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We calculate the thermal spectral function of strongly interacting Yang-Mills plasma with finite density

using the holographic technique. The gravity dual of the finite temperature and density is taken as the

Reissner-Nordström–anti-de Sitter black hole. In the presence of charge, linearized vector modes of

gravitational and electromagnetic perturbation are coupled with each other. By introducing master

variables for these modes, we solve the coupled system and calculate spectral function. The spectral

function gets a new peak due to the density effect, which is most dramatic in the momentum plot with

fixed frequency. We also calculate the photoemission rate of our gauge theory plasma from the spectral

function for lightlike momentum. AC, dc conductivity, and their density dependence is also computed.
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I. INTRODUCTION

The gauge/gravity duality [1–3] opened a new possibil-
ity to quantitative study for strongly interacting systems.
Although it is not developed enough to describe realistic
QCD, we expect to learn some features of QCD from it
based on the universality of the hydrodynamics: in the long
wavelength limit, the details of the theory do not matter.
For example, the shear viscosity/entropy ratio [4,5] �=s is
universal if we neglect the higher derivative terms. We also
expect, due to analytic structure of the theories, that there
are similarities of supersymmetric and nonsupersymmetric
theories which can continue to the finite wavelength/
frequency regime.

The quarks and gluons are liberated at high enough
temperature. However, over Tc < T < 2� 3Tc, the experi-
mental data shows that quarks and gluons are not free but
are strongly interacting: the small viscosity and the pres-
ence of the coherent flow show that the interactions should
be very strong. Such strongness of the interaction is the
motivation why one has to abandon perturbative QCD in
such an energy/temperature regime. One way to avoid that
difficulty is to rely on holographic QCD (hQCD) for the
quark-gluon plasma in the Relativistic Heavy Ion Collider
(RHIC). The hydrodynamic calculations of hQCD were
shown to be useful to discuss the transport phenomena
[6,7]. It is interesting to see what happens in the Large
Hadron Collider (LHC) where the energy scale is much
higher [8].

The finite density effect is a very essential ingredient to
understand how the core of the neutron star and the early
universe behave. It may uncover some significant features
of the evolution of our universe, galaxies, and stars. At the
RHIC experiment, the temperature reached is above Tc but
the density is almost zero. In the near future the Japan
Proton Accelerator Research Complex, LHC, and espe-

cially the Facility for Antiproton and Ion Research, which
probes the regime of a few times of normal nuclear density
[9], will tell us much about the density effect of quarks and
gluons. The holographic study for the system with finite
density in the hydrodynamic regime was made in [10–14].
The dual gravity background for the finite density and

temperature is taken to be Reissner-Nordström–AdS
(RN-AdS) black hole. The bulk U(1) charge is usually
identified with the U(1) R charge rather than the particle
number density of the boundary field theory. Here we work
out this case and hope that baryon charge density is similar
in its effect. In the phase diagram, we knowmuch about the
high temperature, low density regime but not the low
temperature high density regime. Previously we studied
some issues like meson mass shifted by density effect for
zero temperature, finite density sector [15]. Now we will
study the effect of both finite temperature and density. The
bulk U(1) charge is identified with the particle number
density of the boundary field theory. To see the finite
frequency/momentum dependence of the response of the
system, the spectral function is a good tool. It gives us ac
conductivity and its trace is related to the photoemission
and dilepton production rate [16–18].
The spectral function with and without medium density

in the probe brane approach was already calculated
[19–26]. However, in that approach the gravity backreac-
tion to the presence of the charge is neglected. In this paper,
we take a bottom-up approach where the backreaction is
taken into account. We will compute the spectral function
of tensor and vector modes which describe the fluctuation
of energy momentum tensor and currents of hot plasma.
After that the finite temperature and density effects of
photoemission rate are calculated and discussed.
The most notable effect of the density is the appearance

of the new peak in the spectral function which is absent at
zero chemical potential. This is especially dramatic in the
momentum plot of the spectral function as we shall see
later. We attribute the origin of this effect to the appearance
of the diffusion pole which was discovered in [13]. Since
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the residue of the pole is proportional to the charge, we can
expect that the new peak in spectral density is enhanced as
charge increases. Indeed the numerical calculation con-
firms such expectations.

II. A RECIPE FOR GREEN’S FUNCTION

In this section, we will briefly review how to calculate
the thermal spectral function. To describe thermalized
plasma holographically we need the black hole back-
ground. The general equations of motion for the linearized
fluctuations in this background are

E00
�ðuÞ þ Pðw; q; uÞE0

�ðuÞ þQðw; q; uÞE�ðuÞ ¼ 0; (2.1)

where E� denote the fluctuating fields in a given back-
ground and� runs 1 to n, the number of independent fields,
and w, q are dimensionless frequency and momentum.
Near the boundary (u� 0)1 there are two local Frobenius
solutions �1, �2:

�1 ¼ u��ð1þ � � �Þ �2 ¼ u�þð1þ � � �Þ: (2.2)

�� is the solution of the indicial equation near the bound-
ary, �þ > �� where �þ is the conformal dimension of an
operator, and �� is the dimension of the dual source field.
Near the horizon, u ¼ 1, there are also two local solutions:

�1 ¼ ð1� uÞ�iw=2ð1þ � � �Þ
�2 ¼ ð1� uÞiw=2ð1þ � � �Þ:

(2.3)

The two different local solutions of Eq. (2.1) should be
matched:

E� ¼ Aðw;qÞ�1 þBðw; qÞ�2

¼ Cðw; qÞ�1 þDðw; qÞ�2: (2.4)

However, not all solutions are allowed physically because
this system contains the black hole: no outgoing wave can
propagate from the horizon, therefore we should impose
D ¼ 0, which is called the infalling boundary condition.
Taking the normalization C ¼ 1 using the linearity of
differential equation, we have

�1ðuÞ ¼ Aðw; qÞ�1ðuÞ þBðw; qÞ�2ðuÞ: (2.5)

Note that the coefficient A is the source of the boundary
theory operatorAðw;qÞ ¼ J�ðw; qÞ, so by differentiating
the generating functional twice with respect to J� we get
the retarded Green function. Another coefficient B corre-
sponds to the condensate or vacuum expectation value of
the operator O� which couples to the source J�. The
retarded Green function is given by the ratio between A,
B. We will give a sketch of the on-shell quadratic action,
with Eqs. (2.2) and (2.5):

Son-shell

�
Z
ddþ1x

ffiffiffi
g

p
E�0E0

��
Z
ddx

�
u�ð�þþ���1ÞA2

�
�
u�� þ B

A
u�þ

��
��u���1þ�þ

B
A

u�þ�1

��
u!0

�
Z
ddxA2

�
u�ð�þþ���1Þð��u2���1

þð�þþ��Þ BAu�þþ���1

��
u!0

�
Z
ddxA2

�
��u����þ þð�þþ��Þ BA

�
u!0

: (2.6)

Obviously u����þ is divergent (�� <�þ) so it should be
renormalized holographically [27] or we can ignore it
because the imaginary part of the Green’s function does
not care about the real number which comes from the first
term. For the issues on how to regulate the on-shell action,
see Appendix D. The spectral function is its imaginary part
[20]. Notice that

B
A

¼ 1

�2ðuÞ
�
�1ðuÞ
�1ð0Þ ��1ðuÞ

�

� ¼ ImGret ¼ Im
B
A

¼ 1

�2

Im

�
�1ðuÞ
�1ð0Þ

�
;

where A ¼ lim
u!0

�1ðuÞ
u��

: (2.7)

Here �i is real because the equation of motion and initial
conditions are real for �i. The above expression is inde-
pendent of u since it is a kind of conserved flux [6],

Sbdry½�0� ¼
Z d4k

ð2�Þ4 �0ð�kÞGðk; uÞ�0ðkÞju¼1
u¼0; (2.8)

where G ¼ N B
A , with N the normalization constant.

The retarded Green function is defined by the recipe [6]

GR
ijðKÞ ¼ �2GijðK; u ¼ 0Þ i ¼ j

¼ �GijðK; u ¼ 0Þ i � j: (2.9)

From Eq. (2.7), the only thing we should know is the value
of �1ðuÞ, �2ðuÞ. The spectral function, for example, is
given when �� ¼ 0:

�ii ¼ �2N lim
u!:5

�
1

�2ðuÞ Im
�

�1ðuÞ
�1ðu ¼ 0Þ

��
: (2.10)

Given the normalization constant N we can calculate the
spectral function numerically.

III. RN ADS

The dual geometry for the finite temperature and density
is chosen as a charged AdS black hole [14]. The action is

1Our coordinate u covers the range 0 � u � 1 where 0 is the
position of the boundary and 1 is the position of the horizon.
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S ¼ 1

2G2
5

Z
d5x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þ 1

4g25

Z
d5x

ffiffiffiffiffiffiffi�g
p

F2

þ 1

G2
5

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
K; (3.1)

where the cosmological constant is � ¼ � ðd�1Þðd�2Þ
2l2

, the

last term is the Gibbons-Hawking term, K is the extrinsic
curvature on the boundary, and l is the AdS radius. The
metric of RN AdS is

ds2 ¼ r2

l2
ð�fðrÞdt2 þ d~x2Þ þ l2

r2fðrÞdr
2

fðrÞ ¼ 1�ml2

r4
þ q2l2

r6
;

At ¼ �Q

r2
þ�;

(3.2)

where the gauge charge Q is related to the black hole
charge q,

g25 ¼
2Q2

3q2
G2

5; Q2 ¼ 3g25
2G2

5

q2; (3.3)

the five-dimensional gauge theory coupling constant g5
and the gravitational constant G5

2 can be chosen as [28]

l

g25
¼ NcNf

4�2
;

l3

G2
5

¼ N2
c

4�2
(3.4)

but we will not use these parameters explicitly. The metric
function fðrÞ is rewritten as

fðrÞ ¼ 1

r6
ðr2 � r2þÞðr2 � r2�Þðr2 � r20Þ;

r�2
� ¼ m

3q2

�
1þ 2 cos

�
�

3
þ ’�

��
;

(3.5)

where �¼þ;�;0 and’þ ¼ 4�=3,’� ¼ 0,’0 ¼ 2�=3.
The charge is expressed by � and m,

q4 ¼ 4m3l2

27
sin2

�
�

2

�
;

� ¼ arctan

�
3

ffiffiffi
3

p
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m3l2 � 27q4

p
2m3l2 � 27q4

�
:

(3.6)

Finally, the black hole temperature is given as

T ¼ r2þf0ðrþÞ
4�l2

¼ rþ
�l2

�
1� q2l2

2r6þ

�
� 1

2�b

�
1� a

2

�
; (3.7)

where a, b are

a � q2l2

r6þ
; b � l2

2rþ
: (3.8)

From the horizon regularity, the black hole charge q is
related with the chemical potential �,

�¼ 4Qb2

l4
¼ 1

2b

g5l

G5

ffiffiffiffiffiffi
3a

2

s
;

a¼ 3þ 2 ��2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12 ��2

p
��2

; where ��¼�

T

G5

�g5l
: (3.9)

Notice that there is maximum value of q, q4 � 4
27m

3l2

which corresponds to a ¼ 2. Horizon radius rþ should
be real, so 1þ 2 cosð�=3þ 4�=3Þ must be positive.
It is very useful to express the frequency and momentum

as dimensionless quantities w ¼ w=ð2�TÞ, q ¼ k=ð2�TÞ.
This choice is good enough to see the finite temperature
behavior of the system but not good in the zero temperature
limit. An alternative way is to rescale w and k by the black
hole radius rþ, that is by b: let ~w ¼ bw, ~q ¼ bk. At the
extremal limit, by Eq. (3.6), 4m3l2 ¼ 27q4 and � ¼ �,

rþ ¼
�
l2

2

�
1=6

q1=3; a¼ 2; b¼
�
l2

2

�
5=6

q�1=3 (3.10)

and the chemical potential is written

� ¼
ffiffiffi
3

p
2

el

G5

1

b
: (3.11)

If we rescale w and k with b, in the extremal limit we
rescale w and k with chemical potential, ~w� w=�,
~q� k=�.
The origin of the charged black hole in string theory can

be understood by the STU [29] model: the diagonally
charged STU black hole is RN AdS. The diagonal U(1)
is the subgroup of the SU(4) R symmetry originally but
here we assume that this U(1) is a part of the flavor U(1)
group which is relevant if we assume that the bulk filling
branes [28] are embedded in our AdS5 space time.3 The
merit of doing this is that we can have a backreacted
gravitational background which is a solution of the glue-
quark coupled system. In terms of gauge theory, it means
that our approach is beyond quenched approximation.

IV. TENSOR MODE

The gravitational and gauge field perturbation is
classified by the boundary SO(2) rotational symmetry.
This classification is summarized in Appendix A. Tensor
mode perturbation is easy to treat because it is completely
decouple from other fields. The equation of motion for the
hxy component is

hx00y þ ðr5fÞ0
r5f

hx0y þ l4

r4f2
ðw2 � k2fÞhxy ¼ 0; (4.1)

2Usually the five-dimensional gravitational constant G5 is
used as �2 ¼ 8�G5 but here we will use G5 as � itself.

3Please note that this is no more than a conceptual introduction
of the bottomup approach in string theory.
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where the prime denotes derivative with respect to r and

hxy ¼ gð0Þxxhxy. Introducing new coordinate u ¼ r2þ=r2,

ds2 ¼ ð�TlÞ2
u

ð�fðuÞdt2 þ d~x2Þ þ l2

4u2fðuÞdu
2;

fðuÞ ¼ ð1� uÞð1þ u� au2Þ:
(4.2)

The equation of motion is simplified

hx00y � f� uf0

uf
hx0y þ 1

uf2
ð ~w2 � ~q2fÞhxy ¼ 0; (4.3)

where

~q ¼ bk ¼ k

2�T

�
1� a

2

�
¼ q

�
1� a

2

�
;

~w ¼ w

2�T

�
1� a

2

�
¼ w

�
1� a

2

�
:

(4.4)

This differential equation has two independent solutions
near the boundary,

hxy ¼ A�1ðuÞ þB�2ðuÞ; (4.5)

where

�1ðuÞ ¼ 1þ � � � þ hl logðuÞ�2ðuÞ;
�2ðuÞ ¼ u2ð1þ � � �Þ:

(4.6)

By choosing A ¼ �1ð0Þ in Eq. (2.5), we get the normal-
ized solution for tensor mode

hxyðuÞ ¼ �1ðuÞ
�1ð0Þ ¼ �1ðuÞ þ B

A
�2ðuÞ: (4.7)

The on-shell action is given in Eq. (5.7) of [13],

S½hxy� ¼ l3

32G2
5b

4

Z d4k

ð2�Þ4
�
fðuÞ
u

hxyð�k; uÞhx0y ðk; uÞ
���������u¼0

u¼1
:

(4.8)

Our normalization is such that hxyðuÞ ! 1 at the boundary.4

By taking the imaginary part of the Green’s function and
renormalizing divergent terms, the thermal spectral func-
tion is

�ðw; qÞxy;xy ¼ l3

16G2
5b

4
Im

�
2
B
A

�
: (4.9)

Here the ratio B=A is

B
A

¼ 1

�2ðuÞ
�
�1ðuÞ
�1ð0Þ ��1ðuÞ

�
: (4.10)

This ratio is independent of the evaluation point. As ex-
plained before, imposing the infalling condition at the
horizon and Dirichlet boundary condition at the UV bound-
ary, we get the numerical solution for �1ðuÞ and �2ðuÞ,

�ðw; kÞxy;xy ¼ l3

16G2
5b

4
Im

�
2

�2ðuÞ
�1ðuÞ
�1ð0Þ

�
: (4.11)

Using b ¼ ð1� a=2Þ=2�T, one can show that the zero
temperature spectral function is

�ðw; kÞT!0
xy;xy ¼ ð2�TÞ4l3

16G2
5

�ðw2 � q2Þ2�ðw2 � k2Þ: (4.12)

See Appendix B for details. Figure 1 shows the difference
between the normalized thermal spectral function at
nonzero and zero temperatures for ��xy;xy. The thick line

is the zero chemical potential case �� ¼ 0which is the AdS
Schwarzschild case of Ref. [21]. The dashed and the solid
lines correspond to the �� ¼ 0:5; 1 case, respectively. When
the chemical potential � increases, the spectral difference
grows up and the position of the small peak is shifted to the
largerw. The position of the peak in the spectral difference
is the pole position of the retarded Green’s function [19].

0.5 1.0 1.5 2.0 2.5 3.0
w

0.5

1.0

1.5

2.0

2.5
xyxy

0.5 1.0 1.5 2.0
q

0.2

0.4

0.6

0.8

1.0

1.2

xyxy

FIG. 1 (color online). The difference of thermal spectral function and zero temperature spectral function of��xy;xy=w. Left: with fixed
q¼0 when ��¼0 (thick), 0.5 (dashed), 1 (thin); right: ��xy;xy vs q plot and w¼0:1(thick), 0.4 (dashed), 0.8 (thin) with fixed �� ¼ 0:5.

4More properly, we should express hxyðu; kÞ ¼ ĥxyðkÞhxyðuÞ,
where the hatted variable is the value at the boundary or the
external source of the boundary theory.
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The shift of the peak is the shift of the quasinormal mode.
When chemical potential grows in the unit of T, the pole
position grows faster than T.

The right side of Fig. 1 shows the spectral function as a
function of spatial momentum q. When w ¼ 0, the peak
position can be identified with the inverse screening length.
However, for the tensor mode, there is no peak for w ¼ 0.
As we know SYM has conformal symmetry, hence it
cannot have any scale. For the finite �, there is a broad
peak and the peak is more sharpened when chemical
potential grows. This shows that in a dense system the
thermal particle collides more often so that the particles
propagate shorter distance. For the lightlike momentum,
this screening is maximized. For spacelike momentum, the
thermal fluctuation of spectral function rapidly vanishes
leaving only a zero temperature piece.

V. VECTOR MODE

Vector-type perturbation consists of three independent
fields, hxt, hxz, Ax, and equations of motion for these modes
are coupled with each other. In the hydrodynamic limit,
this mode has a diffusion pole so that it is also named as a
diffusive mode. Here we are interested in the general
energy/momentum regime. The equations of motion for
vector modes are

0 ¼ hx00t � 1

u
hx0t � ð1� a

2Þ2
uf

ðwqhxz þ q2hxt Þ � 3auB0

0 ¼ qfhx0z þwhx0t � 3awuB

0 ¼ hx00z þ ðf=uÞ0
f=u

hx0z þ ð1� a
2Þ2

uf2
ðw2hxz þwqhxt Þ

0 ¼ B00 þ f0

f
B0 þ ð1� a

2Þ2
uf2

ðw2 � q2fÞB� hx0t
f

:

(5.1)

This equation is simplified by introducing a gauge invari-
ant combination Z1 ¼ whxz þ qhxt ,

5

0 ¼ Z00
1 þ

�
f0 ~w2

fð ~w2 � ~q2fÞ �
1

u

�
Z0
1 þ

ð ~w2 � ~q2fÞ
uf2

Z1

� 3au~q

�
B0 þ ~w2f0

fð ~w2 � ~q2fÞB
�

0 ¼ B00 þ f0

f
B0 þ

� ~w2 � ~q2f

uf2
� 3au

f
� 3au~q2

~w2 � ~q2f

�
B

þ ~q

ð ~w2 � ~q2fÞZ
0
1; (5.2)

where ~w ¼ ð1� a
2Þw. It is not easy to solve these 2nd order

coupled differential equations, but the authors of [13] have
decoupled these equations by introducing master variables.
Let us define first �� as

��¼� f~q
~w2�~q2f

Z0
1þ

�
�3au

f~q2

~w2�~q2f
þC�

�
B: (5.3)

The equation of motion is rewritten as

�00� þ f0

f
�0� þ

� ~w2 � ~q2f

uf2
� f0

uf
� C�

f

�
�� ¼ 0; (5.4)

where C� is

C� ¼ ð1þaÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þaÞ2þ 3ab2k2

q

¼ ð1þaÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þaÞ2þ 3a

�
1�a

2

�
2
q2

s

¼ ð1þaÞð1�	Þ; where 	¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a

4

�
2�a

1þa

�
2
q2

s
:

(5.5)

In order to use our recipe for spectral function, we need the
on-shell action for vector modes:

Sos ¼ l3

32G2
5b

4

Z d4k

ð2�Þ4

�
�
1

u
hxt ð�k; uÞhx0t ðk; uÞ � fðuÞ

u
hxzð�k; uÞhx0z ðk; uÞ

� 3afðuÞBð�k; uÞB0ðk; uÞ
���������u¼1

u¼0

¼ l3

32G2
5b

4

Z d4k

ð2�Þ4
�
1

u

f
~w2 � ~q2f

Z1Z
0
1 � 3afBB0

þ ~w2

~w2 � ~q2f
3auBht

�
: (5.6)

From the equations for master field, we can get the spectral
function of master fields. We however need the spectral
function of original variables not the master field itself. In
Ref. [30], the authors showed a systematic way to compute
the spectral function of original variables in terms of
master variables. Let us first find the series solution of
Z1, B,

Z1 ¼ Ẑ1ð1þ ð ~w2 � ~q2Þuþ � � �Þ þ �Z

2
u2 þ � � �

B ¼ B̂ð1þ � � �Þ þ �Buþ � � � ;
which defines the conjugate momentums �Z, �B. The
boundary action can be written in terms of the boundary
values of original variables and their conjugate momen-
tums:

Sbd¼ l3

32G2
5b

4

Z d4k

ð2�Þ4
�

Ẑ1�Z

~w2�~q2
�3aB̂�Bþ���

�
; (5.7)

5We can always choose a certain gauge to eliminate some
components of gravitational and electromagnetic perturbation.
But by choosing these gauge invariant combinations, we have at
least two merits: first we study this system in a gauge indepen-
dent way; second, to make the gauge invariant combination we
use all of the constraint so we do not worry about the consistency
of our equations of motion and their solutions.
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where Ẑ1, B̂ are the boundary values of the fields and �Z,
�B are their conjugate momentum which will be identified
with one point function, and dots denote contact terms
which do not have any derivatives with respect to u. Note
that these conjugate momentums depend on the boundary
source terms implicitly. The master variables ��1 and
��2 have series solutions near the boundary,

�� ¼ �̂�ð1þ � � � þ �̂�uþ � � �Þ:
Define the transformation matrix R,

R ¼ � ~q
~w2�~q2

Cþ
� ~q

~w2�~q2
C�

0
@

1
A; (5.8)

the boundary value of the master fields is simply related to
the boundary value of the original fields by R,

�þ
��

 !
¼ R

ðZ1Þ0ðu¼ 0Þ
B̂

 !

¼ R
ð ~w2 � ~q2ÞẐ1

B̂

 !
�þ�þ
����

 !
¼ R

�Z

�B

 !
: (5.9)

Then the conjugate momenta �Z, �B are written as

�Z

�B

� �
¼ R�1 Diagð�þ;��Þ �þ

��

� �
: (5.10)

The boundary action is now written only by boundary

values ðẐ1; B̂Þ and conjugate momentum of master field
��. The two point function for hxt and hxz is related to the
gauge invariant variable Z1 as

Gxtxt ¼ 
2Sbd


ĥxt 
ĥ
x
t

¼
�

Ẑ1


hxt

�
2 
2Sbd


Ẑ1
Ẑ1

¼ ~q2

2Sbd


Ẑ1
Ẑ1

;

Gxx ¼
�

B̂


Âx

�
2 
2Sbd


B̂
B̂
¼ 1

�2


2Sbd


B̂
B̂
:

(5.11)

Therefore the correlation functions are

Gxt;xt ¼ l3

32G2
5b

4
~q2

C��̂þ � Cþ�̂�
Cþ � C�

;

Gxz;xz ¼ w2

q2
Gxt;xt

Gxt;x ¼ Gx;xt ¼ ~q2
l2

ffiffiffiffiffiffi
6a

p
32G5eb

3

�̂þ � �̂�
Cþ � C�

Gx;x ¼ l

4e2b2
Cþ�̂þ � C��̂�

Cþ � C�

¼ l

4e2b2
1

2

�
�̂þ � �̂�

	
þ �̂þ þ �̂�

�
:

(5.12)

Note that when spatial momentum q or density ‘‘a’’ van-
ishes two point function Gxt;x vanishes. It means that the

holographic operator mixing between Z1 and Ax comes
from the density effects. By following the standard recipe
described in Sec. 2.II, ��, the conjugate momentum of
master fields, are computed as the ratio of two connection
coefficients,

�� ¼ A�ð1þ � � �Þ þB�uð1þ � � �Þ
¼ �̂�½1þ � � � þ �̂�u � � ��: (5.13)

By comparing Eq. (5.13) with Eq. (2.5) we get the con-
jugate momentum of the master fields as a ratio of con-
nection coefficient of near boundary solutions of them,

Im
B�
A�

¼ Im�̂�: (5.14)

By imposing infalling IR boundary condition for ��, the
spectral functions are computed:

�xtxt ¼ 2 ImGxtxt; �xzxz ¼ w2

q2
�xtxt;

�x;xt ¼ ImGxxt; �xx ¼ 2 ImGxx:
(5.15)

The spectral function is plotted in terms of w, q. Figure 2
shows the imaginary part of the Gxx divided by w, which is
AC conductivity of thermalized plasma (with normaliza-
tion constant, 12

l
g2
5

2�T). The peak position becomes larger

as the charge increases. The strength of that peak also
increases, when charge grows. In Ref. [21], they calculate
only the zero density case which is denoted by the thick
line in Fig. 2. The right part of Fig. 2 is the density
dependence of DC conductivity. From the spectral func-
tion, DC conductivity can be computed by taking the zero

frequency limit, �E ¼ limw!0
�xxðw;k¼0Þ

w . As density in-

creases, it decreases and in sufficiently large density
regime, DC conductivity is negligible. This is rather sur-
prising since the Drude formula in Maxwell theory says the
conductivity is proportional to the density of the charge
carrier. It seems that interaction between the charge car-
riers dominates the abundant effect. Such a drastic reduc-
tion of the DC conductivity can be another explanation of
the jet quenching phenomena which are different from the
explanation in Refs. [31,32]. In a highly dense system, the
strongly interacting plasma cannot carry charge over long
distances because of density effect. If this is the relevant
mechanism, raising the temperature suppresses the jet
quenching in LHC since it reduces ����=T.
In Fig. 3, we plot the spectral function �xx in terms of

spatial momentum with fixed frequency. The left part
shows thick, dashed, and thin lines corresponding to
w ¼ 0:1; 0:3; 0:5 with �� ¼ 1 and the right part of Fig. 3
also shows thick, dashed, and thin lines corresponding to
�� ¼ 1; 2; 3 withw ¼ 0:1. These results can be interpreted
as an inverse thermal screening length of the super
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Yang-Mills plasma. It is interesting that for the tensor and
vector mode the peak position is different. For the w ¼ 0,
�xx is zero so screening mass is zero. But for the finite w
there is the peak and the position is a function of both w
and ��. Because the diffusive nature affects the interactions
inside the medium, the screening effect are more compli-
cated. In fact, one can find the most notable effect of the
density in Fig. 3: A peak appears in the spectral function
which is absent at zero chemical potential. We attribute
the origin of this effect to the appearance of the diffusion
pole which was discovered in [13]. Since the residue of the
pole is proportional to the charge we can expect that the
new peak in spectral density is enhanced as charge in-
creases. Indeed the numerical calculation confirms such
expectations.

The hydrodynamic pole in Gxx appeared in Fig. 4 at

w ��i
1� a=2

2ð1þ aÞq
2: (5.16)

The left figure shows that the hydrodynamic pole position
is shifted from 0.0225 (q ¼ 0:3) to 0.01 (q ¼ 0:2). This
comes from the density effect, when � goes to zero the
hydrodynamic pole in Gxx disappears, see Appendix C.
This is the operator mixing result. The diffusion pole only
appeared in Gxt;xt or Gxz;xz not Gx;x. The right figure shows

that �xx reaches very rapidly to the zero temperature
spectral function.
Figure 5 shows the real part of ac conductivity,

Re�ðwÞ ¼ �xxðw;q¼0Þ
iw with the normalization unit

ð2�TÞ2 l
2g2

5

. By definition, Im� ¼ ReGxx

w , Re� ¼ ImGxx

w .

The ac resistivity is defined as �ðwÞ ¼ 1=�ðwÞ. For large
w, the system has zero resistivity, which means that at any
density charge carrying is almost perfect in high frequency.
The ðxt; xtÞ component of spectral function �xtxt has the

diffusion pole at w ¼ q2=2 [19]. The dispersion relation
for diffusive channel w ¼ Dk2=2 gives us the diffusion
constant D ¼ 1=2�T from the hydrodynamic analysis.

0.5 1.0 1.5 2.0 2.5 3.0
q

0.05

0.10

0.15

0.20

0.25

0.30

xx

0.5 1.0 1.5 2.0 2.5 3.0
q

0.5

1.0

1.5

xx

FIG. 3 (color online). The normalized thermal spectral function �xxðqÞ. Left: with �� ¼ 1 and varyingw ¼ 0:1 (thick), 0.3 (dashed),
0.5 (thin); right w ¼ 0:1 and varying �� ¼ 0 (lowest thin line), 1 (thick), 2 (dashed), 3 (solid), with normalization unit ð2�TÞ2 l

2g2
5

.

0.5 1.0 1.5 2.0 2.5 3.0
w

3

2

1

1

xx

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

xx

w 0

FIG. 2 (color online). ��xx=w, deviation of finite temperature thermal spectral function from the zero temperature spectral function,
with �� ¼ 0 (thick), 1 (dashed), 2. The normalization unit is ð2�TÞ2 l

2e2
. Right: The density dependence of DC conductivity with

normalization constant 1
2

l
e2
2�T.
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The left part of Fig. 6 is with q ¼ 0:3 for various values of
��: 0.5 (thick), 1 (dashed), 1.5 (thin). When the chemical
potential grows, the strength of peak also grows but the
position itself does not. The reason of this increase comes
from the factor 1

ð1�a=2Þ4 in front of the Green’s function.

When �� increases the parameter a goes up so the overall
factor ð1� a=2Þ�4 increases rapidly. When the system
reaches the extremal limit, a ¼ 2, that factor diverges
and our analysis is broken down. It should be computed
separately for the zero temperature or for the extremal RN
spectral function from finite temperature or nonextremal
RN-AdS black hole.

In the right part of Fig. 6, the peak position is
shifted when q is moved. Again, the position is at
w ¼ q2=2.

VI. PHOTOEMISSION RATE

In the heavy ion collision, the emitted photons are a
good measure to see the medium effect. The photoemission

rate of SYM plasma was calculated holographically for
AdS Schwarzschild [16], for D4=D8= �D8 with finite
chemical potential [17] and for D3=D7 with finite density
[24]. Wewill focus on the photoemission rate for our gauge
theory dual to the RN-AdS background here. Let �	 be the

number of photons emitted per unit volume. To leading
order in electromagnetic coupling e,

d�	 ¼ d3k

ð2�Þ3
e2

2j ~kj�
�
C<

�
ðKÞjw¼k

C<
�
ðKÞ ¼ nBðwÞ��
ðKÞ;

(6.1)

where C<
�
ðKÞ is the Fourier transformed Wightman func-

tion which is related to the spectral function multiplied by
Bose-Einstein distribution function nBðwÞ. Convert the
differential photoemission rate into the emission rate per
unit volume as a function of !,

d�	

dk
¼ �EM

�
k��
C<

�
ðKÞj!¼k: (6.2)

0.05 0.10 0.15 0.20

w

2 T
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0.3

0.4

xx

0.2 0.4 0.6 0.8 1.0

w

2 T

0.2

0.4

0.6

0.8

1.0

1.2

1.4
xx

FIG. 4 (color online). ��xx for various density, one with a ¼ 0:5, q ¼ 0:3 (thick), a ¼ 0:5 q ¼ 0:2 (dashed). The normalization unit
is ð2�TÞ2 l

2e2
. Right: �xx (a ¼ 0:5, q ¼ 0:3) plotted in the range w 2 0; 1½ �.

1 2 3 4 5 6
w

5

10

15

20

xx

w

1 2 3 4
w

5

10

15

xx

w

FIG. 5 (color online). Real part of AC conductivity of SYM plasma, �xxðw; q ¼ 0Þ=w and the normalization unit is ð2�TÞ2 l
2g2

5

. Each

line shows the result when �� ¼ 0 (thick), 1, 2, 3, 4 (thin). Left: AC conductivity; right: AC resistivity as an inverse of the left one.
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In order to calculate the photoemission rate we need to
know the longitudinal part of the spectral function. But for
the case of lightlike momentum ! ¼ k, the trace of spec-
tral function �

�
� ¼ ��
��
 is obtained only by �T . From

Appendix A,

��
Cret
�
 ¼ ðd� 2Þ�T þ�L ¼ 2�T þ�L; (6.3)

where d is the dimension of the boundary field theory. For
the lightlike momentum, the longitudinal correlator should
be vanished because the projection operator diverges. The

trace of spectral function is only given by�Tðw; j ~kj ¼ wÞ.
In Fig. 7, the photoemission rate is presented as a

function of w compared with [16] which is given as the
thickest line. The peak position is located at wmax ¼
1:484 79=ð2�Þ ¼ 0:2363 and the maximum value is
0.015 67 with unit �EMðN2

c � 1ÞT3. The left figure shows
the photoemission rate for �� ¼ 0 (thick), 1 (solid),

5 (dashed), 10 (thin) and the right shows the maximum

value
d�	

dk ðw ¼ 0:2363Þ as a function of ��. Notice that the

maximum value of the photoemission rate decreases until
wc ¼ 2:014 which is the turning point. After passing ��c it
increases. From the right figure, the photoemission rate is
almost monotonic in large ��. Before the turning point ��c,
the maximum value is decreased and is also presented in
the left one.
It means the thermal photon production rate is sup-

pressed in the low chemical potential regime but in the
high density regime, enhanced. It may reflect the fact that
at high enough density thermal screening is enhanced. By
comparing Ref. [16], at �� ¼ 0:1 (from RHIC) the maxi-
mum value of the photoemission rate is decreased by 1%
(0.015 669 5 to 0.015 515 8) which is almost negligible.
The suppression of conductivity and the increase of ther-
mal screening mass are presented in Figs. 2 and 3.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
w

1

2

3

4

xtxt

0.2 0.4 0.6 0.8 1.0 1.2 1.4
w

0.5

1.0

1.5

xtxt

FIG. 6 (color online). The normalized thermal spectral function �xtxt. Left: with q ¼ 0:3 and varying �� ¼ 0:5 (thick), 1 (dashed),
1.5 (solid); right: with �� ¼ 1 and varying q ¼ 0:3 (thick), 0.5 (dashed), 0.7 (solid) with normalization unit ð2�TÞ4 l3

16G2
5

.

0.5 1.0 1.5 2.0
w

0.005

0.010

0.015

d

dw

5 10 15 20 25 30

0.01

0.02

0.03

0.04

0.05

d

dw max

FIG. 7 (color online). The photoemission rate of SYM-electromagnetic (EM) plasma with normalization unit �EMðN2
c � 1ÞT3.

d�	=dk with lightlike momenta. Left: varying �� ¼ 0 (thick), 1 (solid), 5 (dashed), 10 (thin); right: the maximum value of the

photoemission rate as a function of chemical potential ��.
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When the U(1) chemical potential is very large, a� 2,
the maximum value suddenly increases. Until a ¼ 1, the
maximum value is a slowly decreasing function of a, but
after passing a ¼ 1 it increases stiffly. But this sudden
increase may be artificial, because if we express as the
chemical potential this stiffness is not there. The frequency
dependent spectral measure ��
��
=w for the lightlike

momenta is in Fig. 8. The left part of Fig. 8 has three lines
�� ¼ 0 (thick), 5 (dashed), and 10 (thin).
Note that the spectral measure has a maximum at the

point due to the hydrodynamic pole of Gxx:

Gxx � 1

wþ iDk2
; where D ¼ b

2ð1þ aÞ : (6.4)

The Green’s function in the hydrodynamic limit, see
Appendix C, presents the very essence of photoemission
rate of dense supersymmetric Yang-Mills plasma:

�hydro
xx ¼ 2l

8e2b2

�
3a

1þ a

Dk2w

D2k4 þ w2
þ 2ð1� a=2Þ2

ð1þ aÞ2 bw

�

¼ 2l

8e2b2

�
3a

1þ a

Da~q
2 ~w

D2
a~q

4 þ ~w2
þ 2ð1� a=2Þ3

ð1þ aÞ2
~w

�
;

Da ¼ 1

2ð1þ aÞ : (6.5)

Figure 9 shows the photoemission rate of the hydrody-
namic approximated solution. The left part is almost the
same as the full numerical solution but tails in large w are
different, and in the right part we plot w2=ðe2�w � 1Þ as a

0.5 1.0 1.5 2.0 2.5 3.0
w

0.5

1.0

1.5

2.0
w

5 10 15 20 25 30
w

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w

FIG. 8 (color online). The normalized trace of thermal spectral function �
�
�=w with lightlike momenta. Left: varying �� ¼ 0 (thick),

5 (dashed), 10 (thin); right: �� ¼ 5 (dashed), 10 (thin) and the plotting range is from zero to 30 in w.
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0.010

0.015

d

dw hydro

0.5 1.0 1.5 2.0
w

0.005

0.010

0.015

w2

2 w 1

FIG. 9 (color online). The photoemission rate of hydrodynamic approximated spectral function with normalization unit ð2�TÞ2 l
2g2

5

.
d�	=dk with lightlike momenta. Left: varying �� ¼ 0 (thick), 1 (solid), 5 (dashed), 10 (thin); right: w2=ðe2�w � 1Þ is plotted as a

function of w.

KWANGHYUN JO AND SANG-JIN SIN PHYSICAL REVIEW D 83, 026004 (2011)

026004-10



function ofw. The origin of the peak in the photoemission
rate comes from the statistical factor and the change of
height is the density effect. This density effect is almost
described by a single function, Eq. (6.5).6

VII. CONCLUSION

We have solved the equation of motion for linearized
gravitational and electromagnetic perturbations in the
RN-AdS background to get the holographic spectral func-
tion. Because of the density effect, the gravitational and
electromagnetic perturbations are coupled with each other
so it is not easy to solve. By introducing a master variable,
however, we can decouple these modes which makes the
problem simpler. The problem might be handled without
decoupling along the method discussed in [25].

The density effects of thermal spectral function have
some interesting features. The boundary theory of RNAdS
is believed supersymmetric Yang-Mills theory with finite
U(1) charge density. The original SYM has no dimension-
ful parameter and does not admit any quantity like screen-
ing length, energy gap, diffusion constant, etc. In the finite
temperature and density state, however, the plasma has a
scale given by those.

One of the interesting features is the modification of the
diffusive nature of thermal plasma. As we have seen in
Fig. 2 the DC conductivity is decreasing in large ��. It is
quite natural because in dense medium particles collide
very frequently, so the charge carrying process should be
suppressed.

The photoemission rate is a very important tool to probe
the effects of thermal medium. Because the photon does
not interact with other particles via strong interaction, it
carries information of the early stage of collision. The
holographic photoemission rate is greatly enhanced when
�� is very large. See Fig. 7. Note that information of
spectral function over only a small window of w is suffi-
cient to describe the photoemission rate, because almost all
of the contributions for photoemission rate come from the

statistical factor 1=ðew=T � 1Þ.
It would be interesting to see whether the U(1) axial

anomaly [33–35] can affect the photoemission rate. We
will report this issue in the near future.
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APPENDIX A: THE INDEX STRUCTURE OF
CORRELATION FUNCTIONS

The correlation functions of various operators have
Lorentz index structure, and that has to satisfy some con-
straints, i.e. CPT invariance, Ward identity [19]. We will
briefly review the index structure of our correlation func-
tions for later convenience.
The definitions of retarded correlation function of con-

served current and energy momentum tensor are

C�
ðx� yÞ ¼ �i�ðx0 � y0Þh½J�ðxÞ; J
ðyÞ�i
G�
��ðx� yÞ ¼ �i�ðx0 � y0Þh½T�
ðxÞ; T��ðyÞ�i:

(A1)

In the equilibrium, CPT invariance told us that

C�
 ¼ C
�; G�
�� ¼ G���
: (A2)

In addition, correlation functions of the energy momentum
tensor have the property inherited from the symmetry of
the energy momentum tensor,

G�
�� ¼ G
��� ¼ G�
��: (A3)

The Ward identity

k�C�
 ¼ 0 ¼ k�G�
�� (A4)

and if the theory has scale invariance T
�
� ¼ 0,

��
G�
�� ¼ 0: (A5)

From the Ward identity, the correlation functions are pro-
jected onto transverse spacetime of k�:

C�
 ¼ P�
�ðK2Þ
G�
�� ¼ P�
P��GBðK2Þ þH�
��GSðK2Þ;

(A6)

where

P�
 ¼ ��
 �
k�k


K2

H�
�� ¼ 1

2
ðP��P
� þ P��P
�Þ � 1

D� 1
P�
P��:

(A7)

The field theory propagator is classified by boundary
SO(2) rotation symmetry [19]. The propagator is decom-
posed as scalar, vector, tensor parts according to their
transformation properties under SO(2). We assume that
the wave is going along the z direction K ¼ ðw; 0; 0; kÞ
and the boundary coordinate is labeled by ðt; x; y; zÞ. The
stress-energy tensor correlator G�
�� is also decomposed

into these categories. The conserved current, for our case R
current, is projected as transverse and longitudinal parts,

C�
 ¼ PT
�
�

T þ PL
�
�

L; (A8)

where PT
�
, P

L
�
 is transverse and longitudinal projector

which are mutually orthogonal

6But actually at large w, there are deviations between Figs. 7
and 9. Please note that it is an approximated solution.
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PT
ij ¼ 
ij �

kikj
~k2

;

PT
�0 ¼ PT

0� ¼ 0;

PL
�
 ¼ P�
 � PT

�
:

(A9)

Each component of the current-current correlator is

CxxðKÞ¼CyyðKÞ¼�TðKÞ CttðKÞ¼ k2

w2�k2
�L;

CtzðKÞ¼ �wk

w2�k2
�L; CzzðKÞ¼ w2

w2�k2
�L:

(A10)

For the stress-energy correlation function, the classifica-
tion is slightly complicated:

G�
��ðKÞ¼ ðPT
�
P

T
��þ 1

2ðPT
�
P

L
��þPL

�
P
T
��ÞÞCT

þðPT
�
P

T
��þ 1

2ðPT
�
P

L
��þPL

�
P
T
��ÞÞCL

þS�
��G1þQ�
��G2þL�
��G3; (A11)

where

S�
�� ¼ 1

2
ðPT

��P
L

� þ PT

��P
L

� þ PT

��P
L

� þ PL

��P
T

�Þ

Q�
�� ¼ 1

D� 1

�
ðD� 2ÞPL

�
P
L
�� þ 1

D� 2
PT
�
P

T
��

� ðPT
�
P

L
�� þ PL

�
P
T
��Þ

�
L�
�� � H�
�� � S�
�� �Q�
��: (A12)

The transverse components of G�
�� are

Gtxtx ¼ 1

2

k2

w2� k2
G1; Gtxzx ¼�1

2

wk

w2� k2
G1;

Gxzxz ¼ 1

2

w2

w2� k2
G1; Gxyxy ¼ 1

2
G3

(A13)

and longitudinal components of G are

Gtttt ¼ 1

3

k4

ðw2 � k2Þ2 ½2G2 þ 3CL�

Gtttz ¼ � 1

3

wk3

ðw2 � k2Þ2 ½2G2 þ 3CL�

Gttxx ¼ 1

6

k2

w2 � k2
½2G2 � 3CL � 3CT�:

(A14)

Note that if the theory has the scale invariance, CL, CT

vanish.

APPENDIX B: LARGE w SPECTRAL FUNCTIONS

In this section, we will calculate the spectral function
analytically in the large frequency limit [18,21]. By using
WKB methods, we can get the large frequency spectral
function. This procedure is easily described by an example
of the simple Schrödinger equation,

y00ðxÞ þ VðxÞyðxÞ ¼ 0: (B1)

Transforming the wave function yðxÞ into �ðxÞ by

yðxÞ ¼ ei�ðxÞ, we get

� ð�0Þ2 þ i�00 þ V ¼ 0: (B2)

Assume that �00 is subleading,

�0 ¼ � ffiffiffiffi
V

p
; j�00j � 1

2

�������� V 0ffiffiffiffi
V

p
��������	 jVj (B3)

so the first order solution is

� ¼ �
Z ffiffiffiffi

V
p

dx: (B4)

From Eq. (B2) we will obtain the second order solution by
substituting the first order solution,

ð�0Þ2 � V � i

2

V0ffiffiffiffi
V

p

�0 � � ffiffiffiffi
V

p þ i

4

V 0

V

� ¼ �
Z ffiffiffiffi

V
p

dxþ i

4
lnV;

(B5)

so the WKB solution is

yðxÞ ¼ 1

V1=4
ðei
R ffiffiffi

V
p

dx þ e�i
R ffiffiffi

V
p

dxÞ: (B6)

1. Tensor mode

For the tensor mode, the equation of motion for hxy
is transformed into Schrödinger form by choosing

hxyðuÞ ¼ XðuÞc ðuÞ, where XðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=fðuÞp

:

c 00 þ VðuÞc ¼ 0;

VðuÞ ¼ � 3

4u2
þ 1

4

f02

f2
þ f0

2uf
� f00

2f

þ ð1� a
2Þ2

uf2
ðw2 � q2fÞ: (B7)

This equation has two singular points at u ¼ 0 and u ¼ 1.
From the WKB analysis, we get the two linearly indepen-
dent solutions away from these singularities:

c 1 � 1ffiffiffiffiffiffiffiffiffiffi
pðuÞp cosðSðuÞ þ�1Þ;

c 2 � 1ffiffiffiffiffiffiffiffiffiffi
pðuÞp sinðSðuÞ þ�2Þ;

(B8)

where

pðuÞ ¼ 1� a
2ffiffiffi

u
p

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � q2f

q
; SðuÞ ¼

Z u

0
pðzÞdz: (B9)
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Near the boundary.—Near u ¼ 0, the potential has the
form

c 00 þ
�
� 3

4u2
þQ2

u

�
c ¼ 0; (B10)

where Q2 ¼ ð1� a
2Þ2ðw2 � q2Þ. The general solution is

c ¼ C1

ffiffiffi
u

p
J2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
þ C2

ffiffiffi
u

p
Y2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
: (B11)

Bessel functions have the following asymptotic forms for
large x (x 
 j�2 � 1=4j):

J�ðxÞ �
ffiffiffiffiffiffiffi
2

�x

s
cos

�
x� ��

2
� �

4

�
;

Y�ðxÞ �
ffiffiffiffiffiffiffi
2

�x

s
sin

�
x� ��

2
� �

4

�
:

(B12)

We are considering largew, so asymptotic forms of Bessel
are valid for our case,

ffiffiffi
u

p
J2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q
Þ � ffiffiffi

u
p 1ffiffiffiffi

�
p 1ffiffiffiffiffiffiffiffiffiffiffi

Q
ffiffiffi
u

pp cos

�
2Q

ffiffiffi
u

p � 5�

4

�
ffiffiffi
u

p
Y2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q
Þ � ffiffiffi

u
p 1ffiffiffiffi

�
p 1ffiffiffiffiffiffiffiffiffiffiffi

Q
ffiffiffi
u

pp sin

�
2Q

ffiffiffi
u

p � 5�

4

� (B13)

and these are well matched with our WKB solutions
pðuÞ �Q=

ffiffiffi
u

p
, SðuÞ � 2Q

ffiffiffi
u

p
.

Near the horizon.—Near u ¼ 1, the equation of
motion is

c 00 þ 1

ð1� uÞ2
1þw2

4
(B14)

and the solution is

c ¼ C3ð1� uÞ1=2ð1�iwÞ þ C4ð1� uÞ1=2ð1þiwÞ: (B15)

Near the horizon, the infalling wave is only physically
relevant and this boundary condition is to choose C4 as
zero. We know the two asymptotic solutions and it should
be matched at some point,

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�pðuÞp �

cos

�
SðuÞ � 5

4�

�
þ i sin

�
SðuÞ � 5

4�

��

¼ Cð1� uÞ1=2�iw=2; (B16)

then the solution hxyðuÞ ¼ XðuÞc ðuÞ is

iuJ2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
þ uY2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
¼ Cð1� uÞ�iw=2: (B17)

This is the solution for large w, q with infalling boundary
condition at the black hole horizon. We did not fix the
coefficient C, yet it is determined by the condition
hxyðu ¼ 0Þ ¼ 1. Near the boundary, Bessel functions have

series solutions and

uJ2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
� 1

2
Q2uþOðu3Þ;

uY2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
�� 1

�Q2
þOðuÞ:

(B18)

Nothing is left, the solution is

hxy ¼ ��Q2

�
iuJ2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q �
þ uY2

� ffiffiffiffiffiffiffiffiffiffiffiffi
4Q2u

q ��
; (B19)

then the spectral function is

�T¼0
xyxy ¼ l3

16G2
5

�
2�T

1� a=2

�
4
Im

�
lim
u!0

fðuÞ
u

hxyh
x0
y

�

¼ l3

16G2
5

ðw2 � k2Þ2�ðw2 � k2Þ; (B20)

where the theta function comes from the fact
ffiffiffiffiffiffi
Q2

p
should

be real.

2. Vector mode

For the vector mode, we have two master variables �þ,
�� and their equations of motions. These can be trans-
formed into Schrödinger form by

�� ¼ 1ffiffiffi
f

p c�: (B21)

Then equations of motion are rewritten in terms of ��:

c 00� þ V�c� ¼ 0;

V� ¼ w2 � q2f

uf2

�
1� a

2

�
2 þ 1

4

f02

f2

� 1

f

�
C� � f0

u
þ f00

2

�
: (B22)

The equation of motion for the master fields near the
boundary is

0 ¼ c 00 þ ðw2 � q2Þð1� a=2Þ2
u

c � c 00 þQ2

u
c

c � C1

ffiffiffi
u

p
J1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q �
þ C2

ffiffiffi
u

p
Y1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q �
:

(B23)

Near the horizon,

0 ¼ c 00 þ 1þ w2

4ð1� u2Þ c

c � C3ð1� uÞ1=2�iw=2 þ C4ð1� uÞ1=2þiw=2:

(B24)

For large Q2, two WKB solutions are

c 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�pðuÞp cosðSðuÞ þ�1Þ;

c 2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�pðuÞp sinðSðuÞ þ�2Þ;

(B25)
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where

pðuÞ ¼ 1� a
2ffiffiffi

u
p

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 �q2f

q
; SðuÞ ¼

Z u

0
pðzÞdz: (B26)

This WKB solutions should be matched near boundary
solutions

2
ffiffiffi
u

p
J1ð2

ffiffiffiffiffiffiffiffiffi
Q2u

q
Þ � ffiffiffi

u
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�
ffiffiffiffiffiffiffiffiffi
Q2u

p
s

cos

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q
� 3�

4

�

2
ffiffiffi
u

p
Y1ð2

ffiffiffiffiffiffiffiffiffi
Q2u

q
Þ � ffiffiffi

u
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�
ffiffiffiffiffiffiffiffiffi
Q2u

p
s

sin

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q
� 3�

4

� (B27)

and physically relevant boundary condition at horizon,
infalling condition C4 ¼ 0,

� ¼ cffiffiffi
f

p ¼ 2
ffiffiffi
u

p
C

�
iJ1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q �
þ Y1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q ��

¼ ��Q
ffiffiffi
u

p �
iJ1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q �
þ Y1

�
2
ffiffiffiffiffiffiffiffiffi
Q2u

q ��
(B28)

and by the normalization condition, �ðu ¼ 0Þ ¼ 1, the
coefficient C ¼ ��Q=2. Then the spectral function for
vector mode is given as

�T¼0
xx ¼ l

4e2b2
Im

Cþ�̂
T¼0
þ � C��̂

T¼0
�

Cþ � C�
¼ l

4e2b2
�Q2

¼ l

4e2
ð2�TÞ2�ðw2 � q2Þ�ðw2 � k2Þ: (B29)

3. Lightlike momenta

For the lightlike momenta, w ¼ k, the equation of mo-
tion is simplified [18] by

c 00� þ ð ~w2H þG�Þc� ¼ 0; where H ¼ 1� f

uf2
;

G� ¼ 1

4

f02

f2
� 1

f

�
C� � f0

u
þ f00

2

�
: (B30)

Near the black hole horizon the solution should be infal-

ling, ð1� uÞ�iðw=2Þ. The analytic solution for the equation
is not known but we just consider the large w limit only to
compute asymptotic behavior of spectral function. For
large w, the leading term is ~w2 and we assume the change
of the wave function in the domain u 2 ð0; 1Þ is not large.

For the large w limit the first term in Eq. (B30) is
dominant. Introducing a new variable � ,

� ¼
�
3

2

Z u

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�HðxÞp
dx

�
2=3

; (B31)

the wave function is reexpressed as

c� ¼
�
d�

du

��1=2
W ¼

��H

�

��1=4
W

0 ¼ d2W

d�2
� ð ~w2� þ 	ÞW;

where 	 ¼ 5

16�2
þ
�
4HH00 � 5H02

16H3
þ G

H

�
�; (B32)

where the prime denotes derivative with respect to u, then
the solution c� is Airy function,

�� ¼ 1ffiffiffi
f

p c� ¼ 1ffiffiffi
f

p
�

�

�H

�
1=4

Aið ~w2=3�ðuÞÞ þ � � �

¼
�

u�

f� 1

�
1=4

Aið ~w2=3�ðuÞÞ þ � � � : (B33)

Two point functions for master variables are given as

�� ¼ lim
u!0

�0�
��

¼ lim
u!0

�
1

4
@u ln

�
u�

1� f

�
þ @uAið ~w2=3�ðuÞÞ

Aið ~w2=3�ðuÞÞ
�

(B34)

since f� 1 ¼ �u2ð1þ a� auÞ, and

lim
u!0

� ¼ ð1þaÞ1=3ðið4þ 3aþ ffiffiffiffiffiffiffiffiffiffiffiffi
1þa

p ð4þaÞÞÞ2=3
ð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p þ 1Þ2 uþ�� � :

(B35)

The second term in the equation is

lim
u!0

@u ln

�
u�

1� f

�
¼ lim

u!0
@u ln

�
�

uð1þ a� auÞ
�

� lim
u!0

@u ln

�
1

ð1þ aÞ
�
¼ 0: (B36)

So the two point function is

�� ¼ �ei�=3
31=3ð1þ aÞ1=3ð4þ 3aþ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ð4þ aÞÞ2=3

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ2
�ð23Þ
�ð13Þ

~w2=3

Im�� ¼ 35=6ð1þ aÞ1=3ð4þ 3aþ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p ð4þ aÞÞ2=3
2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p Þ2

�ð2=3Þ
�ð1=3Þ ~w

2=3

��
� ¼ l

4e2
ð2�TÞ2

ð1� a=2Þ4=3
35=6ð1þ aÞ1=3ð4þ 3aþ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ð4þ aÞÞ2=3

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ2
�ð2=3Þ
�ð1=3Þw

2=3:

(B37)

In Fig. 10, we compare the numerically computed thermal spectral function for �� ¼ 5 with the zero temperature spectral
function.
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APPENDIX C: SMALL w SPECTRAL FUNCTIONS

To check the consistency of numerical calculation, it is
good to compare both the large frequency and the low
frequency result with numerical computation. In the low
frequency limit, authors [13] did the hydrodynamic analy-
sis and it also gives us the low frequency spectral function.
For the tensor mode,

lim
w!0

ImGxyxy ¼ l3

16G2
5

ð2�TÞ4
ð1� a=2Þ3 w

lim
w!0

�xyxy

w
¼ l3

16G2
5

ð2�TÞ4
ð1� a=2Þ3 :

(C1)

For the vector mode Gxx,

lim
w!0

ImGxx ¼ l

4e2

�
3a

ð1þ aÞb2
Dk2w

D2k4 þ w2

þ 2ð1� a=2Þ2
ð1þ aÞ2b w

�

lim
w!0

�xx

w
¼ l

4e2
ð2�TÞ2

ð1� a=2Þ2
�

3a

1þ a

Dqk

D2q2k2 þw2

þ 2
ð1� a=2Þ3
ð1þ aÞ2

�

lim
w!0

lim
q!0

�xx

w
¼ ð2�TÞ2 l

4e2
2ð1� a=2Þ
ð1þ aÞ2 ; (C2)

where D ¼ b
2ð1þaÞ . For the Gxtxt in small w, q limit,

ImGxtxt ¼ l3

16G2
5

1

b3
wk2

D2k4 þ w2

�xtxt ¼ l3

16G2
5

ð2�TÞ4
ð1� a=2Þ3

wq2

D2q2k2 þw2
:

(C3)

APPENDIX D: BOUNDARYACTION

In this section, we will briefly mention how to get rid of
the divergences from the on-shell gravity action. The
gauge/gravity correspondence tells us that the generating
functional of the gauge theory is identified with the gen-
erating functional of the AdS gravity. As we have seen in
Sec. 2.II, from the generating functional we get the two
point functions of the boundary theoryGret

�
 orG
ret
��;�
. The

generating functional has some divergences which could
be safely removed by adding counterterms, so-called holo-
graphic renormalization. At the boundary u ¼ 0, there are
two types of divergences 1=u and logu.
The original action, Eq. (3.1), has Einstein-Hilbert,

Maxwell, and Gibbons-Hawking terms and to remove the
divergences we need the following counterterm [27] for the
regularized action at the boundary:

Sct ¼ Sct;gravity þ Sct;gauge ¼ 1

16G2
5

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q �
3

l
� l

4
K

�

þ l

8e2
logu

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
F mnF mn; (D1)

where K is the curvature on the boundary. Sct;gravity is given

in [36]. On the other hand, Sct;gauge is obtained to cancel the

logarithmic divergence coming from gauge field fluctua-
tions. The boundary action for the perturbation in quadratic
order derived from (3.1) is

Sð0Þ ¼ l3

32b4G2
5

Z d2k

ð2�Þ2
1

u2

�
uf0

f
ðhxt Þ2 þ hxt ðhxt � 3uhx0t Þ

� fhxzðhxz � 3uhx0z Þ þ 3aBxðhxt � fB0
xÞ
�
: (D2)

The Gibbons-Hawking term and the counterterm (D1) are

Sð0ÞGH ¼ l3

32b4G2
5

1

u2

Z d2k

ð2�Þ2
�
�uf0

f
ðhitÞ2�4ðhitÞ2

�uf0ðhizÞ2þ4uhith
i0
t þ4fððhizÞ2�uhizðhizÞ0Þ

�
; (D3)

Sð0Þct ¼ 3l3

32b4G2
5

1

u2
ffiffiffi
f

p
Z d2k

ð2�Þ2 ððh
i
tÞ2 � fðhizÞ2

þ ab2k2u2fðuÞ loguðB2
xÞÞ: (D4)

Then, the regularized boundary action is given as

Sbdry ¼ lim
u!0

ðSð0Þ þ Sð0ÞGH þ Sð0Þct Þ

¼ lim
u!0

l3

32b4G2
5

Z d2k

ð2�Þ2
�
1

u
ðhxt ð�kÞhx0t ðkÞ

� hxzð�kÞhx0z ðkÞÞ þ 3aBxð�kÞðhxt ðkÞ
� B0

xðkÞÞ þ 3ab2k2 loguðBxð�kÞBxðkÞÞ
�
: (D5)
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FIG. 10 (color online). The normalized trace of thermal spec-
tral function �

�
�=w with light like momenta. The thick line is for

�� ¼ 5 and the thin line is for the zero temperature case.
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