IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 31, 2017, accepted August 16, 2017, date of publication September 4, 2017, date of current version September 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2748622

Blueprint Flow: A Declarative Service
Composition Framework for Cloud Applications

CHOONHWA LEE', CHENGYANG WANG', EUNSAM KIM?2, AND SUMI HELAL3?

! Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, South Korea
2Department of Computer Engineering, Hongik University, Seoul 121-791, South Korea
3CISE Department, University of Florida, Gainesville, FL 32611, USA

Corresponding author: Eunsam Kim (eskim @hongik.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, Funded
by the Ministry of Science and ICT, under Grant 2017R1A2B4010395 and Grant 2016R1D1A1A09917396.

ABSTRACT Cloud applications provides users with services that can be accessed on demand through the
Internet. Fertile service frameworks are considered one of the most critical ingredients for the envisaged
benefits so as to further interactions among cloud computing resources and application components. Such
foundations should lead to the proliferation of new innovative services and applications. The research
community has been exploring the Open Service Gateway initiative’s (OSGi) potential as a top candidate
for cloud application platforms. Although the current OSGi specification provides some level of support
for dynamic service discovery, tracking, and composition, more should be done to be able to adequately
address the need for diverse interaction patterns for cloud applications. This paper introduces a novel service
framework built upon OSGi platforms that supports a directed-acyclic-graph style composition of constituent
services. Given a declarative blueprint of service interconnections and interactions, the framework can find
and assemble corresponding component services to form a real application. Our proposal can enable a
realistic topology of service component interlinkings beyond linear chaining interactions as supported by
the status quo. The design, implementation details, and validation results of our workflow-based service
composition framework architecture are discussed in the paper.

INDEX TERMS Distributed computing, middleware, service computing, service-oriented systems

engineering, software as a service.

I. INTRODUCTION
Cloud computing has been hailed as a great innovation
to change the way computing resources and services are
provided and used. According to the paradigm, computing
resources, such as computation, storage, and applications,
can now be delivered over the network on an on-demand
basis [1], [2]. While some early cloud service offerings turned
out to be very successful, there remain several technical chal-
lenges for a wider acceptance. One main obstacle is securing a
suitable service execution platform upon which services can
be discovered and used by one another. In other words, the
proliferation of diverse cloud applications must be backed
up by a fertile foundation where value-added services can
emerge out of existing ones with rather limited functionality.
Recently, there has been a research move to explore the
possibility of using OSGi (Open Service Gateway initiative)
framework as the base of cloud computing platform [3].
The OSGi platform is a Java-based component frame-
work in which components can be installed, updated, and

uninstalled at runtime [4]. A basic component in OSGi is
called a bundle. A bundle is a standard Java archive with
a manifest file containing metadata. All OSGi services are
supposed to be implemented as a regular Java interface inside
bundles and registered with the interface and metadata in the
OSGi service registry. A cloud application can be viewed as
a collection of services that offer some computing resources
or functionalities. The framework facilitates a service to
look up and interact with other services. However, when it
comes to the issue of service composition, the OSGi plat-
form falls short of full-fledged composition features. This
lack of composition support is viewed as a serious draw-
back to elevate itself as a dominant service platform for the
upcoming cloud era [5], considering the fact that service
reusability is key to promoting the scalability, productivity,
and innovation expected to enable cloud computing vision.
In this article, we present a novel service composition frame-
work that supports a directed-acyclic-graph style composi-
tion of OSGi component services. Based on a declarative

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

17634 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

IEEE Access

workflow definition language, our framework can model
and instantiate a topology of versatile service interconnec-
tions beyond the linear interactions supported by the current
OSGi specification.

The remainder of this paper is organized as follows.
Section II first motivates our research for service compo-
sition frameworks and reviews the state-of-the-art technol-
ogy for the topic. Then, the paper presents our architectural
design of a workflow-based service composition framework
in Section III. The effectiveness of the proposed architecture
is evaluated via the validation and experimental study pre-
sented in Section IV. Section V discusses previous research
efforts relevant to service composition and workflow
technologies, clarifying the differences of our approach and
others. Finally, Section VI concludes the paper.

Il. MOTIVATIONAL SCENARIO AND STATE-OF-THE-ART
TECHNOLOGY

In order to start presenting our approach to a service compo-
sition framework for cloud applications, let us first consider a
sample composition scenario for smart homes which involves
anumber of component services representing various sensors
and actuators.

Crispin’s home is instrumented with various sensors
and actuators, and smart home application acts as a hub
to coordinate their operations and controls. On a sunny
day, the smart home application opens windows, turns off
dehumidifiers, and informs Crispin of the temperature and
UV intensity by pushing a message to his mobile device. In the
case of a rainy day, the application closes windows. Addition-
ally, it turns on dehumidifiers, and then informs Crispin of the
weather condition.

In this scenario, the smart home application is a
coordinating hub to facilitate interactions among various ser-
vices representing the sensors and devices installed at home,
including the followings.

o WeatherSensor service that provides weather-related

information.

o WindowOpen service and WindowClose service that

control the window switch.

o DehumidifierOn service and DehumidifierOff service

that reduces and maintains indoor humidity level.

o InformUser service to inform the resident by sending a

message.

Fig. 1 represents the sample workflow scenario that keeps
comfortable settings for the resident. The pivotal point of the
scenario is the orchestrating ability that governs the execution
of individual services representing sensors and devices at
home. The first step to realize this scenario would be to get
hold of an adequate service hosting and execution platform
where services can find and call one another. Having been
one of the most prominent service frameworks, OSGi is
now being poised as an ideal fit for the foundation of cloud
service executions and interactions [3], [6]. To explore its
potential as the future cloud computing platform, we have
based our service workflow system architecture on the

VOLUME 5, 2017

Q

init
|

Weather
Sensor

N

l—l|ll—|

Window Dehumidifier Window Dehumidifier
Open Off Close On

Inform
User

&

FIGURE 1. Service composition scenario for smart home.

OSGi platform. We first review the status quo of the tech-
nology advancements especially for promoting and managing
service interactions, based on which our system is built.

On top of its service execution platform, OSGi provides
a facility to foster service compositions and interactions at
different abstraction levels. Early fundamental composition
supports are found at Service Tracker Service and Wire
Admin Service. Using these, application developers have to
manage service-level dependencies manually. Wire Admin
Service is a system service that is used to control a wiring
topology of OSGi applications. Using the service, OSGi ser-
vices can be chained together to form a pipeline over which
data flow from one end to the other. One limitation of Wire
Admin Service is that the producer-consumer design pattern
can only be supported in a hard-coded way, which would
require changes at the code level later in case of a wiring
topology change. Service Tracker Service provides a means
for service availability tracking beyond the low-level event
mechanism of OSGi platform, notifying potential consumers
of when a service in question becomes available, unavailable,
or modified.

OSGi specification has evolved to provide more advanced
service management mechanisms such as Blueprint Con-
tainer Service and Declarative Service. They are intended to
ease the complexity of building a composite application and
managing dependencies among its components. Declarative
Service allows developers to manage service dependencies
in a declarative way [7], [8]. Thanks to the system ser-
vice, service binding does not have to be performed imper-
atively in advance. In contrast to the hard-wring of Wire
Admin Service, service compositions can now be declara-
tively described in an XML file. A service component in
the description is annotated with binder and unbinder meth-
ods that are called for its wiring and unwiring in the event
of changes in service availability. The Blueprint Container
specification defines a dependency injection framework for
OSGi environments. It provides features for the lifecycle

17635

IEEE Access

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

managements and configurations of component instances
as well as interactions with the service registry. In other
words, it is a Spring-like framework with extra support for
OSGi services. Blueprint Container Service also uses
an XML composition file which describes dependencies
between component services without requiring any hard-
writing. A primary difference between Blueprint Container
Service and Declarative Service is that the former is an
injection solution that uses proxies to mask OSGi service
dynamism, while the latter uses a cascading approach which
is more like a component model with dependency man-
agement responsibility. Neither of them supports complex
application topologies like directed-acyclic-graph topologies.
Lastly, iPOJO is a service component model aiming to sim-
plify OSGi applications development [9], [10]. An iPOJO
component is a Plain Old Java Object encapsulated in a
container into which different handlers can be plugged at
runtime. The handlers take care of non-functional aspects
such as service dependencies and instance configurations.

To realize the scenario in Fig. 1, the aforementioned
support of the OSGi specification may prove helpful to a
certain extent. However, it is hardly regarded as sufficient
to handle diverse composition scenarios inherent in cloud
computing environments. For instance, a shortcoming of the
OSGi Blueprint Container specification is found at its appli-
cation component topology modeling. The Blueprint Con-
tainer Service is unable to orchestrate the workflow of the
smart home scenario in Fig. 1, leaving hard-wiring of com-
ponent services as the only option; hardcode is required to
build flow paths among service procedures and handle data
transfers along the paths. Therefore, we propose Blueprint
Flow Service that is a workflow-based composition engine
to support DAG-style service compositions in OSGi environ-
ments which will help us overcome hard-wiring of compo-
nent services.

lll. WORKFLOW-BASED SERVICE COMPOSITION
FRAMEWORK

To enable declarative service compositions in OSGi envi-
ronments, we have designed a workflow-based composition
middleware architecture named Blueprint Flow on top of
the Blueprint Container specification. The specification is a
dependency injection framework which is similar to Spring
Dynamic Module with extra support for OSGi services [7].
It was designed to cope with the dynamism of OSGi envi-
ronments where services can come and go at any time.
Applications are associated with Blueprint XML definitions
which are materialized and managed by a Blueprint con-
tainer. The container has several managers whose primary
role is to handle application component’s explicit and/or
implicit dependencies on other components of the applica-
tion. Being responsible for managing the lifecycle of backing
component instances, the managers are the centerpiece of
the Blueprint Container specification. The system service
supports an assembly of component instances into an appli-
cation without any hard-wired, procedural code to wire up

17636

constituent services. Also, dependencies among the con-
stituents are managed automatically.

As depicted in Fig. 2, there are three major types of man-
agers in the Blueprint Container specification. A Bean man-
ager provides Java objects representing a component instance
with all the dependencies properly injected and configured.
A Reference manager provides proxies to services registered
with the OSGi service repository, while a Service manager
handles the registration of component instance’s services into
the OSGi service repository.

Manager

Fy

D Bean quger D Reference Manager | D Service Manager|
I 7Yy
D Activity Bean | U Bean | D Reference-list | U Reference |

FIGURE 2. Blueprint container managers.

A. ACTIVITY BEAN

A new type of Activity Bean, which is our extension of the
Blueprint Bean, is introduced in Fig. 2 where it is shown
alongside the original bean. Activity Beans are a basic build-
ing block that comprises a workflow of services, collectively
playing the role of an orchestrator that controls and manages a
composition and execution process. Fig. 3 diagrams the rela-
tionship of various types of activities that are defined in our
Blueprint Flow middleware architecture. Activity beans can
be further classified as Component Activity Beans, Process
Activity Beans, and Logic Activity Beans. Process Activity
Beans include Sequence Process Activity and Parallel Pro-
cess Activity, while Logic Activity Beans include Branch
Activity and Loop Activity.

includes

Activity
Beem ¢ ! Tz ===
—I injection
y Process Logic
Activity Activity
Component
P Activiyy
L T
inject i —l
N '
i
: Sequence Parallel Branch Loop
' Activity Activity Activity Activity
'

[' A [} [}
T et : ; : :
’ ‘ ' i :

Gucl” N TN, SR, (S | S 1

FIGURE 3. Activity Beans in Blueprint Flow.

1) COMPONENT ACTIVITY

A Component Activity (CA) is used to represent a compo-
nent node of service composition DAGs. It is a basic build-
ing block of the Blueprint Flow composition graph. Several
required items of the component should be injected into a CA,

VOLUME 5, 2017

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

IEEE Access

including OSGi service instance, required service interface,
and the context of the component instance. The CA offers
a typed interface for accessing the injected service instance.
It also provides carry-on values, which corresponds to service
context, being passed to the next stage of the workflow. Since
it can be injected into other activities, a CA can be viewed as
a basic construct for service workflows.

2) PROCESS ACTIVITY

A Process Activity (PA) provides a means to describe how
components are wired and composed together. Basically,
there are two patterns of the wiring: Sequence Process Activ-
ity (SPA) and Parallel Process Activity (PPA). An SPA
allows a set of Activity Beans to be invoked in a sequen-
tial manner. An activity in the SPA set is executed right
after the completion of its previous activity in the same set.
A PPA describes a set of activities that are to be invoked
simultaneously. It is used to model a point in a workflow
process where a single thread of control forks into multiple
flows in parallel, allowing activities to be executed simul-
taneously. All required activities should be imported into
a PA via dependency injection, and the PA itself can be
exported to and injected into other activities.

3) LOGIC ACTIVITY

A Logic Activity (LA) is flow control constructs including
conditional branching and looping. An LA is further extended
to define Branch Logic Activity (BLA) and Loop Logic
Activity (LLA). A BLA controls the flow path of a workflow
based on a certain condition. Among two or more branching
alternatives, it chooses one as the next execution step. Mod-
eling a while loop, an LLA repeats a set of activities, until a
specified criterion is met. LAs can also be exported to other
activities and injected into part of other PAs and LAs to form
a workflow skeleton.

B. BLUEPRINT-BASED SERVICE WORKFLOW ENGINE

Our Blueprint Flow architecture is designed to imple-
ment DAG-style workflow patterns. The structural com-
position of an application is defined by an XML-based
description file in which dependencies and interactions
among constituent CAs, PAs, LAs, and OSGi services are
stated. When instantiating a workflow, each node of it is
to be backed up by a service component, whether sim-
ple or composite [11], [12]. According to OSGi Blueprint
Container specification, component metadata hold all the
necessary configuration information used by its manager.
Fig. 4 depicts key components of our architectural design for
Blueprint Flow. The diagram also illustrates a set of steps
through which a workflow is instantiated into a real service
composition.

(Step 1) Application developers define a service workflow
using our XML-based DSL which is discussed in the next
sub-section. The composite service definition file describes
the application topology in terms of local Java objects, OSGi
services, and Blueprint components. Given the definition file,

VOLUME 5, 2017

Composite Service | ________1 discoveredby Blueprint
Definition XML Flow Impl

generate :

2D inject 1=====e=ece-aa e me e === meesessessssaea- Bl
12 124 128 H
¥ ¥ b4 i

Activity Bean Reference o ___réfgr_el_-lge_d_b_y.
Instances Instances Instances R -<|- T
'
'

1 | |

f
H
2C inject H
|
H

'3 generate

Composite Servicel _ ______________________ Service .
Instance 4 managed by Manager

FIGURE 4. Workflow-based service composition of Blueprint Flow.

our Blueprint Flow engine (referred to as Blueprint Flow Impl
in the figure) initiates the workflow creation.

(Step 2A) Native Java service objects in the workflow
definition, can be instantiated and managed by a Blueprint
Bean Manager.

(Step 2B) If the component in question is a service dis-
covered from the OSGi service registry, our Blueprint Flow
container sets up a service tracker for the OSGi service. When
it becomes available, a proxy to the service is created and
provided by a Reference Manager.

(Step 2C) Activity Beans may be involved in the workflow
definition. An instantiation of activities may entails that com-
ponents, including Java services created by Bean Managers
and OSGi services tracked by Reference Managers, need to
be injected into the activities.

(Step 2D) Blueprint Flow engine assembles Activity Beans
together via dependency injection to form flow control and
structural workflow patterns such as PAs and LAs.

(Step 3) As the next step, our Blueprint Flow container
makes sure that all the necessary components are readily
available and there is no dependency problem for them.
It, then, binds and engages all the constituent components into
the workflow skeleton, materializing the workflow definition.

(Step 4) At the end, the generated workflow-based compos-
ite service is registered back into the OSGi service registry
with a canonical interface by Blueprint Service Manager.
Consequently, others can make use of the composite service
without having any knowledge about its components and
structure.

C. SERVICE WORKFLOW LANGUAGE

We have designed an XML-based orchestration language,
named OSCL (OSGi Service Composition Language), that is
used to specify service compositions in OSGi environments.
As summarized in Table 1, the language has been designed
to easily describe interactions among different kinds of com-
ponent elements. As mentioned earlier in the paper, the Bean
Manager of the Blueprint Container specification has been
extended to be able to handle a new type of Blueprint Bean,
i.e., Activity Bean. The Activity Bean is further subclassed
to Component Activity, Process Activity, and Logic Activity.

17637

IEEE Access

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

TABLE 1. OSCL service composition language features.

Element Attributes Description
8 id Describes o Component Activity
ean id, type when type = component
Component serviceRef Declares the com ponent details
5 Propesty r;g;?ye_b:alue, Eg;f;gmg and delivering
= Retrieves and assigns values
Assign Narme, from from repository g
Method- val Accepts method name and
call i provides strongly typed interfoce
B i Deseribes aSequence Process
ean ig, type Activity when type = sequence
=
&, Sequential - Declares a sequential process
Invoke activity-id Executes injected activity entities
8 id Desceribes aParolle! Process
ean id, type Activity whentype = porallel
=<
& | Flow - Declares o parollel process
Invake activity-id Executes injected activity entities
B id Describes a Branches Logic
fan id, type Activity when type = bronches
Loz Case construct for implementing
< Case Condition branches logic
o Oth . Otherwise construct for
LRETRISE] o implementing branches logic
Invake activity-id Executes injected activity entities
: Describes aLoop Logic Activity
Bean i, type when type = loop
§ While Condition While construct for repeating
Invoke activity-id Executes injected activity entities
. Describes an Activity Consumer
g Bean id, type when type = consume
=]
Y | Lounch entry-activity ?g;;ﬁ?g;gr;ompome activity
Extended Service Manager
] actrwi‘y -ref, Registers o composite service
Service t when type = composite
Extended Reference Manager
activity-id, Provides o proxy to ¢ registered
Reference 40 composite service

The readers are referred to Table 1 for our OSCL design and
to Fig. 5 for a sample workflow description.

Component Activity (CA) is the most basic element for
a workflow description. A CA is an extension of Activity
Bean as diagrammed in Fig. 3, consisting of a component
instance (native Java services and OSGi services), a service
interface, a context repository, and a CA executor. The com-
ponent instance can be injected into a CA by defining the
serviceRef attribute, and the properties of the service instance
are injected using the property element. Interface information
is injected by defining the method-call element. The assign
element is used for fetching the property value from an upper-
level repository. Finally, a CA executor will be created as an
entry point of this CA.

17638

<I-- Tracks OSGi Services-->
<reference id="5rv_sensor"
<reference jd="5rv_window"
<reference id="5rv_dehumidifier”
<reference id="5rv_informUser"

interface="kr.cris.sensor" />

interfoce="kr.cris.window" />

interface="kr.cris.dehu” />
interface="kr.cris.inform" />

<!-Smart Devices (Component Activities) -->
<BPF: bean id="CA_WeuatherMonitor" type="component™
<BPF: component serviceRef="Srv_sensor">
<BPF : method-call value="StartMonitoring” />
<BPF : property nome="WeatherCode" carry-on="true" />
</BPF : com ponent >
</BPF :bean>

<I-Window & Dehumidifier Service Config -->

<BPF : bean id="CA_WindowOpen" > </BPF :bean>
<BPF : bean id="CA_WindowClose" .. </BPF :bean>
<BPF: bean id="CA_DehumidifierOn"..... > </BPF :bean>
<BPF : bean id="CA_DehumidifierOff"....>.... </BPF:bean>

<BPF: bean id="CA_informUser" type="component">
<BPF: component serviceRef=" Srv_informUser ">
<BPF : method-call value="SendSunnyMsg" />
<BPF : assign name="msgCode" from="weatherCode" />
</BPF : com ponent>
</BPF :bean>

<!-Sunny Day (Process Activities) -->
<BPF : bean id= "SPA_SunnyDuty" type="sequence">
<BPF : sequential>
<BPF : invoke activity-id="PPA_SunnyOperates” />
<BPF : invoke activity-id="CA_SunnyMessage” />
</BPF : sequential>
</BPF :bean>
<BPF : bean id="PPA_SunnyOperates” type="parallel">
<BPF : flow>
<BPF : invoke activity-id="CA_ WindowOpen" />
<BPF : invoke activity-id= “CA_DehumidifierOff" />
</BPF : flow>
</BPF :bean>

<!-- Rainy Day (Process Activities) -->
<BPF : bean id="SPA_RainyDuty" ... >..... </BPF : bean>
<BPF : bean id=" PPA_RainyOperates ” > ... </BPF : bean>

<I-Coordinator (Logic Activities)-->
<BPF : bean id="BLA_Controller”" type="branches">
<BPF: case
condition="CA_WeatherMonitor. WeatherCode == 0">
<BPF : invoke activity-id="SPA_SunnyDuty" />
</BPF : case>
<BPF : otherwise>
<BPF : invoke activity-id="SPA_RainyDuty" />
</BPF : otherwise>
</BFF :bean>
<BPF: bean id="LLA KeepOn" type="loop">
<BPF : while>
condition="CA_WeatherMonitor. WeatherCode 1= 3">
<BPF : invoke activity-id="BLA_Controller” />
</BPF : while>
</BPF :bean>

<!-Service Manager (Extended)-->
<BPF : service activity-ref="LLA KeepOn" type="composite"/>

<!— Com position Service Consumer Side ->

<!-Reference Manager(Extended) -->
<BPF : reference activity-id="CompSrv" type="composite" />

<!-Consumer{Consume Activity) -->

<BPF : bean id="ServiceConsumer" type="consume">
<BPF :launch composite-activity="CompSrv " />

</BPF :bean>

FIGURE 5. A sample Blueprint Flow description of smart home scenario.

Sequence Process Activity (SPA) is one sub-type of Pro-
cess Activity. Activities defined inside the sequential element
form an activity list that comprises a sequential process. The
Executor runs the sequential process and invokes activities
one by one in the defined order. Parallel Process Activ-
ity (PPA) is another sub-type of Process Activity. As shown

VOLUME 5, 2017

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

IEEE Access

in the table, activities inside the flow element form an activity
set. A main difference from an SPA is that PPA Execu-
tor runs activity tasks in parallel to invoke the activities
simultaneously.

Branch Logic Activity (BLA) is responsible for control-
ling the execution path of workflows based on branch con-
ditions. As seen in the sample of Fig. 5, BLA_Controller
represents a ternary operator, i.e., expression in expression ?
statement 1 : statement 2. Process Generator analyses activi-
ties and condition to complete an executable ternary operator.
It, then, determines which activity to invoke next.

Loop Logic Activity (LLA) is used to support a while
loop. The way an LLA works is similar to a BLA. Process
Generator creates an executable activity depending on the
evaluation result of its ternary operator.

D. SERVICE & REFERENCE MANAGER EXTENSION

Once having been built, a composite service can be offered
as a service to others, meaning that the service composition
may be registered with the OSGi service registry, so that
it can be consumed by others without knowing its inter-
nal details. In the original Blueprint Container specification,
Service Manager is responsible for the registration of com-
ponent services with the OSGi registry. We have extended
Service Manager to support and manage the advertisement of
workflow-based composite services. An example of it can be
seen in the service element in Fig. 5.

Reference Manager of the Blueprint Container specifica-
tion manages a proxy that represents a service object from
the OSGi service registry. A composite service published to
the registry by our extended service manager should also be
handled as an OSGi service. The Reference Manager has
also been extended to provide and manage a proxy to the
workflow-based composite service as shown in the reference
element at the end of Fig. 5.

Activities in the Blueprint Flow architecture provide
strongly typed interfaces to make a connection to the executor
within the activities. We introduced a Consume Activity as
an entry to a composite service, as can been seen in the
launch element in Fig. 5. Service consumers who want to run
a workflow-based application do not have to understand the
internal details. All consumers should do is to get a proxy of
the composite service with the help of our extended reference
manager, and associate a Consume Activity with the proxy.

IV. FRAMEWORK VALIDATION AND EXPERIMENTS

We have prototyped the architecture of Blueprint Flow com-
position framework based on Eclipse Equinox (http://www.
eclipse.org/equinox) that provides a certified implemen-
tation of the OSGi Core specification and Apache
Aries (http://aries.apache.org) which implements the Blueprint
Container Specification [7].

In order to help to define workflow descriptions, we have
also developed a workflow designer for Blueprint Flow
by which application developers can easily specify service
compositions. It allows the developers to build workflow

VOLUME 5, 2017

diagrams using a combination of graphical building blocks
as shown in Fig. 6. The blocks are connected together using
links and forks, and the workflow being built is displayed
graphically. After the necessary configuration of the building
blocks, a XML-based OSCL definition file is generated to be
fed into the Blueprint Flow engine.

BlueprintPlus Designer - DCC Lab

ik Paberme < || {7 Diueprinilu Workdaw

g2

gem ;.

1Brader oozt < 3

FIGURE 6. Screenshots of Blueprint Flow designer implementation.

A. WORKFLOW PATTERN EVALUATION

WS-BPEL (Web Services Business Process Execution
Language) is an XML-based workflow language that enables
process-oriented service composition [13]. As the standard
language for Web Service composition, its workflow defi-
nition is centered around the notion of business processes
used as the glue between interacting services. Programmers
define how a business process that involves Web Services
is executed using WS-BPEL language. BPEL primitives are
used to invoke remote services, orchestrate process execution,
and manage events and exceptions.

The task of a workflow language is to define case-driven
business process by specifying, executing, and monitoring
workflow models. We compare our OSCL language and
BPEL from the standpoint of workflow pattern coverage.
In the literature, workflow patterns are defined as a means
of categorizing recurring problems and solutions in modeling
business process [14]. Using the same evaluation criteria,
we have checked what pattern coverage our OSCL offers.
The criteria specifies a group of conditions that a workflow
language in question has to fulfill in order to support a pattern.
A pattern is said to be supportive (marked as ““+” in Table 2),
if the workflow language fully satisfies the evaluation cri-
teria for the pattern. Otherwise, it is unsupportive (marked
as “—” in the table). Table 2 also summarize the coverage
of workflow patterns by our OSCL language in comparison
with BPEL; Our Blueprint Flow framework provides better
support for advanced branching and synchronization patterns
and structural patterns. In contrast, it does not support can-
cellation patterns. The result shows that our OSCL languages
provides better coverage for major patterns.

17639

IEEE Access

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

TABLE 2. Blueprint Flow workflow pattern comparison.

Workflow Pattern BPEL OSCL Note

Basic Control Flow Patterns

Sequence + + Supported by SPA

Parallel Split + + Supported by PPA
Synchronization + + Supported by PPA within SPA
Exclusive Choice + + Supported by BLA

Simple Merge + + Supported by BLA with PPA

Advanced Branching and Synchronization Patterns

Multi-choice + + Supported by BLA withinBLA
Synchronizing Merge + + Supported by PPA with SPA
Multi-merge -+ Supported by prototype bean
Discriminator Not supported

Structural Patterns

Arbitrary Cycles -+ Supported by PA with BLA
Implicit Termination + + Supported by PA

Patterns Involving Multiple Instances

MLI. Without
Synchronization

M.I. With a Priori Design

+ + Supported by prototype in CA

Time Knowledge - - Notsupported
M.I. With o Priori

Runtime Knowledge - Netsupported
M.I. Without a Priori

Runtime Knowledge - Netsupported

State-based Patterns

Deferred Choice + + Supported by BLA
g:;zgi;ved Farallel Nt SpiTEd
Milestone - - Notsupported
Cancellation Patterns

Cancel Activity + - Notsupported
Cancel Case + - Notsupported

B. SAMPLE SCENARIO DEMONSTRATION
To demonstrate the feasibility and effectiveness of our
Blueprint-based composition framework, we choose a use-
case scenario of smart home as presented in Section II. Being
built on top of OSGi service platforms, all devices in this
environment are registered with the OSGi service registry
as services. Fig. 7 shows a screenshot from our prototype
implementation of the smart home scenario involving a num-
ber of smart sensors and devices: a weather sensor, window
controllers, door locks, and dehumidifiers. A workflow-based
service composition can be specified by describing interac-
tions of smart home devices and services in OSCL language.
The OSCL description of the scenario is given in Fig. 5.
According to the scenario in Fig. 1, if WeatherCode from
the weather sensor service is 0O, it is a sunny day. Oth-
erwise, it is rainy. First, the weather service checks the
weather source and sets WeatherCode accordingly. A BLA
accepts the code value and selects a PPA as the next exe-
cutable node which contains two CAs (WindowOpen and
DehumidifierOff). Finally, informUser CA is responsible for

17640

FIGURE 7. Screen shots of smart home scenario.

informing the resident of what has been done by sending a
notification message.

C. PERFORMANCE EXPERIMENTS

In order to evaluate the performance of our Blueprint
Flow framework, we use a simple workflow scenario which
involves two sequence and one multi-choice patterns. The
test composite application is a calculator which consists of
Tokenizer service, Add service, Subtract service, and Print
service. The tokenizer service accepts an arithmetic expres-
sion, determines whether it is an addition or subtraction, and
prepares operand values. The results of Add/Subtract service
are passed on to Print service, so that it can deliver final
results to users.

For BPEL experiments, we have chosen Apache Tomcat as
the base container and Apache ODE (http://ode.apache.org)
as a WS-BPEL engine. It is also noted that Eclipse
Equinox (http://www.eclipse.org/equinox) and Apache Aries
(http://aries.apache.org) are used as the base OSGi plat-
form and Blueprint Container implementation, respectively.
We measured the performance of both cases of WS-BPEL
and Blueprint Flow in terms of CPU load, memory usage,
and composition time.

CPU load is a measurement of the amount of compu-
tational work that a workflow requires. We ran the above
experimental composition scenario 10 times using a machine
with Intel Core 15-3470 CPU running at 3.2GHz. As shown
in Fig. 8, the results show that CPU load is much lower and
stable, when using our Blueprint Flow composition engine.
The x axis of the graph indicates the separate runs of the
workflow execution.

Lower memory usage should be desired, because it allows
a faster execution of the workflow and permits the system to
have room for other applications. Again, we have repeated
the composition scenario 10 times again using WS-BPEL
and Blueprint Flow engines. Fig. 9 compares memory usage
for the two cases; the BPEL case shows the memory usage
that varies from 8.37MB to 17.9MB. In the case of Blueprint

VOLUME 5, 2017

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

IEEE Access

CPU load ratio (%)
— L] w E =3 w (23} e o w

*
3
3

*
k

*

o

Number of runs

FIGURE 8. CPU load evaluation.

Memoryusage (MB)

Number of runs

FIGURE 9. Memory usage evaluation.

]
wn
o

—&— BPEL
’gm | ---¥e--- BPF
T

E

150

S

=

38

2100

g

=]

(&)

50

¥. . ¥ ¥ . 3. . s . o
T

0 1 2 3 4 5 6 7 8 9 10
Number of runs

FIGURE 10. Composition time comparison.

Flow, the memory footprint is much lower, ranging from
0.620MB to 0.662MB.

A composition time indicates how fast a composition
engine is able to compose and execute a workflow. We have
run the same scenario repeatedly 10 times using WS-BPEL
and Blueprint Flow frameworks to compare their workflow
composition time. As plotted in Fig. 10, the average compo-
sition time for WS-BPEL engine is 145 ms, which is 30 times
higher than the average time 4.58 ms for our Blueprint Flow
engine.

VOLUME 5, 2017

V. RELATED WORK

When it comes to services technologies, Web Services tech-
nology might be viewed as the most mature and promi-
nent [15]. Its discovery and delivery protocols along with a
service description language can adequately describe, locate,
and invoke individual services as an atomic unit. But the
core technology itself does not provide functionalities for rich
behavioral support for managing collaborations and interac-
tions among services.

It is well known that there are two ways to build busi-
ness processes: service orchestration and service choreog-
raphy [16]. Service orchestration has a central orchestrator
that coordinates interactions among component services. The
orchestrator is responsible for invoking and combining the
individual components. According to service choreography,
there is no central orchestrator. Collaborations are specified
by a global description of participating component services
and their interactions. In other words, it is said that service
choreographies are not executed by a central coordinator but
enacted, when individual component services play their role.
There have been several research efforts on service chore-
ography which focus on service modeling, synthesizing of
models, and process flow modeling [17]-[19].

As briefed in Section II, OSGi technology provides basic
features for promoting service interactions and composi-
tions. However, it lacks full-fledged service modeling and
composition language supports. This void may be filled by
WS-BPEL (Web Services Business Process Execution Lan-
guage) that has establised itself as the standard for mod-
eling and execution of Web Service orchestration [13].
WS-BPEL processes consist of Web Services components
with a limited functionality that implement process activ-
ities. There have also been a number of recent efforts to
extend the BPEL technology. AO4BPEL is an aspect-oriented
extension to BPEL which addresses the issue of limited
modularity in BPEL technology [20], [21]. AdaptiveBPEL
is a technology which intends to meet the need of differen-
tiated Web Services compositions [22]. An adaptation pro-
cess is driven by policies, and a policy mediator is used to
negotiate a composite policy. There is also some research
on the development of REST Web Services composition
using BPEL [23], [24]. RESTful interfaces can be directly
used within a BPEL process and RESTful Web Services
APIs can be implemented using BPEL with declarative con-
structs for publishing resources. Also interesting is a dia-
logue protocol proposed to support interactions among Web
Services [25]. A dialogue can be viewed as a sequence of
message exchanges between intelligent agents.

Lastly, there have been some efforts to enhance
OSGi’s capability to support service compositions beyond the
built-in packages such as Declarative Service and Blueprint
Container Service. For instance, a WS-BPEL engine is incor-
porated into OSGi platforms as a service [26]. It encapsu-
lates the logic information of the composite service using
BPEL technology inside a virtual bundle which is not need

17641

IEEE Access

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

to be implemented. The BPEL Engine is responsible for
registering and invoking OSGi composite service. The engine
creates one process for each OSGi composite service and
each composition process is the real implementation of the
virtual bundle. One downside of this approach is that they
may not be an ideal match. A WS-BPEL engine might be too
heavy to be hosted in OSGi framework which is positioned
as a technolgy for lightweight service platforms. In contrast,
our proposed approach effectively enables lightweight and
rapid service compositions for OSGi environments with full
supports for major workflow patterns.

VI. CONCLUSION

This paper presents an architecture of a novel service frame-
work that supports directed-acyclic-graph style compositions
in OSGi environments along with its workflow description
language. The framework is capable of instantiating a declar-
ative blueprint of service interconnections into wirings of
corresponding component instances available in the environ-
ment. Our proposal has been prototyped to demonstrate the
effectiveness of its architectural design in promoting service
composition and usage. We have also evaluated our approach
in comparison with WS-BPEL, which is the most prominent
workflow technology today. Especially, a comparison has
been made with regards to the coverage of workflow patterns
that the two workflow systems support. The result shows that
our composition language provides better support for major
workflow patterns. A subsequent performance study reveals
that our composition framework is much more streamlined
with lesser composing time, CPU load, and memory usage.
Hence, a well-suited match for small-sized environments like
OSGi platforms. In conclusion, our evaluation study confirm
that our framework architecture indeed achieves its primary
design goal which is a lightweight workflow engine targeting
OSGi environments without negatively affecting the coverage
of workflow features.

REFERENCES

[1]1 R.Buyya, C. Shin, S. Venugopal, J. Broberg, and I. Brandic, “Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for delivering
computing as the Sth utility,” Future Generat. Comput. Syst., vol. 25, no. 6,
pp. 599-616, Jun. 2009.

[2] M. A. Vouk, “Cloud computing—TIssues, research and implementations,”
J. Inf. Technol. Interface, vol. 16, no. 4, pp. 235-246, 2008.

[3] “RFP 133 cloud computing,” OSGi Alliance, San Ramon, CA, USA,
Tech. Rep., 2011. [Online]. Available: https://osgi.org/bugzilla/attachment.
cgi?id=46

[4] OSGi Core Release 6, OSGi Alliance, San Ramon, CA, USA, Jun. 2014.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana, “Unraveling the Web services Web: An introduction
to SOAP, WSDL, and UDDI,” IEEE Internet Comput., vol. 6, no. 2,
pp. 86-93, Apr. 2002.

[6] P. Bakker and B. Ertman, Building Modular Cloud Applications With

OSGi. Sebastopol, CA, USA: O’Reilly Media, Sep. 2013.

OSGi Compendium Release 6, OSGi Alliance, San Ramon, CA, USA,

Jul. 2015.

[8] H. Cervantes and R. S. Hall, “Automating service dependency man-
agement in a service-oriented component model,” in Proc. ICSE/CBSE
Workshop, Portland, OR, USA, 2003, pp. 1-6.

[9] C. Escoffier and R. S. Hall, “Dynamically adaptable applications with
iPOJO service components,” in Proc. Softw. Compos., Paris, France, 2007,
pp. 113-128.

[7

17642

[10] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: An extensible service-
oriented component framework,” in Proc. Int. Conf. Services Comput.,
Salt Lake City, UT, USA, Jul. 2007, pp. 474-481.

[11] M. C. Jaeger, G. Rojec-goldmann, and G. Muhl, “QoS aggregation for
Web service composition using workflow patterns,” in Proc. 8th IEEE Int.
Enterprise Distrib. Object Comput. Conf., Monterey, CA, USA, Sep. 2004,
pp. 149-159.

[12] F Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan, “Adaptive
and dynamic service composition in Eflow,” in Proc. Adv. Inf. Syst. Eng.,
Stockholm, Sweden, 2000, pp. 215-234.

[13] Web Services Business Process Execution Language Version 2.0, OASIS
Standard, 2007.

[14] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and
N. A. Mulyar, “Workflow control-flow patterns: A revised view,” BPM
Center, Tech. Rep. BPM-06-22, 2006.

[15] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Reading, MA, USA: Addison-Wesley, May 2002.

[16] F. Daniel, P. Milano, B. Pernici, and P. Milano, “Insights into Web ser-
vice orchestration and choreography,” Int. J. E-Bus. Res., vol. 2, no. 1,
pp. 58-77, Mar. 2006.

[17] M. Broy, I. H. Kriiger, and M. Meisinger, “A formal model of services,”
ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, pp. 1-40, Feb. 2007.

[18] S. Uchitel, J. Kramer, and J. Magee, “Negative scenarios for implied
scenario elicitation,” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng.,
Charleston, SC, USA, 2002, pp. 109-118.

[19] M. Brambilla, S. Ceri, I. Manolescu, and P. Fraternali, ““Process modeling
in Web applications,” ACM Trans. Softw. Eng. Methodol., vol. 15, no. 4,
pp. 360—409, Oct. 2006.

[20] A. Charfi and M. Mezini, “AO4BPEL: An aspect-oriented extension to
BPEL,” World Wide Web, vol. 10, no. 3, pp. 309-344, Sep. 2007.

[21] A. Charfi and M. Mezini, “Aspect-oriented web service composition with
AOA4BPEL,” Lecture Notes in Computer Science, vol. 3250, pp. 168—182,
2004.

[22] A. Erradi and P. Maheshwari, “AdaptiveBPEL: A policy-driven middle-
ware for flexible Web services composition,” in Proc. Middleware Web
Services, Enschede, The Netherlands, 2005, pp. 5-12.

[23] C. Pautasso, “RESTful Web service composition with BPEL for rest,”
Data Knowl. Eng., vol. 68, no. 9, pp. 851-866, Sep. 2009.

[24] C.Pautasso, “BPEL for rest,” in Proc. Bus. Process Manage., Milan, Italy,
2008, pp. 278-293.

[25] C.D. Walton, “Model checking multi-agent Web services,” in Proc. AAAI
Symp. Semantic Web Services, Palo Alto, CA, USA, 2004, pp. 68-75.

[26] R. P. D. Redondo, A. F. Vilas, M. R. Cabrer, J. J. P. Arias, and
M. R. Lépez, “Enhancing residential gateways: OSGi service composi-
tion,” IEEE Trans. Consum. Electron., vol. 53, no. 1, pp. 87-95, Apr. 2007.

CHOONHWA LEE received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, South Korea, in 1990 and
1992, respectively, and the Ph.D. degree in com-
puter engineering from the University of Florida,
Gainesville, FL, USA, in 2003. He is currently
a Professor with the Division of Computer Sci-
ence and Engineering, Hanyang University, Seoul,
South Korea. His research interests include cloud
| computing, peer-to-peer and mobile networking
and computing, and services computing technology.

CHENGYANG WANG received the B.S. degree in
computer engineering from Hanyang University,
South Korea, in 2015, where he is currently pur-
suing the degree with the Division of Computer
Science and Engineering. His research interests
include cloud and distributed computing systems
and computer networking protocols.

VOLUME 5, 2017

C. Lee et al.: Blueprint Flow: Declarative Service Composition Framework for Cloud Applications

IEEE Access

EUNSAM KIM received the B.S. and M.S. degrees
in computer engineering from Seoul National
University, South Korea, in 1994 and 1996,
respectively, and the Ph.D. degree in computer
and information science and engineering from the
University of Florida, in 2006. He was with the
Digital TV Research Laboratory. LG Electronics,
South Korea, from 1996 to 2002. He is currently
an Associate Professor with the Department of
Computer Engineering, Hongik University, South

Korea. His research interests include distributed computing, P2P streaming,
cloud computing, mobile computing, and networked storage systems.

VOLUME 5, 2017

disability, a.nd independence. His research interests include pervasive and
mobile computing, smart health and wellbeing, and cloud-sensor systems.

SUMI HELAL received the Ph.D. degree in
computer science from Purdue University, West
Lafayette, IN, USA. He is currently a Professor
with the Computer and Information Science and
Engineering Department, University of Florida,
Gainesville, FL, USA, where he is also the Direc-
tor of the Mobile and Pervasive Computing Lab-
oratory. He directs the Gator Tech Smart House,
an experimental facility for developing and val-
idating assistive technology in support of aging,

17643

