:43 0:0137� 0:0049� 0:0058

K2ð1770Þ ! K�
2ð1430Þ� 0:288� 0:045� 0:045 1:81� 0:40� 0:24 0:0095� 0:0027� 0:0018

K2ð1770Þ ! Kf2ð1270Þ 0:466� 0:073� 0:080 2:22� 0:36� 0:33 0:0128� 0:0035� 0:0021

K2ð1770Þ ! Kf0ð980Þ 0:118� 0:030� 0:025 1:89� 0:45� 0:53 0:0035� 0:0017� 0:0011
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FIG. 21 (color online). Results of signal-region fits for Bþ !
J=cKþ�þ��, with the mass and width of the K1ð1270Þ floated.
Data (points) and fits (histograms) are shown projected onto the
three axes. The fit components are color coded as shown in Fig. 19.

21Although! decays dominantly to �þ���0, it can also decay
to �þ�� through G-parity violation [26], which causes mixing
between � and !. An ! component is therefore present when-
ever a particle decays to �.
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FIG. 22 (color online). Bþ ! J=cKþ�þ�� signal data (points) and fit results (histograms) for slices in M2ðK��Þ. The fit
components are color coded as shown in Fig. 19.
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FIG. 23 (color online). Bþ ! c 0Kþ�þ�� signal data (points) and fit results (histograms) for slices in M2ðK��Þ. The fit
components are color coded as shown in Fig. 19.
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The peculiar shape of the observed �-! interference
pattern is caused by kinematic effects. The largest contri-
bution to the � signal comes from K1ð1270Þ ! K�, which
straddles the edge of phase space, as can be seen in the
middle panel of Fig. 27. The distortion that is caused by
this kinematic cutoff is taken into account automatically by
integrating the signal function only over the kinematically-
allowed region, as described in Sec. VIA. Modeling the
data accurately requires including �-! interference, incor-
porating the four-body phase space factor into the signal
function, and integrating the signal function over only the
kinematically-allowed phase space.

3. The L region

The MðK��Þ region between 1.5 and 2:0 GeV=c2, his-
torically referred to as the L region, comprises several
wide, overlapping resonances [28–30]. The large uncer-
tainties in the masses and widths of the known states in this
region make it difficult to characterize this region in this
analysis. The model presented here is not necessarily the
only one supported by the data.

To describe the structure observed at 2:6 GeV2=c4 in the
M2ðK��Þ distribution of Bþ ! J=cKþ�þ��, a peak
with a mass of 1:605 GeV=c2 and a width of
115 MeV=c2 is included in the fit, decaying to K�ð892Þ�
and K�. This peak, which is referred to as Kð1600Þ in this
paper, may be the K2ð1580Þ, an as-yet unconfirmed
JP ¼ 2� state that has previously been observed decaying
to K�ð892Þ� [29].

As can be seen in Fig. 22, the high end of theM2ðK��Þ
spectrum of Bþ ! J=cKþ�þ�� exhibits K� and � sig-
nals. To fit the data in this region, we include a K�

2ð1980Þ
resonance, which is another state that currently requires
confirmation.

Even after including Kð1600Þ and K�
2ð1980Þ resonances

in the Bþ ! J=cKþ�þ�� fit, a slight enhancement re-
mains around 3 GeV2=c4 inM2ðK��Þ. A K2ð1770Þ signal
is therefore also included, with its known decays to
K�ð892Þ�, K�

2ð1430Þ�, Kf0ð980Þ, and Kf2ð1270Þ.
Fitting the Bþ ! c 0Kþ�þ�� data is more difficult

still, as there are fewer events to analyze, and only a small
portion of the L region is within the kinematic limits of the
decay. In addition to the K1ð1270Þ signal, the M2ðK��Þ
spectrum contains what appears to be the low-mass tail of
at least one high-mass resonance. As Fig. 23 shows, there
are clear K�ð892Þ and � peaks at highM2ðK��Þ; these are
not reproduced by the PDF if no high-mass resonance is
included in the model. If the enhancement is modeled as a
single resonance, the data favor a mass of roughly
1:7 GeV=c2 and a width of 400–500 MeV=c2. In this
analysis, the enhancement is modeled as the K�ð1680Þ.
The data do not preclude other possibilities, such as the
K2ð1770Þ. Indeed, the hint of f0ð980Þ in the lastM2ðK��Þ
slice in Fig. 23 cannot come from a 1� state such as the
K�ð1680Þ, or from a 2þ state such as the K�

2ð1430Þ.

4. Comparison with previous measurements

It is interesting to compare the relative decay fractions
for K1ð1270Þ submodes in the Bþ ! J=cKþ�þ�� fits to
previous measurements of K1ð1270Þ branching fractions.
For this purpose, we use the decay fractions with phase
space shown in Tables V and VII, include isospin factors,
and assume branching fractions of ð1:53þ0:11

�0:13Þ% for

! ! �þ��, and ð93� 10Þ% for K�
0ð1430Þ ! K� [14].

The calculation neglects the systematic errors in the decay
fractions and assumes that the statistical errors among the
decay fractions are uncorrelated. Moreover, it assumes that
the K1ð1270Þ decays only to K�ð892Þ�, K�, K!, and
K�

0ð1430Þ�, and neglects interference among these decay

channels. The comparison is shown in Table VIII. While
the ratios of theK1ð1270Þ branching fractions toK�ð892Þ�,
K�, and K! are consistent with the previously-measured
values, the branching fraction to K�

0ð1430Þ� is signifi-

cantly smaller.

5. Mass and width of the K1ð1270Þ
As shown in Sec. VI I, the data favor a smaller mass and

a larger width for the K1ð1270Þ than the Particle Data
Group (PDG) values. This is mainly due to the excess of
K�ð892Þ and � at low M2ðK��Þ, as can be ascertained by
comparing the first row of plots in Figs. 22 and 24. The
measured mass and width agree remarkably well with
Ref. [31] and are also consistent with Ref. [32].

6. Limitations of the method

There are large uncertainties in the masses and widths of
many of the states included in the fits, as can be seen in
Table IV. Although this is taken into account in calculating
the systematic error, it nonetheless limits the accuracy of
the model.
In Bþ ! c 0Kþ�þ��, the small sample size and the

kinematic cutoff limit the conclusions that can be drawn
about the signal components. In Bþ ! J=cKþ�þ��, the
sample size is larger, but a further limitation is imposed by
the increase in computation time as more parameters are
added to the fit. Each additional decay channel that is
included in the signal function contributes a modulus and

TABLE VIII. Comparison of branching fractions for K1ð1270Þ
decays according to the Particle Data Group (PDG) [14] and
based on the results shown in Table V (fit 1) and Table VII (fit 2).
See text for assumptions.

K1ð1270Þ Branching fraction (%)

Decay mode PDG Fit 1 Fit 2

K� 42� 6 57:3� 3:5 58:4� 4:3
K�

0ð1430Þ� 28� 4 1:90� 0:66 2:01� 0:64
K�ð892Þ� 16� 5 26:0� 2:1 17:1� 2:3
K! 11� 2 14:8� 4:7 22:5� 5:2
Kf0ð1370Þ 3� 2 N/A N/A
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FIG. 24 (color online). Bþ ! J=cKþ�þ�� signal data (points) and fit results (histograms) for slices in M2ðK��Þ. The fit
components are color coded as shown in Fig. 19. The mass and width of the K1ð1270Þ floated in the fit.
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possibly a phase to be varied in the fit. Since the normal-
ization integral of the signal function in Eq. (16) depends
on the values of the parameters ~a, the integration must be
performed for each set of parameters attempted by
the fitter. While the step size used in the numerical inte-
gration can be increased to speed up the process, it must
be small enough to allow the PDF to resolve the structures
in the data. In particular, the �-! interference pattern
can be fitted with a step size of 0:01 GeV2=c4, but not
with a step size of 0:02 GeV2=c4. As a consequence of the
finite processor speed, not every possible decay channel
can be included in the fit. The model is necessarily
incomplete.

The large nonresonant component seen in both Bþ !
J=cKþ�þ�� and Bþ ! c 0Kþ�þ�� may be an indica-
tion of contributions from additional wide kaon excita-
tions. It may also incorporate some misreconstructed
resonant signal. While the nonresonant component is as-
sumed in this analysis to be distributed according to phase
space, this assumption may be inaccurate. There are cur-
rently no accepted models of nonresonantB-meson decays.

It is difficult, in an analysis like the one presented here,
to determine the significance of a given component of the
signal. An improvement in the likelihood upon the addition
of a new resonance to the signal function indicates only
that the model is incomplete, not necessarily that the data
contain the particular resonance. Furthermore, unless the
model is accurate in every other way, floating the mass and
width of a particle in the fit may not yield a reliable result,
as the fitter may set these parameters to compensate for the
model’s deficiencies. This is especially important in the
high-M2ðK��Þ region, where the statistics are limited and
there are large uncertainties in the masses and widths of the
resonances included in the signal function. Thus, although

the Kð1600Þ component of the signal function for Bþ !
J=cKþ�þ�� greatly improves the quality of the fit, it is
difficult to claim that it is a single particle, let alone
measure its mass and width.

VII. CONCLUSIONS

Using data recorded by the Belle detector, we have
measured branching fractions for the decays Bþ !
J=cKþ�þ�� and Bþ ! c 0Kþ�þ�� with improved
precision (see Sec. VB). We have also performed ampli-
tude analyses in three dimensions—M2ðK��Þ, M2ðK�Þ,
and M2ð��Þ—to determine the resonant structure of the
Kþ�þ�� final state in these decays (see Sec. VI I).
We have shown that theK1ð1270Þ, which is the dominant

component of the Kþ�þ�� final state in Bþ !
J=cKþ�þ��, is also prominent in Bþ ! c 0Kþ�þ��.
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FIG. 25. Observed K� mass spectra for B0 ! J=cKþ��
(top) and B0 ! c 0Kþ�� (bottom) data.
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FIG. 26 (color online). Finely-binned projections onto the
M2ð��Þ axis of signal-region data (fits) and fit results (histo-
grams) for Bþ ! J=cKþ�þ�� (top), Bþ ! c 0Kþ�þ��
(middle), and Bþ ! J=cKþ�þ�� with the mass and width
of the K1ð1270Þ floated (bottom). The fit components are color
coded as shown in Fig. 13. The discontinuity at the!mass is due
to �-! interference.
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The large sample available for the former decay reveals a
small peak at MðK��Þ 	 1:4 GeV=c2. Our three-
dimensional fits represent a first attempt to determine the
components of this peak.

Performing an unbinned fit in three dimensions exploits
practically all of the information available in the data.
While it is relatively easy to obtain a good fit in one
dimension, requiring a fit that succeeds in three dimensions
greatly restricts the class of successful models. With high
statistics, it is possible to use interference effects and the
spin-dependent angular distribution of the final state to
distinguish overlapping resonances. In particular, we
have shown that �-! interference cannot be neglected in
studying K1ð1270Þ decays to K�þ�� final states.

The large size of the Bþ ! J=cKþ�þ�� data sample
allows us to measure the mass and width of the K1ð1270Þ
with improved precision [see Eqs. (38) and (39)]. These
values differ considerably from previously-published val-
ues [14]. The analysis of these data also provides informa-
tion on the relative strengths of K1ð1270Þ decays to K�,
K!, K�ð892Þ�, and K�

0ð1430Þ� final states (see

Table VIII). While the results are consistent with previous
measurements for the first three modes, they indicate a
much smaller rate of decay to K�

0ð1430Þ� than previously

accepted.
Although more data are required to clarify the structure

of the high M2ðKþ�þ��Þ region in both Bþ !
J=cKþ�þ�� and Bþ ! c 0Kþ�þ��, we have shown
that this region contains broad resonances that decay to
K�ð892Þ� and K� final states.

The analysis presented in this paper demonstrates that
the decay modes Bþ ! J=cKþ�þ�� and Bþ !
c 0Kþ�þ�� can provide clean laboratories for the spec-
troscopy of excited kaon states. Many of these states still
require confirmation or more precise mass and width mea-
surements. As more data become available at future

super-B factories, analyses similar to the one presented
here can further elucidate the higher regions of the kaon
spectrum.
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APPENDIX: LOCAL MAXIMA

This appendix summarizes the results of the local-
maximum test, in which each of the three signal-region
fits was repeated 100 times with randomly selected starting
values for the parameters. In each case, the best likelihood
obtained coincided with the solution presented in Tables V

and VII. In the following, these solutions are referred to as
the ‘‘global maxima.’’
For the Bþ ! J=cKþ�þ�� fit with theK1ð1270Þmass

and width fixed to their values in Table IV, the local
maximum closest to the global maximum presented in
Table V had a likelihood of �10 608:6, which is 8:2�
away from the global maximum.

TABLE IX. Fitted parameters and decay fractions corresponding to the first local maximum for the mode Bþ ! J=cKþ�þ��,
with the K1ð1270Þ mass and width floated. The errors are statistical.

J1 Submode Modulus Phase (radians) Decay fraction

Nonresonant Kþ�þ�� 1.0 (fixed) 0 (fixed) 0:139� 0:015

1þ

K1ð1270Þ ! K�ð892Þ� 0:662� 0:056 0 (fixed) 0:090� 0:012
K1ð1270Þ ! K� 2:22� 0:13 �0:96� 0:13 0:438� 0:021
K1ð1270Þ ! K! 0:301� 0:043 0:94� 0:18 0:0078� 0:0022
K1ð1270Þ ! K�

0ð1430Þ� 0:88� 0:18 2:39� 0:27 0:0116� 0:0047
K1ð1400Þ ! K�ð892Þ� 0:258� 0:083 2:35� 0:43 0:017� 0:011

1� K�ð1410Þ ! K�ð892Þ� 0:755� 0:099 0 (fixed) 0:091� 0:023

2þ

K�
2ð1430Þ ! K�ð892Þ� 0:384� 0:081 0 (fixed) 0:027� 0:012

K�
2ð1430Þ ! K� 0.214 (fixed) 2:63� 0:60 0.0071 (fixed)

K�
2ð1430Þ ! K! 0.023 (fixed) �2:6� 1:1 0.00011 (fixed)

K�
2ð1980Þ ! K�ð892Þ� 0:659� 0:059 0:42� 0:48 0:0487� 0:0064

K�
2ð1980Þ ! K� 0:733� 0:057 2:92� 0:40 0:0689� 0:0071

2�

Kð1600Þ ! K�ð892Þ� 0:175� 0:066 0 (fixed) 0:031� 0:021
Kð1600Þ ! K� 0:169� 0:020 0:61� 0:50 0:0297� 0:0070
K2ð1770Þ ! K�ð892Þ� 0:138� 0:066 2:9� 1:3 0:019� 0:017
K2ð1770Þ ! K�

2ð1430Þ� 0:305� 0:055 2:55� 0:68 0:0104� 0:0032
K2ð1770Þ ! Kf2ð1270Þ 0:515� 0:090 2:81� 0:79 0:0153� 0:0045
K2ð1770Þ ! Kf0ð980Þ 0:121� 0:031 2:54� 0:69 0:0036� 0:0019

TABLE X. Fitted parameters and decay fractions corresponding to the second local maximum for the mode Bþ ! J=cKþ�þ��,
with the K1ð1270Þ mass and width floated. The errors are statistical.

J1 Submode Modulus Phase (radians) Decay fraction

Nonresonant Kþ�þ�� 1.0 (fixed) 0 (fixed) 0:136� 0:013

K1ð1270Þ ! K�ð892Þ� 0:701� 0:060 0 (fixed) 0:100� 0:013

1þ

K1ð1270Þ ! K� 2:24� 0:13 �1:00� 0:10 0:447� 0:018
K1ð1270Þ ! K! 0:293� 0:043 0:91� 0:16 0:0075� 0:0020
K1ð1270Þ ! K�

0ð1430Þ� 0:91� 0:18 2:40� 0:25 0:0123� 0:0045
K1ð1400Þ ! K�ð892Þ� 0:162� 0:076 2:53� 0:45 0:0066� 0:0060

1� K�ð1410Þ ! K�ð892Þ� 0:739� 0:093 0 (fixed) 0:086� 0:020

2þ

K�
2ð1430Þ ! K�ð892Þ� 0:687� 0:082 0 (fixed) 0:085� 0:018

K�
2ð1430Þ ! K� 0.384 (fixed) 3:01� 0:27 0.022 (fixed)

K�
2ð1430Þ ! K! 0.041 (fixed) �1:4� 1:2 0.00034 (fixed)

K�
2ð1980Þ ! K�ð892Þ� 0:814� 0:063 �1:52� 0:19 0:0731� 0:0077

K�
2ð1980Þ ! K� 0:791� 0:059 0:81� 0:25 0:0788� 0:0070

2�

Kð1600Þ ! K�ð892Þ� 0:253� 0:043 0 (fixed) 0:063� 0:019
Kð1600Þ ! K� 0:152� 0:021 0:86� 0:29 0:0236� 0:0062
K2ð1770Þ ! K�ð892Þ� 0:221� 0:050 �2:56� 0:26 0:048� 0:020
K2ð1770Þ ! K�

2ð1430Þ� 0:326� 0:048 2:98� 0:40 0:0117� 0:0030
K2ð1770Þ ! Kf2ð1270Þ 0:541� 0:073 �2:89� 0:34 0:0166� 0:0037
K2ð1770Þ ! Kf0ð980Þ 0:121� 0:032 2:98� 0:48 0:0035� 0:0018
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For the Bþ ! c 0Kþ�þ�� fit, two local maxima were
found: one with a likelihood of 635.4 and the other with a
likelihood of 635.9; these are 2:4� and 2:2� away from the
global maximum, respectively. The former had an unphysi-
cally large decay fraction for K1ð1270Þ ! K! and was
discarded. For the latter, all the parameters were within
statistical error of the values presented in Table VI, with the
exception of the K1ð1270Þ ! K�ð892Þ� amplitude and
decay fraction, which were higher by 1.4 times the statis-
tical error.

For the Bþ ! J=cKþ�þ�� fit with theK1ð1270Þmass
and width allowed to float, two local maxima were found,
both with a likelihood of �10 528:8, which is 2:7� away

from the global maximum. The fitted parameters and decay
fractions for these local maxima are presented in Tables IX
and X, respectively. The fitted mass and width are

MK1ð1270Þ ¼ ð1241:9� 3:2Þ MeV=c2;

�K1ð1270Þ ¼ ð128:3� 5:8Þ MeV=c2

for the former, and

MK1ð1270Þ ¼ ð1244:3� 3:3Þ MeV=c2;

�K1ð1270Þ ¼ ð129:0� 5:7Þ MeV=c2

for the latter.
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